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ABSTRACT

Uncertain data in databases were originally denoted as null values, which were later
generalized to partial values. Based on the concept of partial values, we have further
generalized the notion to probabilistic partial values. In this paper, an important operation
— division, is fully studied to handle partial values and probabilistic partial values. Due
to the uncertainty of partial values and probabilistic partial values, the corresponding
extended division may produce maybe tuples and maybe tuples with degrees of uncertainty,
respectively.

To process this extended division, we decompose a relation consisting of partial val-
ues or probabilistic partial values into a set of relations containing only definite values.
Bipartite graph matching techniques are then applied to develop efficient algorithms for
the extended division that handles partial values. The refinement on the maybe result is
also discussed. Finally, we study the extended division that handles probabilistic partial
values.
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1 Introduction

Management of uncertain data has been recognized as an important research area in
database systems [29]. Null values were originally adopted to represent the meaning of
“values unknown at present” in database systems. Codd [12] pioneers the work on ex-
tended relational algebra to manipulate null values. From then on, incomplete information
in relational databases have been extensively studied [5, 18, 21, 24, 25, 26]. The update se-
mantics with null values in relational databases have been discussed in [1, 2]. Codd [13, 14]
distinguishes null values into applicable and inapplicable values. Besides, the relationship
between null values and functional dependencies has been studied in [22, 23, 39, 40]. [27]
gives a concise review of handling null values by algebraic approaches.

The null value concept has been generalized to the concept of partial values by Grant
[19]. Instead of being treated as an atomic value, an attribute value in a table is considered
as a nonempty subset of the corresponding domain. A partial value in Grant [19] is
represented as an interval such that exactly one of the values in the interval is the “true”
value of the partial value. In DeMichiel [16], however, a partial value is considered to
correspond to a finite set of possible values such that exactly one of the values in that set
is the “true” value of the partial value. Motro [29] refers to this kind of partial values as
disjunctive data. Therefore, an applicable null value is a partial value which corresponds
to the whole domain. Lipski [24] provides a general discussion on manipulating uncertain
information including partial values.

Following the notion of disjunctive data, we discuss the elimination of redundant par-
tial values in [36], aggregate evaluation in [8] and the relationships among disjunctive data
in [9][10][11]. Furthermore, in [37][38][33][34], we generalize partial values to probabilistic
partial values and provide probabilistic approaches to query processing in heterogeneous
database systems.

Among the previous research works and current commercial database systems, an
important operation — the division, has not been taken into account for discussion and
direct support. However, as we have pointed out in [35], this operation is needed for
dealing with a query involving universal quantifiers. For example, based on the Suppliers-

and-Parts database in [15], the query



“Get supplier numbers for suppliers who supply all parts.”

corresponds t0 Tsno pno(Shipments) =+ m,,,(Parts) (refer to [15, Section 6.5.9]). Since it
is not a primitive operator in the relational model, we need to implement the division by
other primitive operators, which can be very cumbersome.

In the following sections, we first define the division operation for definite data and
give an algorithm to directly implement this operation is given in Section 2. Then, we
define the extended division for handling partial values and generalize the algorithm in
Section 3. This generalized algorithm is developed by employing the bipartite graph
matching technique [7]. In Section 4, we study the extended division for probabilistic

partial values. Finally, Section 5 concludes our work.

2 Division for Definite Data

Let (X, Y) and s(Y') be relations. The result of » + s can be defined to be the relation
q as follows [27]:

q(X) = {t | for every tuplet,; € s, there is a tuplet, € r such that ¢,.X = tand ¢,.Y = t,}.
This definition can also be specified as:
q(X) =A{t [ ({t} xs) Sr}.

In the following, an algorithm that directly implements this definition will be pre-

sented. A definition is needed for the algorithm and is stated as follows.

DEFINITION 2.1 For a relation r(X,Y"), X and Y possibly composite, the grouping of r
X
by X, denoted A (r), is an operation that groups r(X,Y") by X into v(X,Y") such that

X
Ar)=~vX,Y)={(x,T(x) |[(rer. X)AMer)((t.X =a)=1tY € T(x))}.
Notice that v(X,Y') is also called a nested relation [30].

For example, consider the following relation r(X,Y")
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Then, A (r) is

~
XY
a | {x, 7}
d | {w, x, z}

We give the algorithm as follows.
ALGORITHM 2.1 : An Algorithm That Derives the Result of r(X,Y) = s(Y).

Input: relations r(X,Y) and s(Y) without redundant tuples, X and Y possibly composite.
Output: the result of r(X,Y) = s(Y).

1. Ans = ); /* initialize Ans to be an empty set */
2. M"(X,Y) =r(X,Y) x s(Y), where “ X7 denotes natural semijoin;
3. v(X,Y) = g (r'(X,Y)); i.e. group #'(X,Y) by X into v(X,Y) — a nested relation.
4. for each tuple ¢; € v do {
5 if (|4.Y |==|s|) Ans = Ans U {#;. X };
6. }
7. Return(Ans);
The natural semijoin in Step 2, ¥'(X,Y) = r(X,Y) x s(Y), can be considered as a

a

generalization of selection [4]; it restricts r by the values that appear in s. That is, v’ =

{t|t€rAtY € s}. By this, we have the following lemma.

LEMMA 2.1 For all t; € v in Algorithm 2.1, | s | > maxv;{ | t..Y | }; that is, (| t;.Y |

> | s |) can never occur.

