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Abstract

Many machine learning technologies such as support vector machines, boosting, and neural networks have been applied
to the ranking problem in information retrieval. However, since originally the methods were not developed for this task,
their loss functions do not directly link to the criteria used in the evaluation of ranking. Specifically, the loss functions are
defined on the level of documents or document pairs, in contrast to the fact that the evaluation criteria are defined on the
level of queries. Therefore, minimizing the loss functions does not necessarily imply enhancing ranking performances. To
solve this problem, we propose using query-level loss functions in learning of ranking functions. We discuss the basic prop-
erties that a query-level loss function should have and propose a query-level loss function based on the cosine similarity
between a ranking list and the corresponding ground truth. We further design a coordinate descent algorithm, referred to
as RankCosine, which utilizes the proposed loss function to create a generalized additive ranking model. We also discuss
whether the loss functions of existing ranking algorithms can be extended to query-level. Experimental results on the data-
sets of TREC web track, OHSUMED, and a commercial web search engine show that with the use of the proposed query-
level loss function we can significantly improve ranking accuracies. Furthermore, we found that it is difficult to extend the
document-level loss functions to query-level loss functions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Web search engines are changing people’s life, and continuously enhancing the accuracy (relevance) of
search also becomes an endless endeavor for information retrieval (IR) researchers. The key issue in web search
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is to construct a ranking function such that given a query the ranking function can rank the retrieved web pages
in a way that can maximally satisfy users’ search needs. Traditional approaches (Baeza-Yates & Ribeiro-Neto,
1999) resort to empirical methods in ranking model construction. These include content based methods such as
BM25 (Robertson, 1997) and link based methods such as PageRank (Page, 1998). As more and more informa-
tion (e.g., query log data) useful for search becomes available, the limitation of empirical tuning also becomes
clearer, that is, it becomes very difficult, if not impossible, to tune the models with hundreds or thousands of
features. The approach of employing machine learning techniques to address the problem naturally emerges
as an effective solution and several methods have been proposed along the direction. Typical methods include
RankBoost (Freund, Iyer, Schapire, & Singer, 2003), ranking SVM (Herbrich, Graepel, & Obermayer, 2000;
Joachims, 2002), and RankNet (Burges et al., 2005), which are based on boosting, support vector machines
and neural networks, respectively. From the machine learning perspective, ranking, in which given a query
and its associated documents we are to rank the documents as correctly as possible, also becomes a new branch
of supervised learning, in addition to classification, regression, and density estimation (Vapnik, 1998).

However, it should be noted that the aforementioned machine learning methods were not proposed directly
for IR, and therefore their loss functions are only associated to some extent with the evaluation criteria in IR,
such as mean average precision (MAP) (Baeza-Yates & Ribeiro-Neto, 1999), mean precision at n (P@n) (Bae-
za-Yates & Ribeiro-Neto, 1999), and normalized discounted cumulative gain (NDCG) (Jarvelin & Kekalai-
nen, 2000, 2002). All the IR criteria are on the query-level; specifically, given two queries, no matter how
different the numbers of documents retrieved for the two queries are, they contribute equally to the final per-
formance evaluation. In contrast, the loss functions of the learning algorithms are defined on the level of doc-
uments (Nallapati, 2004) or document pairs (Burges et al., 2005; Freund et al., 2003; Herbrich et al., 2000;
Joachims, 2002). Therefore, minimizing the loss functions does not necessarily lead to enhancing the accuracy
in terms of the evaluation measures.

In order to solve this problem, we propose employing query-level loss functions in learning of ranking func-
tions for IR.

In this paper, we first discuss what kind of properties a good query-level loss function should have. Then we
propose a query-level loss function, cosine loss, as an example, which is based on the cosine similarity between
a ranking list and the corresponding ground truth with respect to a given query. With the new loss function,
we further derive a learning algorithm, RankCosine, which learns a generalized additive model as ranking
function.

Next, we discuss whether it is possible to extend the document or document-pair level loss functions of the
existing methods (ranking SVM, RankBoost, and RankNet) to the query-level.

We used two public datasets and one web search dataset to evaluate the effectiveness of our method. Exper-
imental results show that the proposed query-level loss function is very effective for information retrieval. Fur-
thermore, we found that it is in general difficult to extend the loss functions in the existing methods to the
query-level.

The rest of this paper is organized as follows. In Section 2, we give a brief review on related work. In Sec-
tion 3, we justify the necessity of using query-level loss functions for IR and discuss the properties that a good
query-level loss function should have. We then give an example of query-level loss function, cosine loss, and
derive an efficient algorithm to minimize the loss function in Section 4. Experimental results are reported in
Section 5. In Section 6, we discuss the possibility of extending the loss functions of the existing methods to
the query-level. Conclusions and future work are given in Section 7.

