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ABSTRACT 

Various extended relational data models were proposed to handle uncertain 
data including possibilistic and probabilistic data. Query processing involving ag- 
gregate functions over uncertain data is rarely considered. In this paper, we 
define a set of extended aggregate functions over probabilistic data. The time 
complexity of the computations for these extended aggregate functions is, in gen- 
eral, exponential. We develop two efficient algorithms for the computation of the 
maximum and minimum aggregate functions. The worst-case time complexity 
of the algorithms are O(n2). These algorithms can be extended to handle the 
possibilistic data. That  is, our work is devoted to the accommodation of uncer- 
tain data in database systems with an elaboration on speeding up the processing 
efficiency of the aggregate functions. 

1. I N T R O D U C T I O N  

Incomplete  information exists in the real world. This includes imprecise 
data and uncertain data [9]. Imprecise da ta  refer to the contents of da ta  and 
uncertain da ta  refer to the degree of the t ru th  of da ta  [20]. The  management  
of incomplete information has been widely discussed in various extended 
relational da ta  models. Imprecise da ta  are usually modeled by exclusive 
disjunctive da ta  [8, 11, 13, 14], such as partial values [11]. There  are two 
ways to represent uncertain data,  which include the approach based on 
fuzzy set or possibility theory  [19, 22, 23], and the approach based on 
probabi l i ty  theory  [1, 3, 13, 21]. 
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Partial values proposed by Grant [11] have been considered by DeMichiel 
[8] for resolving domain mismatch problems in heterogeneous database 
systems, in which an algebraic approach for operating on partial values is 
proposed. Lipski [14] presented a general discussion on manipulating impre- 
cise information including partial values. Ola [16] presented an approach to 
processing relations containing exclusive disjunctive data. Regarding the 
uncertainty aspect, various kinds of fuzzy relational databases based on 
the possibility theory introduced by Zadeh [22] were proposed. Prade and 
Testemale [19] presented an extended relational algebra that  can be used to 
deal with partial, uncertain, or fuzzy knowledge and to take vague queries 
into account. Zemankova and Kandel [23] considered a fuzzy relational 
model and query language. 

Regarding the work with the probability approaches, Barbar£ et al. 
[1] presented a probabilistic relational data model and a set of operators. 
Cavallo and Pittarelli [3] outlined the aspects of a theory of probabilistic 
databases. Lee [13] extended the relational data model to capture impre- 
cise and uncertain data and defined a set of extended operators for manip- 
ulating these data. In [21], we generalized the concept of partial values to 
probabilistic partial values by assigning a probability to each possible value 
in a partial value. However, none of the probability approaches discussed a 
way to obtain the probabilities. In [4], we proposed a mechanism based on 
Jaccard's similarity coefficients to estimate the probabilities of the possible 
values in a partial value from the database contents. 

In practice, relational algebra or calculus is inadequate for many im- 
portant applications involving statistical information or aggregates, such 
as the decision support systems [12]. Therefore, modern query languages 
like SQL [7] are equipped with some useful aggregate operators. However, 
most of the previous works on the manipulation of incomplete information 
usually discuss the extended relational algebra and ignore the extended ag- 
gregate operators. Ozsoyo61u et al. [17] studied some aggregate operators 
over set-valued attributes. Rundensteiner and Bic [20] proposed aggregate 
operators in possibilistic databases. In [5], we defined a set of extended ag- 
gregate functions, namely sum, average, count, maximum, and minimum, 
over partial values. 

In this paper, we investigate the same set of extended aggregate func- 
tions over probabilistic partial values. We first give the primary definitions 
of these extended aggregate functions, which result in a probabilistic par- 
tial value once evaluated. By these definitions, users can have the most 
possible values (i.e., the possible values with the largest probabilities) as 
the answer. If the users prefer an approximate answer such as expected val- 
ues, we also provide an alternative definition for each extended aggregate 
function. 
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The time complexity for exhaustively evaluating these extended aggre- 
gate functions (under the primary definition) is exponential. Since the 
cardinality of the results of the two extended aggregate functions sum and 
average is exponential in the worst case, no efficient algorithm can be found 
to evaluate them. To find the minimum number in the possible values, the 
count aggregate function can be reduced to the minimum cover problem in 
graph theory [2], which is NP-hard [18]. We propose efficient algorithms for 
maximum and minimum aggregate functions, and show their correctness 
and time complexity for computations. Under the same framework, the ex- 
tended aggregate functions over possibilistic data [20] or partial values [5] 
can also be handled. Therefore, our work is devoted to the accommoda- 
tion of incomplete information in database systems with an elaboration on 
speeding up its processing efficiency. 

This paper is structured as follows. First, we present basic concepts and 
definitions of probabilistic partial values (Section 2). The primary and al- 
ternate definitions of the five extended aggregate functions are introduced 
in Section 3. The considerations for the sum, average, and count aggregate 
functions are described in Section 4. Section 5 presents two efficient al- 
gorithms for computing the maximum and minimum aggregate functions. 
The correctness and the worst-case time complexity for these two algo- 
rithms are also presented. With slight modifications of the two algorithms, 
possibilistic values can also be handled, as discussed in Section 6. We 
conclude the paper in Section 7. 

2. BASIC CONCEPTS AND DEFINITIONS 

A probabilistic partial value [21] is an extension of partial values [8]. 
That  is, imprecise data are extended, to uncertain data, by which more 
informative query results can be achieved. Theoretically, we can treat  the 
probabilistic partial values as the probabilistic data considered in proba- 
bilistic data models [1, 10]. In this section, we will describe the concepts 
of probabilistic partial values and consider the interpretations of a set of 
probabilistic partial values. 

2.1. BASIC CONCEPTS OF PROBABILISTIC PARTIAL VALUES 

Partial values model data imprecision in databases in the sense that,  
for an imprecise datum, its true value can be restricted in a specific set 
of possible values [8]. A partial value is represented by a set of possible 
values, in which exactly one of the value is true. In this paper, we follow 
the definition of partial values given in [8], which is formally stated as 
follows. 
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DEFINITION 1. A partial value [8], denoted ~ = [ a l , a 2 , . . . , a m ] ,  asso- 
ciates wi th  m possible values, a l ,  a 2 , . . . ,  am, m _> 1, of the  same domain ,  
in which exact ly  one of the  values in ~ is the  true value of 4. 

For a par t ia l  value ~ = [al, a 2 , . . . ,  am], a function ~ is defined [8], where  
maps  the  par t ia l  value to its corresponding finite set of possible values; 

t ha t  is, t~(~) = {al ,  a 2 , . . . ,  am}. Notice tha t  an applicable null value [6], R, 
can be considered as a par t ia l  value wi th  ~(R) = D, where D is the  whole 
domain.  

[ r ~ P l  ~ P 2  DEFINITION 2. A probabilistic partial value, denoted 7 = L~I ,~2 , . . . ,  
aP-'l associates with m possible values, al,  a2, • , am, of the  same  domain  TYt 1 '  ' "  

D, where  each ai associates wi th  a probabi l i ty  p~ > 0 such t h a t  m 1. E i = l  pi = 

In this paper ,  since we consider aggregate  functions, D is assumed nu- 
merical.  To facil i tate our presentat ion,  we introduce a funct ion # for a prob-  
abilistic par t ia l  value to obta in  the  probabi l i ty  of each possible value ai in 
the  probabil is t ic  par t ia l  value 7 = [ apl , aP2, . . . ,  aP'L]m J" T h a t  is, #~(a~) = p~, 
1 < i < m. The  cardinality of a probabil is t ic  par t ia l  value 7, denoted 171, 
is defined as the  number  of the possible values in 7. 