Proof: Suppose there is a tuple ¢; € v such that (| ¢,.Y | > | s |) then, by Step 3, there
exists a tuple t € v’ with .Y & s, a contradiction to v’ = {t | t € r ALY € s}. Hence,
(| t;.Y | > | s |) never occurs and our lemma follows. 0

We show the correctness of Algorithm 2.1 in the following.
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THEOREM 2.1 Algorithm 2.1 is correct.

Proof: We denote the result produced by Algorithm 2.1 as A; and the result of »(X,Y") +
s(Y) as Ag. By definition, Ay = {t | ({t} x s) € r}. We want to show that A; = A,.
It t € Ay then there is a tuple 7 € 4 such that

Stepb Stepb Step2

T X = tey XCr X CrX and 7.Y =" {y1,y2,..., Y5} = s

Step3 Step2

Thus, we have {t} x s = {r.X} x7.Y C ¢ C r. Therefore, t € Ay. Hence, A; C A,.

Conversely, if t € A, then {t}xs C r. By Step 2 of Algorithm 2.1, we know {t} xs C /
and, by Step 3, there exists a tuple 7 € 4 such that 7.X = ¢ and 7.Y = s. Therefore,
| 7.Y | = | s | and t will be collected into Ans and returned by Algorithm 2.1 in Step 5
and 7, respectively; that is, t € A;. Hence Ay C A;. By the above discussion, we conclude
that A; = A,. O

Although the division operation for definite data can be implemented by some prim-
itive operators of relational algebra. In Section 3, however, we will show the extended
division operation over partial values cannot be implemented using DeMichiel’s defini-
tions of primitive operations [16]. Therefore, instead of using the primitive operators,

Algorithm 2.1 will be used as a basis for generalizing division to deal with partial values.

3 Generalizing Division to Handle Data with Par-
tial Values

3.1 Preliminaries for Partial Values

Partial values model data uncertainty in databases in the sense that, for an uncertain
datum, its true value can be restricted in a specific set of possible values [16] or an
interval of values [19]. In our work, a partial value is represented by a set of possible

values, in which exactly one of the value is true. It is formally defined as follows.

DEFINITION 3.1 A partial value, denoted n = [ay, as, ..., a,], associates with n possible
values, a1, asg,...,a,, n > 1, of the same domain, in which exactly one of the values in n

is the “true” value of 7.

For a partial value n = [aq,az,...,a,], a function v is defined on it in [16], where v

maps the partial value to its corresponding finite set of possible values; that is, v(n) =
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{ai,as,...,a,}. Recall that an applicable null value [13], R, can be considered as a partial
value with v(X) = D, where D is the whole domain. Besides, a relation containing partial
values is called a partial relation [16]. Otherwise, it will be called a definite relation.
Except for explicitly specified, a relation is considered to be partial hereafter. In the
following, we will use n and v(n) interchangeably when it does not cause confusion. For
example, v € 7 if v € v(n).

The cardinality of a partial value n is defined as | v(n) | in [16]. When the cardinality
of a partial value equals to 1, i.e., there exists only one possible value, say d, in the partial
value, then the partial value [d] actually corresponds to the definite value d. On the other
hand, a definite value d can be represented as a partial value [d]. Besides, a partial value
with cardinality greater than 1 is referred to as a proper partial value in [16]. For any two
proper partial values, say n; and n2, 11 # 2 even if v(n1) = v(n2). This is because the

true value of n; may not be the same as the true value of ;.

DEFINITION 3.2 If the proper partial values, ny,7m2,...,1%, k > 2, are elements of a set of

partial values, ®, and v(ny) = v(n2) = -+ = v(nk), then we say n1, 92, « oy Pimty N1y - - 5 Nk
are quasi-duplicates of n;,1 <1 < k.

m 72
—~

—~
By Definition 3.2, if ® = {[a, b], [, b]} then 5y is a quasi-duplicate of 73, and vice versa.
When a set of attributes {Aj, Aa, .-+, A, } is considered as a composite attribute

AjAy--- A, its values can be computed from the values in this set of attributes as

follows.
(A A A [ kA
M1 | W21 | | Tmi 7711>A<7721>A< T >A<77m1
M2 | M22 |~ | Tm2 = N2 XN22X =+ X2
Mn | 20 | = | N Nin X N2 X+ XN

The X denotes the cartesian product of partial values, which is defined as follows.

DEFINITION 3.3 The cartesian product 77a§<776 of the partial values n, = [a1,az,...,a,]
and n, = [by, by, ..., b,] is the partial value n, 4, with v(n,5,) being a set of the ordered
pairs (a;, b;) for every a; € 5, and b; € .

~

We regard (11,9255 - - - »mji) and 11 X09;X ... X0); as semantically-equivalent because if

the “true” value of (115,725, -+, Nm;) is the m-tuple (ay, as, ..., ay), where a; € n;; and is



~

the “true” value of n;;, then the “true” value of ny;Xn; X -+ Xny; is also (aq,ag, ..., an),

and vice versa.

EXAMPLE 3.1 Consider the following data values in the set of attributes {Ay, A2}

L | [a,b]
[2,3] | ¢

We can regard {A;, A3} as a composite attribute A; Ay and compute its data as

Ak

[(1,a), (L, 0)]
[(2,¢), (3, ¢)]

a

A partial relation R( Ay, As, ..., Ay ) therefore can be regarded as a relation R(A1As--- An)
with the composite attribute A;A,---A,,. That is, a partial relation can be considered

as a set of partial values. By this, we have the following definitions.