2. Related work

In recent years many machine learning technologies (Burges et al., 2005; Crammer & Singer, 2002; Dekel,
Manning, & Singer, 2004; Freund et al., 2003; Herbrich et al., 2000; Joachims, 2002; Nallapati, 2004) were
applied to the problem of ranking for information retrieval. Some early work simply tackled this problem
as a binary classification problem (Nallapati, 2004), in which the assumption is made that a document is either
relevant or irrelevant to the query, and the goal of learning is to classify relevant documents from irrelevant
documents. However, in real-world applications, the degree of relevance of a document to a query can be dis-
cretized to multiple levels. For example, we can consider the use of three categories: highly relevant, partially
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relevant, and highly irrelevant. And so, ranking is a problem different from classification. To solve the prob-
lems, many other methods were proposed including ranking SVM, RankBoost, and RankNet.

Herbrich et al. (2000) and Joachims (2002) took an SVM approach to learn a ranking function and pro-
posed the ranking SVM algorithm. The basic idea of ranking SVM is the same as the conventional SVM: min-
imizing the sum of empirical loss and regularizer. The difference is that the constraints in ranking SVM are
defined on partial-order relationships within document pairs. The optimization formulation of ranking
SVM is shown as follows1:
1 Fo
2 Th
min V ðx; eÞ ¼ 1

2
xTxþ C

X
i;j;q

ei;j;q

s:t: 8ðdi; djÞ 2 r�1 : xuðq1; diÞP xuðq1; djÞ þ 1� ei;j;1

..

.

8ðdi; djÞ 2 r�n : xðqn; diÞP xuðqn; djÞ þ 1� ei;j;n

ð1Þ
where C is a parameter which controls the trade-off between empirical loss and regularizer, u(q,di) is the fea-
ture vector calculated from document di and query q, and the constraint xu(q,di) > xu(q,dj) means that doc-
ument di is more relevant than document dj with respect to query q. Theoretically, ranking SVM is well formed
in the framework of structural risk minimization, and empirically the effectiveness of ranking SVM has been
verified in various experiments. Modifications of ranking SVM for information retrieval (Cao et al., 2006; Qin
et al., 2007) have also been proposed.

Freund et al. (2003) adopted the boosting approach to ranking and proposed the RankBoost algorithm.
Similarly to ranking SVM, RankBoost operates on document pairs. Suppose di �q dj denotes that document
di should be ranked higher than dj for query q. Consider the use of model f, where f(u(q,di)) > f(u(q,dj)) means
that the model asserts di �q dj. Then the loss for a document pair in RankBoost is defined as
Lðdi�qdjÞ ¼ e�ðf ðuðq;diÞÞ�f ðuðq;djÞÞÞ ð2Þ

Consequently, the total loss on training data in RankBoost is defined as the sum of losses from all document
pairs:
L ¼
X

q

X
di�qdj

Lðdi�qdjÞ ð3Þ
The advantages of RankBoost include that it is easy to implement the algorithm and it is possible to run the
algorithm in parallel. The effectiveness of RankBoost has also been verified.

Neural networks have also been applied to ranking recently. Burges et al. (2005) proposed the Rank-
Net algorithm, in which relative entropy is used as loss function and neural network is used as the underlying
ranking function. Similarly to ranking SVM and RankBoost, training samples of RankNet are also document
pairs. Let us denote the modeled posterior P(di �q dj) as Pij, and let us denote P ij be the true value of the pos-
terior, and2 oq,i,j = f(u(q,di)) � f(u(q,dj)). Then the loss for a document pair in RankNet is defined as follows:
Lq;i;j � Lðoq;i;jÞ ¼ �P ij log P ij � ð1� P ijÞ logð1� P ijÞ ¼ �P ijoq;i;j þ logð1þ eoq;i;jÞ ð4Þ

Similarly, the total loss in RankNet is defined as the sum of all document pairs
L ¼
X

q

X
i;j

Lq;i;j ð5Þ
RankNet has been successfully applied to web search. Further improvements on RankNet can be found in
Matveeva, Burges, Burkard, Laucius, and Wong (2006), Tsai, Liu, Qin, Chen, and Ma (2007), Cao, Qin,
Liu, Tsai, and Li (2007).