W h e n  a probabil is t ic  par t ia l  value is used to represent  uncer ta in  da t a  
in a relation, its associated a t t r ibu te  can be regarded as a discrete r andom 
variable  [1, 15]. Also, the  probabi l i ty  of an a t t r ibu te  value is a condit ional  
probabi l i ty  depending on the  key value of the  associated tuple  (key values 
are assumed definite). To il lustrate,  consider the  following relation, where  
name is the  key a t t r ibute .  

n a m e  ci ty  special ty  age 

Jesse [T O.4 , H °5,  K 0"1] S E  30 

Annie K [DB °'2, C S  °'s] 27 

This  relat ion describes two entities, "Jesse" and "Annie." T h e  proba-  
bility t h a t  Jesse 's  city is T is 

prob( c i ty= "T" I n a m e = " J e s s e " )  = 0.4. 

2.2. A L T E R N A T E  WORLDS OF A SET OF PROBABILISTIC  
PARTIAL VALUES 

For a set of probabil is t ic  par t ia l  values ~,  we m a y  enumera te  M1 the  
possible combinat ions  t ha t  • represents  and compute  the  probabi l i ty  for 
each possible combinat ion.  A combinat ion,  called interpretation, represents  
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a case that  exists in the real-world corresponding to the set of probabilistic 
partial values ~. 

DEFINITION 3. An interpretation A of a set of probabilistic partial val- 
ues, (I) = {~]1,772,... ,??n}, is a pair (a, O), where a = (al,a2,. . .  ,an) is 
an assignment of values from (I) such that  ai E u(~i), 1 ___ i _< n, and 

= # , t  (at) x #w (a2) x . . . x  #,,, (an) is the probability of the assignment. 
The family of the interpretations of (I), denoted I((I)), consists of all inter- 
pretations of 4~. If (I) = 0, define Z({)  = 0. 

In Definition 3, we call a and 8 the assignment part and the probability 
part of the. interpretation A, respectively. To consider the redundancies 
among interpretations, the value set of an interpretation is defined as follows. 

DEFINITION 4. For an interpretation A = (c~,~), a = ( a l , a2 , . . .  ,an), 
of a set of probabilistic partial values (I) = {7/1,7/u,..., 77n}, the value set of 
A is denoted SA = (S~, So), where S~ = {ai] 1 < i < n} and Se = 8. 

Similarly, in Definition 4, we call S~ and So the assignment part and 
the probability part of the value set SA, respectively. An extended union 
operation, a-union, denoted U, is defined as follows. 

DEFINITION 5. Let SAt = (S~,, Sot} and S~ 2 = (S~2, Sos) be two value 
sets. Then 

{ se, + se,)}, 
= u 

if S,1 = S , :  
otherwise. (1) 

Definition 5 says that  the a-union may merge the interpretations if they 
have the same assignment parts of the corresponding value sets. The prob- 
ability part of the merged value set is assigned with the sum of the proba- 
bility parts of SA1 and Sa: .  

DEFINITION 6. Consider a set of probabilistic partial values (I) ---- {771, 

7/2,... ,~n}- For all interpretations A i E Z(~),  1 < i < p (p = [~1[ x ]7/2[ x 

• .. x [~n [), the family of the value sets of (I) is denoted 9~((I)) = U~= 1 - p  {SA~ }. 
If I(@) = 0, define ~'(@) = 0. 

An example is given in the following to explain the above definitions. 

EXAMPLE 1. Consider the relation P e r s o n ,  shown in Table 1. In this 
771 ~/2 

example, (I) = {(130°6,140°i], (120°2,130°5,140°'ff]}, and the family of 
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TABLE 1 
An Example Relation PERSON 

• • • w e i g h t  

. . .  [1300.6 ' 1400.4 ] 

. . .  [1200.2, 1300.5, 1400.3] 

the  in terpreta t ions  of q~,/((I)), consists of the following six interpretat ions:  
Ai  = ( (130,120) ,8i / ;  A2 = ((130,130),02); A3 = ((130,140), 031; A4 = 
((140,120),041; A5 = ((140, 130), 05); and A6 = ((140,140),06); where 
01 = 0.6 x 0.2 = 0.12, 02 = 0.6 × 0.5 = 0.30, 03 = 0.6 × 0.3 = 0.18, 
04 = 0.4 × 0.2 = 0.08, 05 = 0.4 × 0.5 = 0.20, and 06 = 0.4 × 0.3 = 0.12. 
The  corresponding value sets are 

Sa~ = ({120,130}, 0.12), SA= = ({130}, 0.30), 
SA3 = ({130, 140}, 0.18>, St,4 = ({120,140}, 0.08>, 
SAs = ({130,140},0.20>, and SA6 = ({140},0.12>, 

and the  family of the  value sets of • is 

6 

= {({120,130}, 0.12>, ({130}, 0.30), ({130,140}, 0.38), 

<{120,140}, 0.08>, ({140}, 0.12>}. 

Notice tha t  St, 3 and SA5 have been merged into one value set. • 

For all the  value sets in T(q~), the sum of their  probabil i ty par ts  equals 
1. We have the following lemma. 

LEMMA 1. Let ~ ( ~ )  be the family of the value sets of ¢ = {~/i, T}2,..., 
~n}, where ~i = [aiV~ 1 a ~12 - -  a p''q] ' ~2 ," , im~ J, 1 < i < n .  Then, V S %  =(S~j,So~> 
E 5r(@), we have 

lY(¢)I 

E S o ~ = I .  
j = l  

Proof. 

If(~), p 
E So, = E 0 i ,  w h e r e p =  I~ll x [~21 × "'" z Innl 
i=1  i=1  

= E ]'£r/1 (alil) X #if2 ( a 2 i 2 )  X ' ' "  X #f in  (an~,~) 
l < Q < m i  

l < i , , < m , ~  
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= E p, nl(alh) x/-t,~(a2i2) x . . .  x #,,_z(a(n_l),:,_l) 
l ~ i l ~ m l  

l_~in- 1 ~ m n -  1 

× (#,, ,(anl) +#,7,~(an2) + " "  +#v,~(anm,~)) 

-~ E #.1 (aliz) X " . 2  (a2is) 
l~_Q~ml 

l ~ i n _ l ~ m n -  1 

X " . .  X I.tv,~_z(a(n_l~i,~_z'), j j x 1 

= E P',h(al'h) X 1 X . . .  X 1 
l ~ _ i l ~ m l  

= (#re(al l )  + #m(az2) + . . .  +#w(alm,~)) x 1 x . . . x  1 
= l x l x . . . x l  

~ 1 .  
[] 

3. AGGREGATE FUNCTIONS OVER PROBABILISTIC 
PARTIAL VALUES 

In this section, we provide two kinds of definitions for each extended 
aggregate function. Section 3.1 describes the primary definitions for the 
extended aggregate functions sum, average, count, maximum, and mini- 
mum. The results of these aggregate functions are also probabilistic partial 
values. If the users prefer the results of these extended aggregate functions 
as expected values, we give alternate definitions for each extended aggre- 
gate function in Section 3.2. The results of these functions are approximate 
values and the computations are linear. 

3.1. PRIMARY DEFINITIONS 

According to the existence of duplicate values, we classify the set of the 
extended aggregate functions into two classes: 

• The duplicate value preservation class includes count, sum, and average 
aggregate functions. 

• The duplicate value elimination class includes count, maximum, and 
minimum aggregate functions. 

Consider a set of probabilistic partial values ~P = {~]1, ?]2,. • . ,  ~]n }. We use 
the family of the interpretations of ~, Z(~)  to define the extended aggregate 
functions that  are in the duplicate value preservation class. On the other 
hand, in order to eliminate the duplicate values, we use the family of the 
value sets of ~, 9r(~) to define the extended aggregate functions that  are 
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in the duplicate value elimination class. Notice that the count aggregate 
function can be in the duplicate value preservation or elimination class. 
If it is considered as being in the duplicate value preservation class, the 
result of the count aggregate function over ~ is n; otherwise, its definition 
is shown in Definition 9. 