DEFINITION 3.4 An interpretation, a = (ay,as,...,a,), of a set of partial values, ¢ =

{n1,M2, -, Nm }, is an assignment of values from @ such that «; € n;,1 <7 < m.

By Definition 3.4, for a set of partial values ® = {n1,n2,...,0m }, v(n1) Xv(n2) X+ - XV (Nm)

is the set of all interpretations of ®.

DEFINITION 3.5 For an interpretation o = (ay,as,...,a,) of a set of partial values

® = {n1,72, .-, 0m}, the value set of v is denoted S, = Ur<icmniai}.

DEFINITION 3.6 For all interpretations, a;, 1 < 5 < p, p=|n| X |n2| XX |9 |5
of a set of partial values ® = {n1,n2,...,n,}, the family of value sets of ® is denoted
F(®) = UicjcpiSa,}- If @ = O then define F(®) = 0.

EXAMPLE 3.2 Consider the following relation r( X, Y).

a| y
[z, y]

We can regard {X,Y} as a composite attribute XY and compute r to be



]
[(a, )]
[(a,:z;),(a,y)]

Then there are two interpretations, oy and ay, of r:

a1 = ((avy)v (a,:z;)) and Qg = ((avy)v (avy))'

Their corresponding value sets are

Seq = {(a,y)} U{(a,2)} = {(a,y), (a,2)} and Sa, = {(a,y)} U{(a,y)} = {(a,y)}.
Therefore, the family of value sets of r is

Fr) = {5} U{S:}
{{(a,9), (@, 2)},{(a,y)}},

which corresponds to the following two definite relations:

aly [aly]

X

3.2 The Extended Division for Handling Partial Values

In [16], DeMichiel presents a set of algebraic operations over partial values. However, the
extended division for partial values is not studied. For relations containing partial values,
due to the uncertainty of partial values, the result of an extended division may contain
maybe tuples [5, 12, 16].

For a division operation with operands A(X,Y') and B(Y') of definite data, the follow-

ing equation always holds.
AX)Y) = B(Y)=7x(A) —rx((nx(A) x B) — A)

That is, the division operation for definite data can be implemented by some primitive
operators of relational algebra. However, in the following, we will show the extended
division operation over partial values cannot be implemented using the above definition

and DeMichiel’s definitions of primitive operations. That is,

AXY)=B(Y) # 7y (A) =" 7 (7 (A) x" B) =" A),



where = denotes the extended division for partial values and 7/, —', and x’ are as defined

in [16].
LEMMA 3.1 If A(X,Y) and B(Y) contain true tuples only, then
Ty (A) =" 7y (7 (A) X" B) =" A)
can never produce maybe results, where ©', —', and X' are as defined in [16].
Proof: By DeMichiel’s Definition, the maybe result of 7'y (A) is

{t | (Fu)(u € AN (status(u) = maybe) A (t = u.X)
AN Av)(ve AN (v.X =u.X) A (status(v) = true)))}.

Since, by assumption, A has no maybe tuples, the maybe result of 7%\ (A) is therefore

empty. Thus,

R (A) — 7 (e (4) ' B) ~ )
=0 " 7D x"B)-"A)
=0
O

By Lemma 3.1, we know that if we perform the extended division A(X,Y)*B(Y) by
7 (A) =" 7 (7 (A) x" B) =" A), then the maybe result tuples which should have been
generated by the true tuples of the original relations A(X,Y) and B(Y) will be lost. We
define A(X,Y)=B(Y) as a primitive operation in the following. In our work, we will
assume a divisor contains no partial values, otherwise the extended division will never
produce true results.

The extended division for partial values is defined as follows. Let the source relations
be r(X,Y) and s(Y'), where X and Y are possibly composite. We denote the true result
of r = sas TR.

TR= (] (Se=s)={t|(te |J v(u.X)A{t}xs)Cr}.
Sa; EF(r) ui€r
The maybe result, denoted MR, is defined as follows.
MR= |J (8. +s)—TR,
Sa, €F(r)
where +— denotes the conventional division for definite relations.

The following example illustrates this definition.
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EXAMPLE 3.3 Consider the relations r and s given below and suppose we want to com-

pute (X, Y) = s(Y).

-
|
-

RN R

MgHm

By the definition, we can easily derive the true result of r(X,Y) = s(Y) to be {a}.

To compute the maybe result, we first transform r(X,Y’) into the following equivalent

relation r(XVY).

There are four interpretations for r:

= ((av )7(a72)7(bvx)7(bvz))v
Qy = ((av )7(a72)7(bvx)7(072))7
az = ((a,2),(a,2),(c,2),(b,z)), and
ay = ((a,2),(a,2),(c,2),(c,2));
and the corresponding value sets are shown below.
Sey Sy Seas
a | x a | x a | x
a | z a | z a | z
b | x b | x c | x
b | z c |z b | z
By these value sets, we have
Soq +S:{avb}7 Sa2+52 {a}v
Se, ~s={a}, and 9S,, +s={a,c}.