One major problem ranking SVM, RankBoost, and RankNet have is that the loss functions used are not in
accordance with the IR evaluation measures. We will elaborate on this in more details in the next section.
r details, please refer to Joachims (2002).
e definitions of f and u can be found in the conventional studies on ranking SVM and RankBoost.
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3. Query-level loss functions for information retrieval

Let us first use Table 1 to summarize the loss functions in the existing algorithms described in Section 2. In
the classification approach (Nallapati, 2004), the loss function is defined on the document level. The loss
functions of ranking SVM, RankBoost, and RankNet are defined on the document-pair level. These loss func-
tions can model the partial-order relationship within a pair of documents, but not the total order relationship
between all the documents. In this regard, these loss functions are not in accordance with the evaluation cri-
teria for IR such as MAP and NDCG which are defined on the query-level. This motivates us to propose the
use of query-level loss functions, as will be discussed below.

3.1. Why is query-level loss function needed

As mentioned above, the loss functions in ranking SVM, RankBoost, and RankNet are not in accordance
with the evaluation criteria in IR. This may penalize the accuracies of the learning algorithms.

Let us consider a simple example. Suppose there are two queries q1 and q2 with 40 and five documents,
respectively. In the extreme case of using complete partial-order document pairs for training, we can get
40 · 39/2 = 780 pairs for q1 and only 5 · 4/2 = 10 pairs for q2. If a learning algorithm can rank all document
pairs correctly, then there will be no problem. However, if this is not the case, for example, we can only rank
780 out of the 790 pairs correctly, then a problem will arise. With the pairwise loss function, the losses will be
the same if the learning algorithm correctly ranks all pairs of q2 but only 770 pairs of q1, or correctly ranks all
pairs of q1 but no pairs of q2. However, for these two cases, the performances based on a query-level evalu-
ation criterion will be completely different. As shown in Table 2, case 1 is much better than case 2. This exam-
ple indicates that using a document-level loss function is not suitable for IR. Actually only when all the queries
have the same number of document pairs for training, the document-level loss function and the query-level
loss can lead to the same result. However, this assumption does not hold in real-world scenarios. Therefore
it is better to define loss function on the query-level when training ranking functions.

3.2. What is a good loss function

One may ask what properties a good query-level loss function should have. Here we list some properties,
and discuss the necessities.
Table 1
Loss functions for web search

Loss function Algorithms

Document-level Binary classification (Nallapati, 2004)
Pairwise Ranking SVM (Qin et al., 2007; Cao et al., 2006; Herbrich et al., 2000; Joachims, 2002)

RankBoost (Freund et al., 2003)
RankNet (Burges et al., 2005) Frank (Tsai et al., 2007)

Query-level Our work

Table 2
Document-pair level loss vs. query-level loss

Case 1 Case 2

Document pairs of q1 Correctly ranked 770 780
Wrongly ranked 10 0
Accuracy 98.72% 100%

Document pairs of q2 Correctly ranked 10 0
Wrongly ranked 0 10
Accuracy 100% 0%

Overall accuracy Document-pair level 98.73% 98.73%
Query-level 99.36% 50%
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We first give explanations on the notations. Suppose n(q) denote the number of documents for a query q to
be ranked. There are in total n(q)! possible ranking lists for query q in total. Suppose Q is the space of queries,
and F is the space of ranking functions. We denote the ground truth ranking list of query q as sg(q), and the
ranking list generated by a ranking function f 2F as sf(q). Then a query-level loss function is a function of
two ranking lists to a non-negative real number. That is,
LðsgðqÞ; sf ðqÞÞP 0
(1) Insensitive to number of document pairs.
This has been made clear through the example in Table 2. In this regard, the loss functions of ranking SVM,

RankBoost and RankNet are not good loss functions.
This property can be expressed formally as

Property 1. Define Lk ¼ supf2F;q2Q and nðqÞ¼kLðsgðqÞ; sf ðqÞÞ for a query-level loss function L, for any k1 > 1,

k2 > 1, if Lk1 > 0 and Lk2 > 0, then there should exist a constant C, which makes the loss function L satisfy
Lk1

Lk2

< C; and
Lk2

Lk1

< C
(2) Important to rank top results correctly.
In contemporary IR, precision is often considered more important than recall, because information to be

searched is usually abundant. Many IR evaluation criteria embody the requirement of conducting accurate
ranking on the top of lists. For example, a ranking error at the 5th position is more harmful than a ranking
error at the 95th position. A good loss function should also reflect this property.