An element of the family of the interpretations (resp. value sets) of 
~, 2"((~) (resp. 9v(~)), describes a possible case that (I) represents. Hence, 
I((I)) (resp. 9c((I))) describes the set of all possible cases in the real world. 
A conventional aggregate function f ,  when applied to an interpretation 
(resp. a value set), say A = (a, 0) (resp. SA = (S~, So)), in Z((I)) (resp. 
~'(~5)), returns a definite value, f (a )  (resp. f (S~)) ,  with a probability 0 
(resp. So). Therefore, an extended aggregate function on (I) produces a set 
of possible values with associated probabilities. That  is, it merges (i.e., 
a-unions) the aggregation results of all the interpretations (resp. value 
sets) in Z((I)) (resp. ~'((I))). 

EXAMPLE 2. 
We have 

DEFINITION 7. The extended sum, denoted suml(¢) ,  is defined as 

suml (~ )  =_ [yOl,y202,."" 'YiTi'emlJ' where Y({y~}, 0i) c T and 

T=  ajls=(al,..,aj, .,an), 
A= (~,0)e2r(q~) j= l  

Consider the relation P e r s o n  shown in Table 1 again. 

T = {({250}, 0.12), ({260}, 0.30/, ({270}, 0.38), ({260}, 0.08), ({280}, 0.12)} 

for the extended aggregate function sum. Hence, 

suml(weight)  = [2500'12, 260 °'38, 270 °'as, 2800'12]. • 

DEFINITION 8. The extended average, denoted avgl(¢), is defined as 

[ .  01 . 02  - OiTll where V ({Yi}, 0i> E T and avgl(~) =_ LYl ,Y2 , . "  , Y L T I  J, 

j = l  
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EXAMPLE 3. For the relation Person ,  we have 

T : {({125}, 0.12), <{130}, 0.38), ({135}, 0.38>, ({140}, 0.12>} 

for the extended aggregate function average. Hence, 

avgl(weight) = [125012, 1300"3s, 135 °3s, 140°12]. • 

DEFINITION 9. The extended count, denoted countl(O), is defined as 

countl(~)  =- [y~l, y ~ , .  _ S,T,1 where V ({Yi}, 0i) 6 T and 
• " ' Y l T I  ] ' 

T : s~=<sOo>e~:(~){({IS~]}, So>}. 

EXAMPLE 4. For the relation Person ,  we have 

T = {({2}, 0.12>, ({1},0.30), <{2}, 0.38), <{2}, 0.08), <{1},0.12}} 

: {<{1},0.42), <{2},0.58)} 

for the extended aggregate function count• Hence, 

countl(weight) : [1 °'42, 2°'5s]. 

a s  

DEFINITION 10. The extended maximum, denoted maxl(~) ,  is defined 

m a x l ( ~ )  =- [y~l y2O2,. - SlT'I where V ((y~}, 0i) c T and 
• " ' YlTI ] ' 

T : 0 {({maxS~},Se)}. 
SA=(S~,So)~J=(¢) 

EXAMPLE 5. For the relation Person ,  we have 

= { < { 1 3 0 } , 0 A 2 > ,  ( { 1 4 0 } , 0 . 5 s ) }  

for the extended aggregate function maximum. Hence, 

maxl(weight)  = [130 °'42, 140°'5s]. 

a s  

DEFINITION 11. The extended minimum, denoted minl(O), is defined 

m i n l ( ~ )  - [Y~',Y2°2,'",YlT$" °lr'l], where V ({Yi}, 0i) E T and 

- ){<{ • } >} T = ~ mm S~ , Ss . 

T = {({130}, 0.12), ((130}, 0.30), ((140}, 0.38), ({140}, 0.08), ({140}, 0.12)} 
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EXAMPLE 6. For the  relat ion P e r s o n ,  we have 

T = {({120}, 0.12), ({130}, 0.30), ({130}, 0.38}, 

({120}, 0.08), ({140}, 0.12)} 

= {({120}, 0.20>, ({130}, 0.68), ({140}, 0.12)} 

for the  extended aggregate  funct ion minimum. Hence, 

mini(weight)  = [120 °'2°, 130 °'6s, 140 ° 12]. 

3.2. ALTERNATE DEFINITIONS 

There  are two reasons to provide an a l te rna te  definition for each ex- 
tended  aggregate  function. First ,  users m a y  prefer an approx ima te  but  
definite answer for the  extended aggregate  functions. Second, the  compu-  
t a t ion  of a l te rna te  definitions is linear. For a probabil is t ic  par t ia l  value, 
we can use an expected value to approx ima te  it. The  expec ted  value of a 
probabi l is t ic  par t ia l  value is defined as follows. 

DEFINITION 12. For a probabil is t ic  par t ia l  value, ~ -- [ aP l , aP2 , . . . ,  
aP'L], the  expected value, denoted ~, of ~ is defined as 

= ~ ai x Pi. 
i = 1  

For a set  of probabil is t ic  par t ia l  values (I), we first compu te  the  expec ted  
values of the  corresponding probabil is t ic  par t ia l  values in  (I). Then ,  the  
a l t e rna te  definition of each extended aggregate  function is defined on the  
set  of expected  values. 

[aP~l aP~2 DEFINITION 13. Let  • = {~h,~?2, . . . ,~n},  where ~i = L il , ~2 . . . .  , 
a p~'~ 1 ira, J, 1 < i < n, be a set of probabil is t ic  par t ia l  values, and •i be  the  
expec ted  value of ~i, 1 < i < n. The  a l te rna te  definitions of count, sum, 
average, m a ~ m u m ,  and min imum,  denoted count2(~), sum2(~),  avg2(~), 
max2((I)), and min2(~),  respectively,  are defined as follows. 

count2(~) = n, 

sum2(~) = ~ ~7i, 
i = 1  

sum2( ~ ) 
avg2(~) - - - ,  

n 
max2( ~ ) n = m a x  ~i, and 

i = 1  
n 

min2(~) = min v/i. 
i = l  
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EXAMPLE 7. Consider  the  P e r s o n  re la t ion  shown in Table  1 again.  
T h e  a l t e rna t e  def ini t ions of  the  ex t ended  aggrega te  funct ions  are  eva lua ted  
below. 

~71 = 130 x 0.6 + 140 × 0.4 = 134, 

if2 = 120 z 0.2 + 130 × 0.5 + 140 × 0.3 = 131. 

count2(weight) = 2, 

sum2(weight) = ffl + rT2 = 265, 

avg2(weight) = 265/2 = 132.5, 

max2(weight) = max{134, 131} = 134, and  

min2(weight) = min{134,131} = 131. 

4. C O N S I D E R A T I O N S  F O R  count1, sum1, A N D  avgl 
A G G R E G A T E  F U N C T I O N S  

4.1. suml AND avgl 

W h e n  I~1 = n and  IUil = m,  1 < i < n, there  are  m '~ i n t e rp re t a t i ons  of 
~ .  Since the  card ina l i t i es  of ~(suml(~)) and ~(avgl(~)) are equal  to  m n 
in t he  wors t  case (see E x a m p l e  1), no po lynomia l  t ime  a lgor i thms  can be 
found for suml and  avgl. 

4.2. countl 

A l t h o u g h  the  ca rd ina l i ty  of ~(countl(q~)) is O(n) in the  wors t  case, to  
find the  m i n i m u m  number  in ~(countl(a;)) is difficult. In  th is  section,  we 
use techniques  in g raph  t heo ry  [2] to consider  p(countl(q~)). 