That is, Us, er(-)(Sa; +5) = {a, b, c}. Therefore, the result ¢ of r T osis

X

Sy

a
a
C
C

X
Z
X
Z




q

true

a
b | maybe
¢ | maybe

Note that an extra status column is added for the result of an extended division to

distinguish between true and maybe tuples. It does not correspond to a real attribute. O

However, from the above definition, it is not a trivial task to determine the result of
an extended division. Since the interpretations of a partial relation r can be very large
(refer to Definition 3.4), we need a more efficient algorithm for the extended division. In
the following, we apply bipartite graph matching techniques to develop an algorithm for

solving this problem.

3.3 Preliminaries for Graph Theory

In the following, some terminologies about graph theory are defined [7, 6]. A graph G is
denoted GG = (V, E), where V is the set of vertices and E is the set of edges in the graph.
An edge (x,y) is said to join the vertices x and y. If (x,y) € E then x and y are adjacent
or neighboring vertices of (G. For any set S C V| we define the neighbor set of S in G,
denoted N(5), to be the set of all vertices adjacent to the vertices in S. A bipartite graph
G = (V, E) is one whose vertex set V can be partitioned into two subsets X and Y, such
that each edge in (& joins a vertex in X and a vertex in Y. If two vertices are not joined
by an edge, they are said to be independent. Similarly, two edges that do not share a
common vertex are said to be independent. Given a subset S of V', the subgraph induced
by S, denoted G[S], is the graph with vertex set S and edge set containing those edges of
( joining two vertices of S. A clique of G is a subset S of V' such that G[S] is a complete
graph, that is, each pair of distinct vertices in G[S] is joined by an edge. A set of pairwise
independent edges is called a matching. A matching of maximum cardinality is called a

maximum matching. Besides, two more terms are defined as follows.

DEFINITION 3.7 Let S = {51,5,,...,95,} be a family of sets and s = {s1,82,...,8}.
The membership graph of S over s is a bipartite graph G = (V, E) = (X UY, E), where

X: s = {31,32,---75m}7

10



Y:S :{Sl,SQ,...,Sn},ELHd
E = {(Si,S]‘)|S¢ESj,1§i§m,1§j§n}.

DEFINITION 3.8 For a bipartite graph G = (X UY, E), | X | < | Y |, we say that there
is a complete matching M from X to Y if there is a matching of cardinality | X [; that is,

each vertex in X is adjacent to a distinct vertex in Y.

3.4 Algorithms for the Extended Division “+”

In this section, we present two C'-like algorithms to derive the (true and maybe) answer of
an extended division operation. In the first place, Algorithm 2.1 will be slightly modified
for obtaining the true result of an extended division then this algorithm will be generalized

to derive the maybe result.

ALGORITHM 3.1 : An Algorithm That Derives the True Result of an Extended Division.

Input: relations »(X,Y") and s(Y'), where X and Y are possibly composite and s contains

no partial values.

Output: the true result of r(X,Y) = s(Y).

TrueAns = ; /* initialize TrueAns to be an empty set */
r’ = r with all tuples that contain proper partial values eliminated;
Perform "(X,Y) = ¥'(X,Y) x s(Y), where “ xX” denotes semijoin;
XY = A (X))
for each tuple ¢; € v do {
if (|4:..Y |==|s|) TrueAns = TrueAns U {#;. X };
1
Return(TrueAns);

SRR R o e

Except for Step 2, this algorithm is the same as Algorithm 2.1. Step 2 guarantees r’

to be a definite relation. The following theorem verifies the correctness of Algorithm 3.1.

THEOREM 3.1 Algorithm 3.1 correctly produces the true resull of r(X,Y) = s(Y).

11



Proof: The proof is the same as that of Theorem 2.1, except that r and r’ in the proof of
Theorem 2.1 are replaced by r’ and r”, respectively. O
Before presenting the algorithm that derives the maybe result for an extended division,

we need some preliminary definitions.

DEFINITION 3.9 The partial semi-join of relation r(X,Y') by relation s(V'), written r(X,Y)

x s(Y), is an operation that produces the relation
(X, Y)={t|(Vuer)((uYNs£0)= (X =uXALY =(uY Ns)))}.
The following example illustrates this definition.

EXAMPLE 3.4 For the relations r and s given below,

7

a Z
a

¥l

] -
[b,c] X .
e | [xy]
e | [y7]

a |

DEFINITION 3.10 For a relation r(X,Y’), X and Y possibly composite, the partial group-
X
ing of r by X, denoted V (r), is an operation that groups r(X,Y") by X into v(X,Y);
that is é (r) = v, where
V) = {5 X(@) | (¢ € UpernltX)) A (Y € P)((x € 0(0.X)) = £V € T())}. .

X X
It is easy to verify that when r(X,Y) is a definite relation, then ¥V (r) = A (r) (refer
to Definition 2.1).

EXAMPLE 3.5 Let 7(X,Y) be the relation listed below.

12



N | N A =

[a, b] | [x, 2]

X
Then the partial grouping V (r) is

~
XY |
a {X7 Y7 Z7 [W7 X]? [X7 Z]}
b | {y, [x, 2]}
c | {z [w, xJ}

We now discuss how a maybe result tuple of #(X,Y) = s(Y) can be derived. The
following theorem specifies the necessary and sufficient condition for a true or maybe

answer of an extended division.