We give a formal definition of this property:

Property 2. Suppose the ground truth rank list of query q is
sgðqÞ ¼ fdð1Þ1 � � � � � dði�jÞ
i�j � � � � � dðiÞi � � � � � dðiþjÞ

iþj � � � � � dðnðqÞÞnðqÞ g
where dðjÞi means document di is ranked at position j.

sf1(q) and sf2(q) are two ranking lists generated by ranking functions f1 and f2
sf 1ðqÞ ¼ dð1Þ1 � � � � � dði�jÞ
i � � � � � dðiÞi�j � � � � � dðiþjÞ

iþj � � � � � dðnðqÞÞnðqÞ

n o
sf 2ðqÞ ¼ dð1Þ1 � � � � � dði�jÞ

i�j � � � � � dðiÞiþj � � � � � dðiþjÞ
i � � � � � dðnðqÞÞnðqÞ

n o
Then a good query-level loss function L should satisfy
LðsgðqÞ; sf 1ðqÞÞP LðsgðqÞ; sf 2ðqÞÞ
The loss functions of ranking SVM, RankBoost and RankNet have a similar tendency. The reason is that if a
definitely irrelevant document is ranked high, it will violate many constraints regarding to ranking of docu-
ment pairs, while if it is ranked at the middle of the list, the number of constraints violated will be reduced.

(3) Upper bound.
Query-level loss function should not be easily biased by difficult queries. For this purpose, a natural

requirement is that the loss for each query should have an upper bound. Otherwise, queries with extremely
large losses will dominate the training process.

The formal definition of this property is

Property 3. For any f 2F; q 2 Q, there should exist a constant C, such that
0 6 LðsgðqÞ; sf ðqÞÞ 6 C



T. Qin et al. / Information Processing and Management 44 (2008) 838–855 843
We can see that the document-pair level loss functions of RankBoost, ranking SVM, and RankNet do
not have an upper bound. For RankBoost, because the exponential loss is used, the value of the loss func-
tion can be extremely large. We can make a similar conclusion for the hinge loss of ranking SVM. For
RankNet, the loss function does not have an upper bound either, according to the analysis in Burges
et al. (2005).
4. RankCosine

In this section, we propose a new loss function which retains all the aforementioned properties.

4.1. Cosine loss

We first give explanations on the notations. Suppose there are n(q) documents for query q, and the ground-
truth ranking list for this query is g(q), where g(q) is a n(q)-dimension vector, and the kth element in this vector
is the rating (level of relevance) of the kth document, given by humans. The absolute value of a score is not
very important, it is really the difference between scores that matters. Let us denote the output of a learning
machine for query q as H(q). Similarly to g(q), H(q) is also an n(q)-dimension vector, and the kth element in it
is the output of the kth document given by the learning machine.

Next, we define the ranking loss for query q as follows:
LðgðpÞ;HðqÞÞ ¼ 1

2
ð1� cosðgðqÞ;HðqÞÞÞ ¼ 1

2
1� gðqÞTHðqÞ
kgðqÞkkHðqÞk

 !
ð6Þ
where iÆi is L-2 norm of a vector. Since we use cosine similarity in (6), this loss function is referred to as cosine
loss.

The goal of learning then turns out to minimize the total loss function over all training queries
LðHÞ ¼
X
q2Q

LðgðpÞ;HðqÞÞ ð7Þ
where the loss function is defined in (6).
Now we show that the cosine loss has all the three properties defined above.
Firstly, since
�1 6
gðqÞTHðqÞ
kgðqÞkkHðqÞk 6 1
we have 0 6 L(g(p), H(q)) 6 1, which is independent from the number of documents for query q. The upper
bound of cosine loss is
Lk ¼ supH2F;q2Q and nðqÞ¼kLðsgðqÞ; sHðqÞÞ ¼ 1
For any k1 > 0 and k2 > 0, we get
Lk1

Lk2

¼ Lk2

Lk1

¼ 1
Therefore, Property 1 is satisfied with "C > 1 for the cosine loss.
Secondly, we can put more emphasis on training of top results by setting an appropriate ground truth label.

For example, we can set the scores of ground truth using an exponential function. Specifically we set the
ground truth score of top 1 document as e�1, and the ground truth score of the document at position i as e�i.

Thirdly, the cosine loss function has an explicit lower bound and upper bound:
0 6 LðgðpÞ;HðqÞÞ 6 1: ð8Þ
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4.2. Learning algorithm

In this section, we explain how to optimize the cosine loss function. We choose to employ a generalized
additive model as the final ranking function:
3 He
HðqÞ ¼
XT

t¼1

athtðqÞ ð9Þ
where at is a combination coefficient, ht(q) is a weak learner which maps an input matrix (a row of this matrix
is the feature vector of a document) to an output vector (an element of this vector is the score of a document)
and d is the dimension of feature vector:
htðqÞ : RnðqÞ�d ! RnðqÞ
With the use of the additive model and the cosine loss function, we can derive the learning process as follows.
For simplicity, we assume the ground truth for each query has already been normalized:
gðqÞ ¼ gðqÞ
kgðqÞk
Then we re-write (6) as
LðgðpÞ;HðqÞÞ ¼ 1