DEFINITION 14. For a set S of ver t ices  in a g raph  G = (V, E ) ,  S C_ V, 
the  neighbor set of S, deno ted  N(S),  is defined to be the  set of all ver t ices  
ad jacen t  to  the  ver t ices  in S. 

DEFINITION 15. For  a b i p a r t i t e  g raph  G = (X U Y, E ) ,  we say  a set S, 
S C_ X, covers Y if N(S)  = Y. 

DEFINITION 16. For  a set of p robab i l i s t i c  pa r t i a l  values Y = ~ = 
{r~l , r /2, . . . , rb~},  let  X = tAn=lv(~) = {a1,a2, . . . ,%}.  T h e  membership 
graph of Y over X is a b i p a r t i t e  g raph  G = (X U Y, E ) ,  where  

E = { ( a i , v j )  l a i c v ( ~ j ) , l  < i < _ q , l _ < j < n } .  
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X Y 

711 

712 

Fig. 1. The  membership  graph of Y over X.  

EXAMPLE 8. Consider  a set Y -- ff~ = {~/1,7/2, 73}, where  ~1 -- [10 °'4, 
14°6], r/2 = [13 °"7, 17 °3] and T]3 = [100"5, 150"5]. Then,  X = {10, 13, 14, 15, 
17}. The  membersh ip  graph  of Y over X is shown in Figure 1. • 

THEOREM 1. Let Y = if) = {Th,~2, . . . ,~/n},  X = U~=lv(rh ) and G = 
( X  U Y, E) be the membership graph of Y over X .  Let l denote the car- 
dinality of the minimum set S, S C X,  that covers Y .  Then, for all 
c • u(count l (~) ) ,  c >_ ~. 

Proof. Suppose  there  is an e lement  c of u(count l (~) )  such tha t  c < I. 
T h a t  is, there  is an in te rpre ta t ion  a = ( a i l ,  a i 2 , . . . ,  ai,~), aij • u(~j) ,  1 < 
j _< n, of • wi th  IS~I = c < l, where S~ = {a~j I 1 < j _< n}. Since 
aij • u(71j), for 1 _< j ___ n, S~ covers Y (i.e., N(S~)  = Y) .  But  ISal < l, 
which contradic ts  the  assumpt ion  t ha t  the  cardinal i ty  of the  m i n i m u m  set 
t h a t  covers Y is I. Hence, for all c • u(countl(O)),  c >_ I. [] 

T h e  minimum cover problem [18] on a family F is described as follows: 

Given a family F = {A1, A 2 , . . . ,  An} of subsets  of a finite set 
U. Find a subfami ly  C of F such t h a t  UA~EcAj -~ U and 
there  does not exist another  subfami ly  C t, IC'l < ICI, such t h a t  
U A ~ c ,  Aj  = U. 

We want  to reduce the prob lem to find l defined in T h e o r e m  1 to the  
m i n i m u m  cover problem. 

T H E O R E M  2. Let Y = if) = {~l , r /2 , . . . ,~ /n},  X = Un_lv(~i) and G = 
( X  U Y, E) be the membership graph of Y over X .  Let ~ denote the cardi- 
nality of the minimum set S, S c_ X that covers Y .  To find the number l 
is a min imum cover problem. 
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Proof. Consider the membership graph of Y over X,  G = (X U Y, E). 
Let U = Y, F = X,  and C = S in the description of the minimum cover 
problem, the proof follows. [] 

From Theorem 2, we know that  one can find l using an algorithm with 
polynomial t ime if and only if one can solve the minimum cover prob- 
lem. However, the minimum cover problem have been proved as an NP- 
hard problem [18]. Therefore, we cannot find an efficient algorithm for 
~(countl(~)). Further, we cannot find an efficient algorithm for countl(~) 
either. 

To sum up, we have no efficient algorithms for the extended aggregate 
functions sum1, avgl, and countl. To compute suml, avgl, and count1 on 
a set of pro.babilistic partial values ~, one can generate all the interpreta- 
tions of • based on the definitions shown in Definition 7, Definition 8, and 
Definition 9, respectively. 

5. ALGORITHMS FOR max1 AND minl  
A G G R E G A T E  FUNCTIONS 

To evaluate the extended aggregate functions on a set of probabilistic 
partial  values • based on the pr imary definitions is t ime consuming. If  we 
generate all interpretations of • for the evaluation, the t ime complexity wilt 
be exponential. In Section 5.1, we provide a dual efficient algorithms for 
max1 and rain1 aggregate functions. Section 5.2 shows the correctness of 
the dual efficient algorithms. The worst-case t ime complexity for the dual 
algorithms are also provided in Section 5.3. 

5.1. A L GORITHMS 

From Definition 10, maxl(~)  1 is a probabilistic partial values. In order 
to compute maxl(~)  efficiently, we divide the computat ion algorithm into 
two phases, value phase and probability phase. 

• Value phase: the possible values of maxl(O), i.e., p(maxl(¢)),  is ob- 
tained in this phase. 

• Probability phase: the probability to each value in ~(maxl(~)) is as- 
signed in this phase. 

Value Phase 

A lemma to obtain v(maxl(~)) is shown in the following. This lemma 
describes tha t  each value in ~(maxl(¢)) is greater or equal than the 

lminl(~) can be considered analogously. 
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maximal  value of a set A, which consists of the minimal values of each 
~(ffi), 1 < i < n. 

LEMMA 2. Let • = { ~ h , ~ 2 , - . - , ~ } ,  where ~7~ = ~ ,~2 , , ~m, 
1 < i < n, be a set ofprobabilistic partial values. The possible values of the 
result of m a x l ( ~ )  can be evaluated as follows. 

~ ( m a x l ( ~ ) ) =  { a l a •  LJ ~(~?i), a >  max  minv'(vh) }. 
l~_i~_n - -  l < i < n  

Proof. For all SA~ = (S~k,Sok) • 9v(¢), let S~ k = (aik I aik • 
Th, 1 _< i _< n}, 1 _< k _< I~'(~)1. By Definition 10, we can conclude 
z~(maxl(#9)) = U(s., ,so, >E~:(¢){max S, ,  }. 

Let A = U(s~,,so,)e~:(¢) (max  S ~  } and 

B =  { a [ a •  l<?<n (77i)' a -  max  v . _ ) }  > min (vi • 
l ~ _ i ~ n  

We want  to  show A = B. 
"C_": For any max S~ k • A, we have 

max Sc~k = max{aik [ aik • ~(77i), 1 < i < n} 

= max{a~k l aik • ~(~i),aik k minv(77i), 1 < i < n} 

= max  ~aik l aik • ~(T/i),aik _> max minv(~Tj), 1 < i < n~ 
k l < j < n  ) 

• L~a [a  • LJ v(~h),a > max min~(~Tj)} B. 
l < : i < n  - -  l~_j~_n 

"_D": Assume a C B, then  we have a > m a x l < i < n m i n u ( ~ i )  and a c 
Ul<i<nu(~Ti ). Hence, there  exists an ~ c ~, such tha t  a E ~l. Also, there  
exists an (S~k, Sok } E 5F(~), S~ k = {aik [ aik • ~ ,  1 < i < n} such tha t  

a, i f / =  l 
a~k = min v(Vi), otherwise. 

This  implies a > maxl<j<_n minu(~Tj) >_ minu(~i)  = aik, for all 1 < i < n. 
Hence, m a x S ~  k = a. By m a x X k  E A, we have a E A. [] 

Obviously, the t ime complexi ty  for obtaining the set v (max l (¢ ) )  from 
L e m m a  2 is linear, i.e., O ( ~ i ~  1 mi).  We give an example to  demons t ra te  
how the lemma works. 