THEOREM 3.2 For a tuple (x,Y(x)) in v zé(r), where Y (x) = {n1,n2,...,0.}, there
exists a complete matching M from s = {s1,82,...,8m} to S = Y(x) = {n1,n2,. ...}
in the membership graph G = (s U S, E) if and only if x is an answer (true or maybe) of
r(X,Y) = s(Y).

Proof: (<) (1) If x is a true answer of 7(X,Y) = s(Y) then {2} x s C r. By regarding
the elements of s as partial values with cardinality one, we have s = {[s1],[s2], ..., [sm]}-
Then, by Definition 3.10, there exists a tuple (z, T(x)) € v :é (r), such that s C Y(x) =
S. Hence, there is a complete matching M = {(s1, [s1]), (s2,[$2]),- -+, (Sm, [$m])} from s
to S in the membership graph G = (sU S, E).

(2) If  is a maybe answer of #(X,Y) = s(Y) then x € Us,er(r)(Si =+ s). That is, there
exists an interpretation « with value set S,, such that {z} x s C S, € F(r). Therefore,
there is a tuple (x,Y(x)) € v with Y(z) = {91,n2,...,9m,...}, such that s; € n,;, for
i =1,2,...,m. Hence, there is a complete matching M = {(s1,71), (S2,72)s -« s (SmsNm) }
from s to S in the membership graph G = (s U S, F).

13



(=) If there exists a complete matching M = {(s1,71),(52,72), -+, (Sm,m) } in G =
(s US,F), then s; € n,, for ¢ = 1,2,...,m. By Definition 3.10, r contains m tu-
ples, t1,t9,...,t,, such that « € ¢.X and n, = .Y, ¢« = 1,2,...,m. Therefore,
there exists an interpretation a = ((x,81),(x,$2),...,(x,8n),...) of r with its value
set S, = {(x,81),(x,82),...,(2,8m),...}, which implies {z} x s C S, € F(r). Hence,
€ (S,+s)C Usief(T)(Si+S). When {2} xs C S, C rthen z is a true result. Otherwise,
x 18 a maybe result. a

In the following, we present Algorithm 3.2, which is generalized from Algorithm 3.1,

to derive the maybe result of an extended division.

ALGORITHM 3.2 : An Algorithm That Derives the Maybe Result of an Extended Division

Operation.

Input: relations r(X,Y), s(Y) and the TrueAns obtained from Algorithm 3.1, where
X and Y are possibly composite and s contains neither partial values nor maybe

tuples.

Output: the maybe result of r(X,Y) = s(Y).

1. MaybeAns = O;
2. Perform v"(X,Y) =r(X,Y) x s(Y), where “x” denotes partial semi-join;
3. :é(r”); i.e., apply the partial grouping operation to r” by X;
4. for each tuple t € v do {
5. if (£.X € TrueAns) continue; /* true result overrides maybe result */
6. if (| t.Y |<| s |) continue; /* prune impossible answer */
7. if (Up,ery (n;) # s) continue; /+ prune impossible answer */
8. if (the membership graph of S = {n1,n2,...,n,} over s, Vn; € .Y,
has a complete matching M from s to S){
9. MaybeAns = MaybeAns U {t. X };
0. )
1. )
12. Return(MaybeAns); O

Note that Step 5, Step 6 and Step 7 are used to prune impossible answers. In Step

5, a true result reasonably overrides a maybe result. In Step 6, it is obvious that if

14



| t.Y | < | s | then t.X cannot be an answer, since there is no complete matching.
For Step 7, we claim that if Uy.¢;y (n;) # s then Upjery (n;) C s and t.X can never
be an answer. That is, Un,eey (n;) D s is impossible. In proof, if Un,eey (n;) D s then
there exists an element in Uy e,y (n;) but not in s, which implies there is a tuple t € "
such that t.Y € s — a contradiction to the definition of partial semi-join as used in Step
2. Except for these steps (i.e., Steps 2, 5, 6, and 7), this algorithm actually implements
Theorem 3.1. Therefore, its correctness is also verified.

For Step 8, an O(n*?) algorithm in [20], can be used to find a complete matching for
a bipartite graph G = (V, F) = (X UY, F), where n is the number of nodes in G.

3.5 An Example

In the following, an exampleis presented to illustrate the whole processes of Algorithms 3.1

and 3.2.

EXAMPLE 3.6 Consider the following relations (X, Y ") and s(Y'), where r( X, Y') is wrapped
for saving space. We apply Algorithms 3.1 and 3.2 to derive the true result and maybe
result of r(X,Y) = s(Y), respectively.

r
Xl Y | X | Y |

a w [d, e, f] ly, z]
a X [d, f] [x, 2]
a y e [w, x| .
a z e X

[a, b] w e w
b X f [u, v, w, x] il
b y f [v, W] *
b z g W Y
¢ [, x, 7] [g, b] y
< vl e8|
d (%, ¥] h w
d (%, ¥] h [x, u]

Recall that two proper partial values are not supposed to be equal even if they corre-

spond to the same set of possible values. Therefore, the quasi-duplicate

[x, y]
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cannot be eliminated, or information may be lost. (However, under some circumstances,
some quasi-duplicates may be eliminated without losing information. We have explored
this problem in [36].)