2
1� gðqÞTHðqÞ

kHðqÞk

 !
ð10Þ
We employ a stage-wise greedy search strategy, used in the Boosting algorithms (Friedman, Hastie, & Tibsh-
irani, 1998), to train the parameters in the ranking function. Let us denote Hk(q) as
HkðqÞ ¼
Xk

t¼1

athtðqÞ
where ht(q) is a weak learner3 at the tth step. Then the total loss of Hk(q) over all queries becomes
LðH kÞ ¼
X

q

1

2
1� gðqÞTHkðqÞ

kHkðqÞk

 !
ð11Þ
Given Hk�1(q) and hk(q), (11) can be re-written as
LðH kÞ ¼
X

q

1

2
1� gðqÞTðHk�1ðqÞ þ akhkðqÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðHk�1ðqÞ þ akhkðqÞÞTðHk�1ðqÞ þ akhkðqÞÞ
q

0
B@

1
CA ð12Þ
Setting the derivative of L(Hk) with respect to ak to zero, with some relaxation, we can get the optimal value of
ak as follows:
ak ¼
P

qWT
1;kðqÞhkðqÞP

qWT
2;kðqÞðhkðqÞgTðqÞhkðqÞ � gðqÞhT

k ðqÞhkðqÞÞ
ð13Þ
where W1,k(q) and W2,k(q) are two n(q)-dimension weight vectors with the following definitions.
W 1;kðqÞ ¼
gTðqÞHk�1ðqÞHk�1ðqÞ �HT

k�1ðqÞHk�1ðqÞgðqÞ
kHk�1ðqÞk3=2

ð14Þ

W 2;kðqÞ ¼
Hk�1ðqÞ

kHk�1ðqÞk3=2
ð15Þ
With (13) and (12), we can calculate the optimal weight ak, evaluate the cosine loss for each weak learner can-
didate, and select the one with the smallest loss as the kth weak learner. In this way, we can get a sequence of
weak learners and their combination coefficients, and thus the final ranking function.
re one can choose different ways to define the weak learners. For example, we can take the same approach as in RankBoost.



Algorithm: RankCosine

Given: ground truth g(q)

(q)

 over Q, and weak learner candidates hi(q), i=1,2, …

Initialize: W1,1  (q) = W2,1  =
en

n

(q )

(q ) 

For t=1,2, …, T

(a) For each weak learner candidate hi(q)

(a.1) Compute optimalαt,i with (13)

(a.2) Compute the cosine loss εt,i with (12)

(b) Choose weak learner ht,i(q) having minimal loss as ht(q)

(c) Choose coefficient α t,i as α t

(d) Update query weight vectors W1,k(q

q

) and W2,k(q) with (14) and (15)

Output the final ranking function H( ) = αt ht (q)T
t = 1Σ

Fig. 1. The RankCosine algorithm.
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We summarize the details in Fig. 1. Note that en(q) is an n(q) dimensional vector with all elements being 1.
The time complexity of RankCosine is O(m Æ k Æ T Æ nmax), where m denotes number of training queries, k

denotes number of weak learner candidates, T denotes number of iterations, and nmax denotes maximum num-
ber of documents per query. RankBoost also adopts a boosting algorithm for learning of ranking function and
the time complexity of RankBoost is Oðm � k � T � n2

maxÞ. It is easy to see that the complexity of RankCosine is
much lower than that of RankBoost.

5. Experiments

To verify the benefit of using query-level loss functions, we conducted experiments on three datasets. We
describe the details in this section.

5.1. Settings

We adopted three widely used evaluation criteria in our experiments: mean precision at n (P@n) (Baeza-
Yates & Ribeiro-Neto, 1999), mean average precision (MAP) (Baeza-Yates & Ribeiro-Neto, 1999), and nor-
malized discount cumulative gain (NDCG) (Borlund, 2003; Burges et al., 2005; Jarvelin & Kekalainen, 2002;
Sormunen, 2002). All of them are widely used in IR.

In our experiments, we selected three machine learning algorithms for comparison: RankBoost, RankNet,
and ranking SVM. For RankBoost, the weak learners had a binary output of 0 or 1. For RankNet, we used
a linear neural net and a two-layer net (Burges et al., 2005), which are referred to as linear-RankNet and Two-
Layer-RankNet respectively. For ranking SVM, we used the tool of SVMlight (Joachims, 1999; Joachims, 2002).
For RankCosine, each weaker learner was defined as a feature, taking continuous values from [0,1]. In order to
make a comparison with traditional IR approaches, we also chose BM25 (Robertson, 1997) as baseline.