EXAMPLE 9. Consider the relation P e r s o n  shown in Table 1 again. 
We have (I) = {~h, ~2}, where 771 = [130 °6, 140 °"4] and 772 -- [120 °2,  130 °'5, 
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140°3]. The possible values of m a x l ( O )  can be obtained by Lemma 2 with 
the following steps. Since 

and 

we have 

U u(,i)  = {120,130,140} 
1<i~2 

max min u( , i )  = max{min{130,140}, min{120,130,140}} 
1<i<2 

=max{130,120} = 130, 

u ( m a x l ( ~ ) )  = {a  ] a C U u( , i ) ,  a >_ maxminu(r / i )}  
1<_i<2 1<i<2 

= {a I a • {120,130,140},a _> 130} 

= {130,140}. 

Similarly, we can evaluate u ( m i n l ( ~ ) )  as follows. 

P i I a p i , , ,  LEMMA 3. Let • = {r~l ,~2, . . . ,Rn},  where rj~ = [a~1 ,a p~=i2 , ' " ,  imf],  
1 < i < n, be a set ofprobabilistic partial values. The possible values of the 
result of minl(q~) can be evaluated as follows. 

u(minl(~))= {a]aE U u(rh),a< min maxu(r~i)}. 
l < i < n  l < i < n  

Proof. The proof can be obtained in an analogous way as that  of 
Lemma 2 by replacing "max," "min," and ">" with "rain," "max," and 
"<," respectively. [] 

Probability Phase After u(maxl(q~)) 2 is obtained in the value phase, 
the corresponding probability for each value in u(maxl(q}))  has to be as- 
signed. To explain how this phase works, we first give an example as follows. 

EXAMPLE 10. Consider Example 9. In order to facilitate the following 
discussions, we label i to each possible value and its associated probability 
in ~i- That  is, 

061 7/, = [130 I' ,140°41],and 

r/2 = [120 °'2~, 130 °'52, 1400'32]. 

2rninl(4P) can be considered analogously. 
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Consider  all the  value sets of  the  in terpre ta t ions  of ~. T h e y  are 

SA~ = ({1301, 1202}, 0.61 X 0.22), 

S,~ 2 = {{1301,1302}, 0.61 x 0.52), 

S~  3 = {{1301, 1402}, 0.61 x 0.32), 

SA 4 = ({1401, 1202}, 0.41 x 0.22}, 

S/,~ = ({1401,1302}, 0.41 x 0.52), and 

S ~  = ({1401, 1402},0.41 x 0.32). 

We want  to  assign a probabi l i ty  for each value in the  set v(maxl(~))  = 
{130, 140} obta ined  in Example  9. First ,  we consider the  ass ignment  of the  
probabi l i ty  of 130. From Definition 10 and the  definition of a-union, we 
have 

~max 1(¢) (130) = E X 
x6{SoJSa~=(S~,So)A 
max So =130, 1<i~6} 

= 0.61 × 0.22 + 0.61 × 0.52 

= 0.42. (2) 

In equa t ion  (2), three  opera t ions  (two mult ipl icat ions and one addit ion)  
are needed. We can reduce the  number  of opera t ions  as 

#max l(¢) (130) = 0.61 x (0.22 + 0.52) 

= 0.42. (3) 

From equat ion  (3) we only need two opera t ions  (one mul t ip l icat ion and one 
addit ion).  Now, consider the  ass ignment  of the  probabi l i ty  of 140. 

#max 1(~) (140) = E X 
x6{SolSal =(S~,So)A 
max S~ =140,1<i<_6} 

= So3 + So, + So~ + So6 

= 0.61 x 0.32 + 0.41 x 0.22 + 0.41 x 0.52 + 0.41 x 0.32 

= 0.58. (4) 

We can reduce the  number  of opera t ions  as 

p~,ax 1(¢)(140) = 0.61 × 0.32 + 0.41 x (0.22 + 0.52 + 0.32) 

= 0.58. (5) 
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From Example 10, we have the following observation: 

The probabili ty of x, which is in u(max 1(~)),  can be obtained 
by adding the probabili ty parts of the interpretations of ~, 
say A = (a,0),  where for the corresponding value set, SA = 
(S~, So), max S~ = x. Further, for computing the probabili ty 
of x, we can use the distribution law to reduce the number of 
operations. 

Let • = {r/l, ~2 , . . . ,  ~n} be a set of probabilistic partial values. For each 
element u E u(maxl (~) ) ,  we define a set I(u) to record the probabilistic 
partial  values in ~, in which u is a possible value. Tha t  is, V k c I(u),  u E 
u(~k). The cardinality of I(u) can be used to know how many addition 
operations are needed to compute maxl  (¢). In fact, it is [I(u) l -1 .  Consider 
Example  10. Since u(maxl (~) )  = {130, 140}, we have I(130) = {1, 2} and 
I(140) = {1, 2}. Therefore, the number of addition operations for m a x l ( ~ )  
is 1. 

For a probabilistic partial value, ~ = [ apl , a~ 2 , . . . ,  aPmmJ without loss of 
generality, we assume that  al < a2 < -. .  < am. 

[ Pl p~ DEFINITION 17. For a probabilistic partial value, ~] = tal ,a  2 , . . . ,  
a~"], two functions l and l* from R to a range 0 to 1 are defined as follows 
(for the max l  aggregate function). 

E Pi, ak <_ x < ak+l, 1 < k < m - 1 
l r ] (X )  = i=1  (6) 

1, am < x  x E  F~ 
0, x < al 

0 x<_al 
l ~ ( x ) =  1,7(aj) 3j, a j < x < _ a j + l ,  l _ < j < m - 1  x ~ R .  (7) 

1, x > am 

The above definition describes tha t  the lv(x ) and l~(x) functions have the 
same values except for x c {al, a 2 , . . . ,  am}. 

EXAMPLE 11. According to the above definition, we have the following 
representations. From equation (3) in Example 10, we have 

#max l(¢) (130) = 0.61 × (0.22 + 0.52) + 0.01 × 0.52 

= ~L~]I (130)  X l~2 (130)  "~ [~1 (130)  X ~Y]2 (130) .  (8) 

In equation (8), we add the term 0.01 x 0.52 to here in order to unify 
the representation of the equation, because the number of needed addition 
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operations is 1. Also, we replace each value term with their correspond- 
ing meaning. That  is, #nl (130), G (130), l* (130), and #n2 (130) mean the 
probability of 130 in rh, the accumulative probability for the corresponding 
possible values, which are less than or equal to 130 in 7/2, the accumula- 
tive probability for the corresponding possible values, which are less than 
130 in r h (we use I;1 (130) instead of I m (130) to prevent the duplication of 
computing the probabilities), and the probability of 130 in 72, respectively. 

From Equation (5) in Example 10, we have 

#max l(¢) (140) = 0.41 x (0.22 + 0.52 + 0.32) + 0.61 x 0.32 

= #n,(140) x/ ,2(140) + l;,(140) x #n:(140). 

DEFINITION 18. For 
aP"], two functions t and 
(for the rnin l  aggregate function). 

a probabilistic partial value, r / = [a~ 1,ap~, . . . ,  
t* from R to a range 0 to 1 are defined as follows 

f i  Pi, a k - l  < x <_ ak, 2 < k < m  

tn(x  ) = i=k (9) 
1, x _< al x E R 

O, a m < x 

0 x > a m  

t ; ( x )  = tn(aj)  ?j, a j -1  <_ x < aj, 2 < j <_ m x E R .  (10) 

1, x < a l  

The above definition describes that  the tn(x  ) and t~(x) functions have the 
same values except for x E {al, a 2 , . . . ,  am}. 