First, we apply Algorithm 3.1 to derive the true result. After Step 2, we get 1’ as:

7,,/
(X[ Y[X[V][X]V]
a|lw|b|x|e|w
a|x||bly|lg|w
a|ly|blz]|g]|x
alz|e|x|h|w

After Step 3, v’ remains the same as r’. So, by Step 4, we group r” by X into v as:

N
(XY |
a {W7 X7 Y7 Z}
b | {x,y 2}

e | {x, w}
g | {x, w}
h | {w}

For those tuples ¢’s in 7, only the first tuple satisfies the condition of Step 6. Therefore,
the true result is {a}. Now we proceed to Algorithm 3.2. For convenience, we treat all
the attribute values in .Y as partial values (i.e., convert all definite values into partial

values with cardinality one) and represent this new relation, r’, as follows.

/

x| v | x| Y |

a [w] [d, e, f] [y, 7]
a [x] [d, {] [x, 2]
a [v] e [w, X]
a [2] e [x]

[a, b] [w] e [w]
b [x] f [u, v, w, ]
b [v] f [v, w]
b [#] g [w]
c v, x, vl g [x]
c [, x, 7] [g, b] [v]
¢ |[uv,w,y]l|| [gh [2]
d [x, vl h [w]
d [x, vl h [x,

By performing partial semi-join in Step 2, we obtain r” as

16



T'//

X Y X Y
a [w] || [d, e f] | [y, 2]
a [x] [d, ] | [x, 7]
a [v] e [w, x]
a [2] e [x]
[a, b] | [w] e [w]
b [x] f [w, x|
b [v] f [w]
b [2] g [w]
c | [xvl g [x]
c | [xz] || [gh] | [v]
¢ |[w,yl|| [g.h] | [7]
d | [xy] h [w]
d | [x ] h [x]

After applying the partial grouping operation, we obtain v as follows.

.
X|Y

1 [a [ {9 % 2

2 [ [ {[w], [ Iv]. (2]}

3 e | {x ). [% 2L, [w, y))

4 [ [ {5, 5 0L b 7 [ 2

5 [e [{1v, 2J: [w, 5, [<], [w))

6 [T I, 2L, [x, 2], [, ], [W]]

7 [ A0 [, [ 23

8 [ [ {[w]. (<), [v]. (2]}

For those tuples in ~, the first tuple satisfies the condition in Step 5, the second, seventh,

and eighth tuples satisfy the condition in Step 8. For the third and the fourth tuples,

they satisfy the conditions in Steps 6 and 7, respectively. Therefore, they are not included

into MaybeAns. Now, consider the fifth tuple, we find one of the maximum matchings as

follows.

X

{

A

Y

@ww P
Y YT

Y
5
x,

SR A
= =

Y
(e
|“&



It does not satisfy the condition in Step 8. Finally, for the sixth tuple, we can find a

complete matching as follows.

After performing the for loop between Steps 4 and 11, we obtain MaybeAns = {b, f, g,
h}. 0

3.6 Further Refinement on Maybe Result

In the maybe result obtained by Algorithm 3.2, there may exist some inter-relationships
among these maybe result tuples. We say that two maybe result tuples « and 3 of an
extended division r(X,Y) + s(Y) are strongly dependent if there exists one tuple ¢ in
the original relation r which contributes to both a and 3 to be the maybe result tuples
and whose deletion makes both « and 3 no longer be in the maybe result. Since there is
only one “true” value in ¢, a and 3 cannot coezxist. In Example 3.6, ¢ and h are strongly

dependent. This is because, for example, the following tuple in the original relation r

contributes to both ¢ and % to be maybe result tuples and whose deletion makes both ¢
and & unable to be in the maybe result.

It C' is a subset of the maybe result of an extended division such that each pair of the
elements in (' are strongly dependent, then we say C is a strongly dependent clique. In

a strongly dependent clique ', any two elements in C' cannot coexist. Therefore, if (' =

{e1,¢2,...,¢,} is a strongly dependent clique, then we can represent {c1,¢a,...,¢,} as a
partial value [¢1, ¢, ..., ¢,] and regard it as a maybe result tuple. That is, a maybe result
tuple

‘ [c1,¢Cay .0y 0] ‘ maybe ‘
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means that if this answer tuple exists then it must be exactly one of ¢; in [¢1, ¢z, ..., ¢,].

In comparison, the original maybe result

¢1 | maybe

¢y | maybe

¢, | maybe

means that the answer is (¢; Ve V- - Ve, ) B0, where “V” is the inclusive-or operator and
“@” is the exclusive-or operator, which does not capture the dependency. For example,

in the following operation

X 7]

la, b] | [x,z] | = _ | a | maybe
b, c] | [v,2] | x b | maybe
[a, ¢] | [x, V] é ¢ | maybe

These answer tuples are pairwise strongly dependent. Therefore, the maximal strongly

dependent clique is
@'@
©

and the answer can be further refined into

‘ [a, b, ¢] ‘ maybe ‘

To find a maximal strongly dependent clique in the maybe result MR of an extended

division, we can construct a graph G' = (V, E) as follows:
L. V={m|me MR}
2. E={(m;;m;) | m; and m; are strongly dependent}.

Then find a maximal clique in G. Both the problems can be shown to be equivalent. That
is, they can be transformed into each other. Unfortunately, finding a maximal clique on

graphs is a well-known NP-hard problem [17].
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3.7 Refining Maybe Answers into True Answers

We observe that, in some cases, some maybe result tuples can be further refined into a

true result tuple. We present this idea by an example followed by its formal description.

EXAMPLE 3.7 Consider the following relations r(X,Y) and s(Y).