5.2. Experiments with TREC web track data

We tested the performance of RankCosine using the dataset from the TREC web track (Voorhees &
Harman, 2005).



Histogram

0

5

10

15

20

25

30

35

10 20 30 More
# relevant pages

# 
qu

er
ie

s

Fig. 2. Histogram of number of relevant pages per query.

846 T. Qin et al. / Information Processing and Management 44 (2008) 838–855
5.2.1. Dataset
The TREC Web Track (2003) dataset contains web pages crawled from the .gov domain in early 2002.

There are totally 1,053,110 pages. The query set is from the topic distillation task (Craswell, Hawking,
Wilkinson, & Wu, 2003) and there are in total 50 queries. The ground truths of this task are provided by
the TREC committee as binary judgments: relevant, or irrelevant. The number of relevant pages per query
ranges from 1 to 86.

We mentioned that usually the number of documents can vary largely according to queries and this phe-
nomenon can be verified with this dataset. For instance, from Fig. 2, we can see that the number of relevant
documents per query has a non-uniform distribution: about two thirds queries have less than 10 relevant doc-
uments. If we use a document-pair level loss function, two thirds of the queries will be penalized. In other
words, two thirds of the queries will not contribute to the learning process as much as they should.

We extracted 14 features from each document for the learning algorithms. These features include content
based features (BM25, MSRA1000), web structure based features (PageRank, HostRank), and their combi-
nations (relevance propagation features). Some of them are traditional features (BM25, PageRank) and
some are new features (HostRank, relevance propagation features). The details of the features are described
in Table 3.
5.2.2. Results

We conducted fourfold cross validations for the learning algorithms. We tuned the parameters of BM25 in
one trial and applied them to the other trials. The results reported in Fig. 3 are those averaged over four trials.

From Fig. 3a, we can see that RankCosine outperforms all the other algorithms in terms of MAP, while the
other learning algorithms perform similarly. This may imply that the three state-of-the-art algorithms (ranking
SVM, RankBoost, and RankNet) have similar learning abilities for information retrieval. Note all the learning
algorithms outperform BM25. The MAP value of BM25 is about 0.13, which is comparable to the value
reported in Qin, Liu, Zhang, Chen, and Ma (2005). RankBoost gets the lowest MAP value of 0.18 among
all the learning algorithms, and this is still much higher than BM25. RankCosine, which obtains an MAP
value of 0.21, improves upon BM25 for about 70%. This suggests that learning to rank is a promising
approach for search, as it can leverage the information from various features.
Table 3
Extracted features for TREC data

Name Number

BM25 (Robertson, 1997) 1
MSRA1000 (Song et al., 2004) 1
PageRank (Page, 1998) 1
HostRank (Xue et al., 2005) 1
Sitemap based score propagation (Qin et al., 2005) 2
Sitemap based term propagation (Qin et al., 2005) 2
Hyperlink based score propagation (Qin et al., 2005) 3
Hyperlink based term propagation (Qin et al., 2005) 3
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Fig. 3. Ranking accuracy on TREC web track data: (a) MAP, (b) P@n and (c) NDCG@n.
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From Fig. 3b, we can see that RankCosine outperforms all the other algorithms, from P@1 to P@7. From
P@8 to P@10, RankCosine is still much better than most of the other algorithms, except TwoLayer-RankNet.
An interesting phenomenon is that RankCosine achieves more improvements at top when compared with the



Table 4
Example features

FeaturesP
qi2q\d logðcðqi; dÞ þ 1Þ

P
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log(BM25 score)

C(w,d) represents frequency of word w in document d; C represents document collection; n denotes number of terms in query; jÆj denotes
size of function; and idf(Æ) denotes inverse document frequency.
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other algorithms, for example, more than four precision point4 improvement for P@1, about two precision
point improvements for P@5. Since correctly conducting ranking on the top is more important, this tendency
is desirable anyway.

Fig. 3c shows the result in terms of NDCG, and again RankCosine can work better than the other
algorithms.
5.3. Experiments with OHSUMED data

We also conducted experiments with the OHSUMED data (Hersh, Buckley, Leone, & Hickam, 1994),
which has been used in many experiments in IR (Cao et al., 2006; Herbrich et al., 2000; Robertson & Hull,
2000).
5.3.1. Data

OHSUMED is a dataset of documents and queries on medicine, consisting of 348,566 references and 106
queries. There are in total 16,140 query-document pairs upon which relevance judgments are made. Different
from the TREC data, this dataset has three levels of relevance judgments: ‘‘definitely relevant’’, ‘‘possibly rel-
evant’’, and ‘‘not relevant’’.