Algorithm 1 and Algorithm 2 for evaluating maxl(q~) and mini(q?) ,  
respectively, are given in the following. 

ALGORITHM 1: M a x i m u m  
Input: a set of probabilistic partial values, • = {~h,rl2,. . . ,  fl~} and ~i = 

Pll  r~Pi2 P lmi  1 a i l ,  m2 , ' " ,  a i m ,  ], 1 < i < n. Let Z = u(fll) U- . .  U u(~n). 
Output:  a maximal probabilistic partial value of 
Comments: value phase: step 1, probability phase: steps 2-16 R, U, W are 
temporal variables. 

0: 
1: 
2: 

3: 

begin 
let x = maxl<i<~ min uOh ) 
for  each  aid, evaluates its corresponding ln,(a~j), 1 < j < m~, 

l < i < n  
for  e a c h u E Z a n d u > x  
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4: b e g i n  
5: W = ¢  
6: R = ¢  
7: I(u) = {k [ #vk(u) > O, 1 < k < n} 
8: fo r  e a c h  k E I(u) 
9: b e g i n  

10: U = {l,7,(u) l V i ~ k, i C R, l < i < n } U  
{l~,(u)3[V i ~ k, i E R, 1 < i < n} U {#vk(u)} 

11: w = T I M E S { U }  
12: w = w u {w} 
13: R = R u {k} 
14: e n d  
15: Pmaxl((~)(u) = A D D S { W }  
16: e n d  
17: e n d  

A L G O R I T H M  2: M i n i m u m  
Input :  a set of probabilistic partial values, ~ = {~1, ~ 2 , . . . ,  ~n} and ~i = 
aPi l  _P~2 . .  aP~m~ il , ui2 ," , ira, ], 1 < i < n. Let Z = /-'(771 ) [-J ' '" U /2(77n ). 

Outpu t :  a minimal probabilistic partial  value of ~) 
Comments :  value phase: step 1, probabil i ty phase: steps 2-16. R, U, W 
are tempora l  variables. 

0: b e g i n  
1: le t  x = minl<i_<n max v(~i) 
2: fo r  e a c h  aij ,  evaluates its corresponding t,7~(aij), 1 < j < mi, 

l < i < n  
3: fo r  e a c h u c Z a n d u < x  
4: b e g i n  
5: W = ¢  
6: R =  ¢ 
7: I(~) = {k I , ,~ (u )  > 0,1 < k < n} 
8: fo r  e a c h  k e I(u) 
9: b e g i n  

10: U = ( t v , ( u  ) I Vi ~ k, i C R, l < i < n } U  
• 4 {tv,(u) I V i ¢ k ,  i e R ,  1 < i < n } U { p , 7 ~ ( u ) }  

11: w = T I M E S { U }  
12: W = W U {w} 
13: R = R U {k} 

3/* function can be computed by l function. 
4t* function can be computed by t function. 



34 C.-S. CHANG AND A. L. P. CHEN 

/]2 

7/3 

7/4 

qs 

0.3,(0.3) 
m 

o.8,(o.8)1 0.2~.0) 

,, 
0.a~ a) 

0.4,(0.4) 
I 

i i 05 8) 02,20) 

0 I l l  0, 

0.6~.0) 

0.3,(0.3) 0.3,(0.6) 0.4,(1.0) 

i I i i 

90 100 l l 0  120 130 140 150 160 170 

Fig. 2. The explanation graph of m a x l ( w e i g h t ) .  

14: e n d  
15: #minl(~)(u) = A D D S { W }  
16: e n d  
17: e n d  

Notice that,  in the two algorithms, A D D S  and T I M E S  are two numer- 
ical operators. A D D S  and T I M E S  accept any number of arguments and 
return the sum and product of these arguments, respectively. That  is, the 
two operators are the conventional summation (+) and multiplication (x) .  

In the following, we define an explanation graph to explain the pro- 
cess of the algorithm. Consider a set of probabilistic partial values, • -- 

[ pit ap,2 . .  aP~],  1 < i < n. An explana- { ~ 1 , ~ 2 , . - . , ~ } ,  where ~i = tail , i2 ," , 
tion graph is a graph in which each ~i, 1 < i < n, is represented by a bar 
with a bullet for each possible value in v(~i) on the corresponding position. 

P'J is associated with a Each bullet representing a possible value, say aij , 
pair of values, i.e., pm(aij),  (l~,(a~j)). According to the set Z = U~=lv(~i ) 
and the value x obtained from step 1 in the algorithm, we compute the 
probability for each element in ~,(maxl(~))  = {a ] a e Z A a > x} (a 
dashed line is indicated on the corresponding position for each element in 
v ( m a x l ( ¢ ) ) ) .  As an example, an explanation graph for Example 12 is 
given in Figure 2. 

EXAMPLE 12. Consider the example relation P e r s o n  shown in Table 2. 
We construct the explanation graph of the set of probabilistic partial values, 
weight = {r/ l , . . .  ,7/5}, as shown in Figure 2. maxl (we igh t )  is evaluated 
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TABLE 2 
A Probabilistic Relation PERSON 

• . .  w e i g h t  •. • 

r h = [120 o.3, 1500-5, 170 o.2] 
?12 = [110 °'s, 130 °"2] 
r/3 = [130 °'3, 150 °"6, 160 °'1] 
,74 = [120 °'4, 140 °'6] 
r/5 ---- [900-3, 1000.3, 120 o.a] 

by the following steps. We have 

z = ~'(,7~) u . . .  u ~,(~) 
= {90, I00, II0, 120,130, 140,150,160,170}, 

x = max{min/](771), min v(~12),..., min v(r]5)} 

= max{120, 110,130, 120, 90} = 130. 

Hence, 

v ( m a x l ( w e i g h t ) )  = {a J a e Z A a >_ x }  

= {130,140,150,160,  170}. 

Then 

# m a x  1 ( w e i g h t )  ( 1 3 0 )  = 

# m a x l ( w e i g h t )  (140) = 

#maxl(weight) (150) = 

~max 1 (weight) ( 1 6 0 )  = 

#max 1 (w eight) (170) = 

A D D S { T I M E S ( ( 0 . 3 ) ,  0.2, (0.3), (0.4), (1.0)}, 

T I M E S { ( 0 . 3 ) ,  (0.8), 0.3, (0.4), (1.0)}) 

0.036, 

A D D S { T I M E S { ( 0 . 3 ) ,  (1.0), (0.3), 0.6, (1.0)}} 

0.054, 

A D D S ( T I M E S ( 0 . 5 ,  (1.0), (0.9), (1.0), (1.0)}, 

T I M E S { ( 0 . 3 ) ,  (1.0), 0.6, (1.0), (1.0)}} 

0.63, 

A D D S { T I M E S ( ( 0 . 8 ) ,  (1.0), 0.1, (1.0), (1.0)}} 

0.08, 

A D D S ( T I M E S ( 0 . 2 ,  (1.0), (1.0), (1.0), (1.0)}} 

= 0.2, and 

m a x l ( w e i g h t )  = [1300036, 140 °.°54, 1500-63, 160 o-os, 170o.2]. 
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EXAMPLE 13. To evaluate mini(weight), we first compute  x, which 
is equal to 120. The  possible values for mini(weight) are {a I a c Z A 
a < x} = {90,100,110,120}.  The  explanat ion graph is the  same as the 
one in Figure 2 except t ha t  the dashed lines are now indicated on the  
corresponding positions of the possible result values, {90,100, 110,120}, 
and the  pair of values associated with each bullet is computed  by the t 
funct ion instead of the  l function. The  result of  mini(weight) is 

mini(weight) = [90 °'3, 100 °'3, 1100'32, 120°°s]. 