T2

The answer of ¢ = r(X,Y)=s(Y) is

q

maybe

a
b | maybe
c

maybe

which can be refined into

q
‘ X ‘ status ‘

| [a, b, c] | true |

This is because the second tuple of r is exactly one of (a, y), (b, ¥), and (c, y).

a

This refinement on the maybe result of r(X,Y)=s(Y) can be obtained when there is a

tuple t € r with
Lov(t.X)={my,ma,...,mp}, k> 2, and
2. 1.Y contains a definite value only,

such that,

1. the deletion of ¢ makes k maybe answer tuples, my, my, ..., mk, no longer be in the

maybe result, and
2. ({m1,ma,....mp} X (s =1.Y)) Cr.
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If this condition is satisfied, then these maybe answers, my, my, ..., mg, can be grouped
into a single partial value [my, ma, ..., mg| with status true. This is because the true value
of t.X can be exactly one of m;’s, which implies there must be exactly one m; satisfies
{m;} x s Cr.

The semantic meaning for an answer tuple with true/maybe status can be clarified as

follows.

1. a tuple| [a, b] [ maybe | means that either (i) it is either a or b or (ii) it is nothing.

2. a tuple H means that it is either a or nothing.

3. a tuple| [a, b] means that it is either a or b.

4. a tuple means that it is a, definitely.

4 Generalizing Division to Handle Data with Prob-
abilistic Partial Values

Although we can refine maybe results into more informative answers, users have no way
to distinguish which maybe tuple is the most possible answer. In [37][38], the concept of
partial values is generalized to probabilistic partial values, and a probabilistic approach to
query processing in heterogeneous database systems is provided. We employ the concept
of probabilistic partial values to provide maybe answer tuples with degrees of uncertainty.
This will make the comparison among maybe answer tuples possible, and provide more
informative answers for users. In this section, we study the extended division for dealing

with probabilistic partial values.

4.1 Preliminaries for Probabilistic Partial Values

We generalize partial values to probabilistic partial values by regarding an attribute as a
discrete random variable [28, 3]. Sadri [31, 32] has developed a probabilistic approach to
modeling uncertainty in databases. In Sadri’s work, the degree of uncertainty is attached
on tuple level. However, in our work, the degree of uncertainty is on the level of attribute

values.
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Our approach stems from the idea of a probabilistic relational data model proposed
by Barbara, Garcia-Molina and Porter [3]. By assuming keys are definite, the probability
of an attribute value is a conditional probability depending on the key value of that tuple.

To illustrate, consider the following relation, where name is the key attribute.

‘ name ‘ city ‘ specialty ‘ age ‘
Jesse | [Taipei”?, Hsinchu”’, Kaohsiung®'] SE 30
Annie Kaohsiung [DB°?, AT°®] | 27

This relation describes two entities, “Jesse” and “Annie”. The probability that Jesse’s
city 1s Taipei is
Prob(city = “Taipei” | name = “Jesse”) = 0.4

Now we define a probabilistic partial value as follows.

DEFINITION 4.1 A probabilistic partial value, denoted ¢ = [a}', a5, ..., abr], associates

with n possible values, aq, ag, ..., a,, of the same domain DU{*}, where each a; associates

with a probability p; # 0 such that 7, p;, = 1.

A relation consisting of tuples with probabilistic partial values is called a probabilistic
partial relation. In general, probabilities can be assigned according to the timeliness of
data, statistical information, etc. In [37][38], we present an application to show how to
assign the probabilities of a partial value in heterogeneous database systems.

The equality of probabilistic partial values is defined as follows.

DEFINITION 4.2 Two probabilistic partial values, say &, = [a}',a5’,...,aP"] and & =
[6]', 03, . .., bi"], are said to be equal, denoted ¢, = &, if a; = b; and p; = ¢;, for each

r=1,...,n.

Notice that, however, two proper partial values can never be equal (refer to Section 3.1).

We also use v to denote the function that maps a probabilistic partial value to its
corresponding finite set of possible values. That is, for a probabilistic partial value ¢ =
(O, 052, ... 0P, w(€) = {67, 05, ..., P }. Besides, a definite value d can be regarded as
a probabilistic partial value [d'], and vice versa. In the following, v({) and ¢ are used
interchangeably when it does not cause confusion.

We define the cartesian product of two probabilistic partial values as follows.
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DEFINITION 4.3 The cartesian product &, » &, of the probabilistic partial values &, =
[a', a2, ..., aPm] and & = [b]',b%,...,b%"] is the probabilistic partial value ¢ % with
v(& ;b) being a set of the ordered pairs (a;, b;) with probability p; x ¢; for every ai* € &,

and bjj € &.

By assuming non-key attributes of a relation to be independent, a tuple of a relation

r(A, Agy oo Am), , can be transformed into the semantically-equivalent

probabilistic partial value, & » & X% Em.

EXAMPLE 4.1 Consider the following relation r(A;, As)

r

LA [ A |
1 [a0.27bo.8]

[20.3730.7] c

We can regard {A;, A2} as a composite attribute A; A, and transform r in the following:

v e R — r—
[(17a)1><0.27 (17b)l><0.8] — [(17a)0.27 (176)0.8]
[(27 C)O.-?)Xl7 (37 C)O.7><1] [(27 0)0.37 (37 0)0.7]

a

That is, a probabilistic partial relation R(A1, As,..., A,) can be regarded as a relation
R(A1As- -+ A,) with the composite attribute A;As--- A, Therefore, a probabilistic
partial relation can be considered as a set of probabilistic partial values. By this, we have

the following definitions.