We adopted 30 features, similar to those defined in Nallapati (2004). Table 4 shows some examples of the
features. They include tf (term frequency), idf (inverse document frequency), dl (document length), and their
combinations. BM25 score is another feature, as proposed in Robertson (1997). We took log on the feature
values to re-scale them. This does not change the tendencies of the results, according to our preliminary exper-
iments. Stop words were removed and stemming was conducted in indexing and retrieval. Note the features of
this dataset are different from those of the TREC data, since OHSUMED is a text document collection with-
out hyperlink.

When calculating MAP, we defined the category of ‘‘definitely relevant’’ as positive and the other two cat-
egories as negative.
5.3.2. Results

In this experiment, we also conducted fourfold cross validation for learning algorithms, and tuned the
parameters for BM25 in one trial and applied them to the other trials. The results reported in Fig. 4 are those
averaged over four trials. From the figure, we can see that RankCosine outperforms all the other algorithms,
from NDCG@1 to NDCG@10. On the other hand, the performances of the three learning methods (Rank-
Net, ranking SVM, and RankBoost) are similar. Therefore, we can draw the same conclusion as in the pre-
vious experiment.

Comparing Fig. 3b with c and Fig. 4b with c, we may observe the differences between the corresponding
evaluation criteria. P@n only considers the number of relevant documents at top n positions, and ignores
the distribution of relevant documents. For example, the following two rank lists get the same P@4 value.
4 We define a precision point by the precision score of 0.01.
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Different from P@n, NDCG@n is sensitive to the ranked positions of relevant documents. For example, the
NDCG@4 value of list B is much higher than that of list A.
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(A) {irrelevant, irrelevant, relevant, relevant, . . .}.
(B) {relevant, relevant, irrelevant, irrelevant, . . .}.
5.4. Experiments with web search data

To verify the effectiveness of our algorithm, we also conducted experiments with a dataset from a commer-
cial web search engine.
5.4.1. Data

This dataset contains over 2000 queries, with human-labeled judgments. The queries were randomly sam-
pled from the query log of the search engine. Human labelers were asked to assign ratings (from 1 which
means ‘irrelevant’ to 5 which means ‘definitely relevant’) to those top-ranked pages for each query. Each
top-ranked page was rated by five labelers, and the final rating was obtained by majority voting. If the voting
failed, a meta labeler was asked to give a final judgment. Not all the documents were labeled due to resource
limitation.

We randomly divided the dataset into a subset for training and a subset for testing. There were more than
1300 queries in the training set, and about 1000 queries in the test set. Fig. 5 shows the distribution of doc-
ument pairs in the training set: about one third queries have less than 200 pairs; more than half of the queries
have less than 400 pairs; and the remaining queries have from 400 to over 1400 pairs. If we use document-pair
level loss function, the majority of the queries with less pairs will be overwhelmed by the minority of the que-
ries with more pairs.

The features are also from the search engine, which mainly consists of two types: query-dependent features
and query-independent features. Query-dependent features include term frequencies in anchor text, URL,
title, and body text, while query-independent features include page quality, number of hyperlinks and so
on. In total, there are 334 features.

Since there are five levels of judgment for this dataset, only NDCG is suitable for the evaluation.
5.4.2. Result

The accuracies of the learning algorithms are shown in Fig. 6. From the figure, we can see that RankCosine
achieves the best result in terms of all NDCG scores, beating the other algorithms by 2–6 NDCG5 points
(which corresponds to about 4–13% relative improvements). TwoLayer-RankNet achieved the second best
result, followed by the group of ranking SVM, RankBoost and linear-RankNet. The results indicate that
RankCosine (and using query-level loss function) is the approach one should take for search.

We conducted t-tests on the results of RankCosine and TwoLayer-RankNet. The p-values from NDCG@1
to NDCG@10 with respect to the confidence level of 98% are shown in Table 5. As can be seen, all the p-val-
ues are small, indicating that the improvements of RankCosine over TwoLayer-RankNet are statistically
significant.
5.4.3. Robustness to query variance

As indicated above, the number of document pairs can vary largely according to queries. We investigated
the impact of this variance on the performances of ranking algorithms. For this purpose, we randomly sam-
pled five datasets each with 500 queries from the original training set, trained five ranking models, and then
tested the ranking performances on the test in the same way as before. Since the five training sets were gen-
erated by random sampling, we can observe variances in number of documents across queries. Taking dataset
1 and 2 as example (see Fig. 7a), we can see that distributions of pair numbers in the two datasets are very
different. Therefore, the new training sets can be used to test whether a ranking algorithm is robust to the vari-
ances of queries.