5.2. CORRECTNESS 

In this section, we show the correctness of  the two aggregate algorithms. 
We say the algori thms are correct if they  return the same probabilist ic 
partial  values as defined in Definition 10 and Definition 11. 

THEOREM 3. Algorithm 1 is correct. 

Proof. Consider a set of probabilistic partial  values, • = { r / l ,  ?~2,..., 
r/N}, 1 < i < n. Let the result of maxl(@) by comput ing  all interpretat ions 
of @ be denoted B = maxl(~) = [ b ~ ( b l ) , . . . ,  b~S(5~)], and tha t  by using 

Algor i thm 1 be denoted g = maxl(~) = [e~E(el), . . . ,  es~E(e')]. Recall that ,  
we assume bl < b2 < " .  < b r  and el < e2 < ' . .  < es. We want  to show 
tha t  B = $. T h a t  is, we wilt prove tha t  bi = e~ and #m(bi) = #E(e~), 
1 < i < s  ( o r r ) .  

From L e m m a  2 and step 1 in Algori thm 1, we have obtained v(B) = u(g).  
T h a t  is, bi = ei and r = s, 1 < i < s. We show #B(bi) = #~(ei),  1 < i < s 
by mathemat ica l  induct ion on n as follows. 

B a s i s  s t ep :  n = 1. In this case, • = {7/} and r/ = [ a m , . . . , a P ' ] .  
Clearly, #~(bi) = #E(ei) = pi, 1 < i < m. Hence, g = B = maxl(q~). 

I n d u c t i v e  h y p o t h e s i s :  Suppose tha t  the claim holds when n = k. 
T h a t  is, • = {r/1,r/2,-.. ,~]k} and g = B = maxl(~). 

I n d u c t i v e  s t ep :  Consider n = k + 1. T h a t  is, • = {r/1,r]2 . . . .  ,r/k+1}. 
We have 

mazl((I)) : maxl({?l l ,  ~2 , . . . ,  ?]k+l}) 

= max l ( {w1 ,  r /2 , . . . ,  r/k} U {r/k+1}) 

= m a x l ( { m a x l ( { r / 1 ,  r /2 , . . . ,  r/k}), r/k+1}) 
: m a x l ( { C ,  ~k+l}) (11) 

where C = maxl({r/1,r/2,...,7/k}), which can be correctly computed  by 
Algor i thm 1 by the  i n d u c t i v e  h y p o t h e s i s .  Let C = [all [ Pll ,a12P12 , .  . - ,  aPl-Ulrnl ] 

[ P21 P22 P2~n'2 1 and r/k+1 = ta21 , a 2 2  , . . . , a 2 r n 2  l" Recall t ha t  , ( 3 )  = v(B). For each e C 
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-($) (= ~(B)), there exists a corresponding b c ~(B) such that  b = e, 
and vice versa. We show maxl ({C,  Nk+l}) can be correctly computed by 
Algorithm 1 by considering the following three cases. 

Case 1: ~i , j  such that  e(= ali) 6 v(C) and  e(= a2j ) C //(7]k+l ). 
The probability of e, #E(e), computed by Algorithm 1 is shown as 

~s(e) : ~c(e) × l~+,(e)+ Ib(e) × ~ + , ( e )  

"= P l i  X P2k -'b P l k  X P2j .  

k = l  

Let 
e = {so I vs~  = <s~, so) e ~:(~)A maxS~ = b}. 

In contrast to our algorithm, the probability of b (= e) in ,(B) as computed 
by generating all interpretations is shown as 

0 6 0  

= pC(eli) x #r~k+~(a21) + pC(all) x pVk+l(a22) + ' ' "  + pC(all) 

X ff,Tk+l(a2j) + pC(all)  x #vk+l(a2j) + #c(a12) 

x/~,~+,(a2j) +. . -+/~c(a~U_l  )) x/~,~+, (a2j) 
=Pli  x p 2 1 + P l i  x p 2 2 + . . . + p l i  xp2j  

+Pl ]  x P2j +P12 x P2j + "'" +Pl(i-1) X P2j 

= Pli x (P21 +P22 + " "  +P2j) + (Pn +P12 + "'" +Pl(i-1)) X P2j 

: P l i  X P2k + P l k  X P2j  

k= l  / 

= ~ g ( e ) .  

Case 2: 3i such that  e(= ali) E l/(C) and  e ~ ~(~lk+l) (without loss of 
generality, assume Sj such that  a2j < e < a2(j+l) ). 

The probability of e, #E(e), computed by Algorithm 1 is shown as 

J 

= P l i  X E P 2 k .  
k = l  
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Let 

0 : {So [ VSA  = <Sa, $8) E jT'(ff2) A maxSc~  = b}. 

In contrast to our algorithm, the probability of b (= e) in v(B) as computed 
by generating all interpretations is shown as 

,~(b)  = , c ( b )  × , ,~+,(b)  

= #c(al i )  x #vk+,(a21) + #c(al~) x #~?k+1(a22) 

+ "" + # c ( a l ~ )  × ~,~+, (a2¢) 

J 
Pli  × ~_~ P2k 

k=l 

= , E ( e ) .  

Case 3: 3j such that  e ¢ v(C) a n d  e(= a2j) E /](?~k+l)- 
In this case, the discussion is the same as that  in case 2. By the use of 

mathematical induction, we complete the proof. [] 

THEOREM 4. Algorithm 2 is correct. 

Proof. The proof can be obtained analogously as that  of Theorem 3 
by replacing "/," "/*," and "max" with "t," "t*," and "min," respectively. 

[] 

5.3. TIME COMPLEXITY 

In this section, we show the M a x i m u m  and M i n i m u m  algorithms are 
efficient. That  is, the time complexity of the computations is polynomial 
in worst case. 

THEOREM 5. The worst-case time complexity of Algorithm 1 is O(n2). 

Proof. Consider a set of probabilistic partial values, ~ -- {~1,~2,---, 
~]n}- We make a reasonable assumption, n >> Iv(~i)[, 1 < i _< n, and 
furthermore, without loss of generality, we assume that  Iv(~i)[ = m. From 
step 7 in Algorithm 1, the worst-case time complexity occurs when the set 
I(u) contains n elements, i.e., I(u) = {1, 2 , . . . ,  n}, V u E U~=iv(~i ). Tha t  
is, V(~l) = v(~2) . . . . .  vO?n ). We construct the explanation graph for 
this case in Figure 3. The time complexity of Algorithm 1 is computed 
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Fig. 3. 
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An explanation graph for time complexity analysis. 

step by step as follows. 

step 1: m n  
step 2: m n  

step 3: for J =  1 to  m 
step 5,6,7: n + 2 

step 8: for j = 1 to  n 
step 10: n 

step 11,12,13: n + 2 
step 14: end  for 
step 15: 1 
step 16: end  for 

Hence, the time complexity is 

m n + m n +  n + 3 +  2 n + 2  
~=] j=] 

= 2ran + m ( n  + 3 + n (2n  + 2)) 

= 2ran 2 + 5 m n  + 3m. 

Consequently, we conclude that the worst-case time complexity of Algo- 
rithm 1 is O(n2), under the assumption n >> m. [] 

THEOREM 6. The worst-case t ime complexi ty  o f  Algor i thm 2 is O(n2). 

Proof. The proof can be obtained in the analogous way as that  of 
Theorem 5. [] 
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6. E X T E N S I O N S  F O R  H A N D L I N G  P O S S I B I L I S T I C  DATA 

A framework for handl ing aggregates in possibilistic data was proposed in 
[20]. In  this section, we show tha t  the Algor i thm 1 and Algor i thm 2 can be 
adapted  for the m a x i m u m  and m i n i m u m  aggregate functions on possibilistic 
data ,  respectively. We follow the related definitions of Rundenste iner  and 
Bic 's  work [20]. The  detailed presentat ion of  possibility theory  can be found 
in [19]. 