DEFINITION 4.4 An interpretation, 8 = (b{*, 057, ..., bP), of a set of probabilistic partial
values, U = {{,&,,...,&n}, Is an assignment of values from W such that 6 € £;,,1 <i <

m.

By Definition 4.4, for a set of partial values W = {&1,&s, ..., &n}, v(&) X v (&) X - Xv(€n)

is the set of all interpretations of W.

DEFINITION 4.5 For an interpretation 8 = (0", 057, ..., b%7) of a set of probabilistic par-
tial values W = {&;, &, ..., &n }, the probabilistic value set of 3 is denoted Vi = Us<i<;nibi}

with probability ps = ITi<i<, pi-
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For simplicity, we use Vﬁpﬁ to represent both a probabilistic value set V3 and its probability
bs-

DEFINITION 4.6 For all interpretations, 3;, 1 < j < ¢, ¢ =& | X [ & | XX [ &n |,
of a set of probabilistic partial values U = {&,&,,....&,}, the family of probabilistic
value sets of W is denoted G(W) = Ui<;<,{V5, }, where V3, has the probability ps, =
Z(Vk)(vﬁkzvﬁj)pﬁk- If ¥ = then define G(V) = 0.

EXAMPLE 4.2 Consider the following relation r( X, Y).
r
Xy |

a y
a | [2°7, y0.7]

We can regard {X,Y} as a composite attribute XY and compute r to be

]
[(a,y)']

[(av x)o'Sv (a, y)0.7]

Then there are two interpretations, 3; and 35, of r:

B = ((av y)lv (av x)O'S) and B = ((av y)lv (av y)0.7)‘

Their corresponding value sets are

Vﬁ1 = {(avy)v(avx)} and Vﬁz = {(avy)}'

with the corresponding probabilities
pg, =1x03=03 and pg, =1x0.7T=0.7.

Therefore, the family of value sets of r is

Gr) = ViUV
= {{(a,9), (@, 2)}*7 {(a,9)}* 7},

which corresponds to the following two relations:

Vﬁo13 VBO27
y Laly]

X

a
a
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4.2 The Extended Division for Handling Probabilistic Partial
Values

In this section, we define the extended division for probabilistic partial values, denoted ;,
as follows. We assume the divisor of an extended division contains definite values only.
Let the operands of an extended division = be r(X,Y) and s(Y), where X and Y are

possibly composite. The result of r * s is defined as follows.

{tp | (t € U (Vﬁi +5)) N (p = Z pﬁi)}-

Vg, €G(r) (VV5 " €6(r))(t€(Vp, +5))

The following example illustrates this.

EXAMPLE 4.3 For the relations r and s given below,

E
i

a | [2%,yf] -
b y
o | ] :
there are four interpretations,
ﬂl - ((a,x)%,(b,y)l,(a,x)g),
ﬂ? - ((a7$)§7(b7y)17(a7y)§)7
63 — ((a,y)g,(b,y)l,(a,:z:)g),and
64 — ((a,y)g,(b,y)l,(a,y)Z).
The corresponding probabilistic value sets are shown below.
v Vi Ve 7
a | x a | x a |y a |y
b |y b |y b |y b |y
a |y a | x

By these probabilistic value sets, we have

1 1 1 1
Vﬁlf +S:®, Vﬁ42+3:{a}7 Vﬁi+3:{a}7 and Vﬁi+82®

~

Therefore, the result ¢ =r + s is
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q
‘X‘ probability ‘

1 17 _ 5
Lo [ 28 =5 m

To compute the probability of an answer tuple of r(X,Y) Y s(Y), all interpretations
of r should be generated and then their corresponding probabilistic value sets be com-
puted. However, this can be very time-consuming — in the worst case, its time complexity

is exponential.

5 Discussion and Conclusion

Understanding and accommodating various types of uncertain data in databases have
been an active research area. Moreover, the division operation is rarely discussed, espe-
cially when a database contains uncertain data. However, to process a query involving a
universal quantifier, it is usually necessary to perform the division operation.

In this paper, we study the extended divisions for partial values and probabilistic
partial values. The concept of probabilistic partial values is a generalization from that
of partial values, which is in turn a generalization from that of null values. Due to the
uncertainties of partial values and probabilistic partial values, the extended divisions may
produce maybe tuples and maybe tuples with probabilities.

By employing the bipartite graph matching technique, we have shown the maybe
result of an extended division for partial values can be obtained efficiently. We have
also discussed the refinement on the maybe result to produce a more informative answer.
However, as we have shown, the refinement process may corresponds to some NP-hard
problem and therefore we have the trade-off between a more informative answer and the
computational efficiency on the extended division operation over partial values.

Since maybe tuples cannot be compared to distinguish their degrees of uncertainty,
maybe tuples with probabilities is more informative than that just with maybe status.
However, it is time-consuming to derive the answer of an extended division that handles
probabilistic partial values. Therefore, it is a trade-off between an efficient algorithm
and a more informative answer. In the near future, we will investigate the parallelism of
processing an extended division which handles probabilistic partial values, and develop

an efficient parallel algorithm to speed up the computation.
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