The performances of each algorithm with respect to the five training sets are shown in Fig. 7b. As can be
seen from the figure, the results of RankBoost on the five datasets have a large variance. It obtains the highest
5 Similarly, we define a NDCG point by the NDCG score of 0.01.
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Table 5
P-value of t-tests

NDCG@n P-value

1 7.51E�03
2 6.16E�03
3 2.02E�04
4 6.58E�06
5 4.36E�06
6 2.04E�06
7 2.43E�06
8 1.14E�06
9 4.19E�06
10 8.27E�08

T. Qin et al. / Information Processing and Management 44 (2008) 838–855 851
accuracy of 0.576 on the third dataset and the lowest accuracy of 0.557 on the fifth. The results of ranking
SVM also change dramatically over different training sets. The results indicate that both RankBoost and rank-
ing SVM are not very robust to query variances. The results of two-layer RankNet are more stable. In con-
trast, RankCosine achieves the highest ranking accuracy of 0.597 and its performance varies only a little over
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different training sets. This shows that query-level loss functions is more robust to query variances than doc-
ument-pair level loss functions.
6. Query normalization

As shown in Section 5, the query-level loss function performs better than the document-pair level loss func-
tions. One may argue that employing a document-pair level loss function while conducting normalization on
queries is another possible approach to deal with the query variance problem. In this section, we discuss this
problem in details. Specifically, we introduce query normalization to loss functions of ranking SVM, Rank-
Boost, and RankNet, and look at the corresponding ranking performances.

For ranking SVM, we can modify its loss function (Eq. (1)) as below
RankSVM : V ðx; eÞ ¼ 1

2
xTxþ C

X
q

1

j#qj
X

i;j

ei;j;q ð16Þ
where #q denotes number of document pairs for query q. Similarly, we can modify the loss function of Rank-
Boost as follows:
RankBoost : L ¼
X

q

1

j#qj
X

di�qdj

Lðdi�qdjÞ ð17Þ
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and modify the loss function of RankNet (Eq. (5)) as follows:
RankNet : L ¼
X

q

1

j#qj
X

i;j

Lq;i;j ð18Þ
With the above modifications, we can still find suitable optimization procedures for performing the learning
tasks. We have conducted experiments on the methods and Fig. 8 shows the results using the same setting as
above.

From Fig. 8, we find that

(1) When compared with their original algorithms, normalized RankBoost and normalized linear-RankNet
obtain higher performance on some datasets while lower performance on the other datasets. Therefore, it
is difficult to judge whether the two normalized algorithms are better or worse. However, we can at least
say that normalized RankBoost and normalized linear-RankNet are sensitive to query variance.

(2) The results of normalized TwoLayer-RankNet are worse than those of the original TwoLayer-RankNet
for all the five datasets, indicating that the normalized version of TwoLayer-RankNet is not successful.

(3) Query-level ranking SVM achieves better results on all the five datasets than its original version. This is
consistent with the results obtained in Cao et al. (2006), in which they show that modifying ranking SVM
with query normalization can improve ranking performances. However, in our experiment, the perfor-
mance of normalized ranking SVM is still not as good as that of RankCosine.
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From the above experiments, we can come to the conclusion that it is non-trivial how to improve the exist-
ing ranking algorithms by query normalization. Note that both RankCosine and RankBoost employ boosting
techniques in learning, therefore the difference between the two should be mainly from the loss functions.

7. Conclusions and future work

Applying machine learning techniques to ranking in information retrieval has become an important
research problem. In this paper, we have investigated how to improve ranking accuracies of machine learning
methods by employing suitable loss functions. Our contributions include:

(1) We have pointed out that query-level loss functions are more suitable for information retrieval, when
compared with document (pair) level loss functions, and have discussed the necessary properties of a
good query-level loss function.

(2) We have defined the cosine loss function as an example of query-level loss functions, and derived the
RankCosine algorithm to minimize the loss function in creation of a generalized additive model.

(3) Through empirical study, we have showed that it is difficult to extend the loss functions of the existing
methods (e.g. ranking SVM, RankBoost, RankNet) to the query-level.

Experimental results on the datasets of TREC web track, OHSUMED, and a commercial web search
engine all show that our proposed query-level loss function can significantly improve the search accuracy.

Future work includes investigation on the relationship between query-level loss functions and information
retrieval evaluation criteria, further analysis on the properties of a good query-level loss function, and study
on the generalization ability of the RankCosine algorithm.
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