DEFINITION 19. A possibilistic value 3, = P l / a l  +p2 /a2  + ' "  +pro~am, 
where ai is a possible value of 3' and Pi is the possibility of ai, 1 < i < m.  

The  u and # functions for possibilistic values can also be used here. 
T h a t  is, u(3,) = { a l , a 2 , . . . , a m }  and #~(a~) = p~, 1 _< i < n. The  as- 
sumpt ion  al  < a2 < .- .  < am for probabilistic partial  values also holds for 
possibilistic values. 

DEFINITION 20 [20]. Given a set of possibilistic values • = {71,72,.  • -, 
7n}, where 7i = p i l / a i l  + pi2/ai2 + " "  + Piml/aimi, 1 < i < n, the max- 
i m u m  aggregate function f m a x  and the m i n i m u m  aggregate funct ion f m i n  
on possibilistic da ta  are defined as 

{ (( kn ) (  n ))) 
f m a x ( ~ )  = u / y  I y = max aki A u = min#~i (ak i  ki=kl i=1 

x ( V k l , . . . , k n : l  < k i < m , ) }  

{ (( ) (  )) f m i n ( ~ )  = u / y  l y = min aki A u = min>.~,(aki) ki=kl 
x ( V k l , . . . , k n : l  _< ki < m i ) } .  

In  order to use the  M a x i m u m  and M i n i m u m  algori thms to handle 
possibilistic values, we have to modify the functions defined in Definition 17 
and Definition 18. 

DEFINITION 21. For a possibilistic value, 3, = p l / a l  4-p2/a2 + " + 
pro~am, two functions [ and [* from R to a range 0 to 1 are defined as 
follows (for the f m a x  aggregate function). 

k 
f maxpi ,  

r~(X) : / 1/71 
t O ,  

a k < x < ak+l, 

am ~ x  

x < a l  

l < k < m - 1  

a 02) 
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0 
= [ , ( a D  

1, 

x ~ a l  
3j, aj < x < aj+], 

X > a m  

l _ ~ j < _ m - 1  x • R .  (13) 

The above definition describes that  the [,~(x) and [~(x) functions have the 
same values except for x • {al, a 2 , . . . ,  am}. 

DEFINITION 22. For a possibilistic value, V = p l / a l  + p2/a2 + " "  + 
Pro~am, tWO functions t and t* from R to a range 0 to 1 are defined as 
follows (for the fmin  aggregate function). 

{ m~xpi ,  ak-1 < x < a k ,  
i = k  

~ ( z )  = 1, x < al  

0, a m < x  

2 < k < m  

x • R (14) 

0 x > a m  

E;(x) = E,(aj) 3j, a j -1  ~ x < aj, 

1, x < a 1 

2_<j_<m x T R .  (15) 

The above definition describes that the t~(x) and t~(x) functions have the 
same values except for x E {al, a2 , . . . ,  am}. 

Our algorithms on computing the maximum and m i n i m u m  aggregate 
functions can be modified to handle possibilistic values. The needed mod- 
ifications are described as follows. 

1. A D D S  and T I M E S  in Algorithm 1 and Algorithm 2 are replaced by 
M A X  and M I N ,  respectively. M A X  and M I N  accept any number 
of arguments and return the maximum value and minimum value of 
these arguments, respectively. 

2. Replace l and l* functions with [ and [*, respectively, in Algorithm 1 
for fmax  aggregate function, and replace t and t* functions with [ and 
t*, respectively, in Algorithm 2 for fmin  aggregate function. 

EXAMPLE 14. Consider a possibilistic relation P e r s o n  shown in 
Table 3, which is similar to the probabilistic relation P e r s o n  as shown 
in Table 2. An analogous explanation graph for the set of possibilistic val- 
ues, weight  = {71, . . . ,75},  is constructed in Figure 4. In Figure 4, the 
number in parentheses is the corresponding t value of each possible value. 
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TABLE 3 
A Possibilistic Relation PERSON 

w e i g h t  • .  • 

71 = 0.8/120 + 1./150 + 0.9/170 
")'2 = 0.9/110 + 0.8/130 
")'3 ---- 0.9/130 + 0.8/150 + 0.7/160 
74 = 1./120 + 0.8/140 
"Y5 = 0.7/90 + 0.9/lOO + 1./120 

71 

,-72 

73 

"74 

78 

i 

o.8~ .o) 

0.9g.9) 0.8,(0.8)m 

0.9,(0.9) 
I 

1.0,(I.0) 0.9,(0.9) 
• m 

0.8,(0.8) 0.7,(0.7) 

1.0~ .0) 0.8,(0.8)1 

! 

0.7,11.0 ) 0.9~(I.0) 1.0,11.0) 
m m m 

i ! i 
t i i 
J i i 
i i i 
i i i 

I I I , , , , , 

90 I00 ii0 120 130 140 150 160 170 

Fig. 4. The explanation graph of f m i n ( w e i g h t ) .  

Then fmin(weight )  can be evaluated by the following steps. 

Z -~- /2("/1 ) U . - .  U b.'("~5 ) 

= {90, I00, II0,120,130,140,150,160,170}, 

x = min{max u( '~l) , . . . ,  max/-'(9'5)} 

- min{170,130,160,140,120} -- 120. 

Hence, 

•(fmin(weight)) = {a l a e Z A a <_ x} 

= { 9 0 , 1 0 0 , 1 1 0 , 1 2 0 } .  

#lmin(weight)(90) = MAX{MIN{(1 .0) ,  (0.9), (0.9), (1.0), 0.7}} -- 0.7, 
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#Im~n(~eight) (100) = M A X { M I N { ( 1 . 0 ) ,  (0.9), (0.9), (1.0), 0.9}} = 0.9, 

#Sm~n(~e~ght) (110) = M A X { M I N { ( 1 . 0 ) ,  0.9, (0.9), (1.0), (1.0)}} = 0.9, 

#fmm(~eight)(120) = M A X { M I N { 0 . 8 ,  (0.8), (0.9), (1.0), (1.0)}, 

MIN{(1.0) ,  (0.8), (0.9), 1.0, (1.0)}, 

MIN{(1.0) ,  (0.8), (0.9), (0.8), 1.0}} = 0.8. 

fmin(weight) = 0.7/90 + 0.9/100 + 0.9/110 + 0.8/120. [] 

EXAMPLE 15. The result of f m a x ( w e i g h t )  is 

f m a x ( w e i g h t )  = 0.8/130 + 0.8/140 + 0.9/150 + 0.7/160 + 0.9/170. • 

7. CONCLUSIONS 

This paper studies a set of extended aggregate functions, namely sum, 
average, count, maximum, and minimum, over probabilistic data. For a set 
of probabilistic values, we can define extended aggregate functions based on 
its interpretations. The results of these extended aggregate functions are 
also probabilistic values. The users may prefer an approximate but deft- 
nite answer for the extended aggregate functions, we give alternate defini- 
tions for the extended aggregate functions. The alternate definitions return 
approximate definite values. The time complexity of the computations is 
linear. 

We show the computations of sum, average, and count are exponential, 
and develop two efficient algorithms for the maximum and minimum. The 
worst-case time complexity of these algorithms are O(n2). These two algo- 
rithms can be adapted for possibilistic data with slight modifications. If we 
ignore the probability phase in the algorithms, the exclusive disjunctive 
data  (e.g., partial values) can also be handled. Therefore, our work is de- 
voted to the accommodation of uncertain data in database systems with 
an elaboration on speeding up the processing efficiency of the aggregate 
functions. 

The authors wish to thank the anonymous referees whose comments and sug- 
gestions helped improve this paper. 
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