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In this paper we define a surface dielectric function for a semi-infinite electron system
and a sum rule involving the imaginary part of the inverse of the surface dielectric
function is derived. The sum rule has almost exactly the same form as the well-known
dielectric function f-sum rule in a bulk system, with the bulk quantities replaced by
the corresponding surface quantities. However there is an important difference that
the surface sum rule applies to all surfaces only in the Q - 0 limit, where Q is the
two-dimensional wavevector parallel to the surface. For small Q, linear and higher
order terms of Q will appear in the sum rule whose coefficients may depend on the
surface properties of the system considered. This is due to the fact that for Q = 0
both the surface dielectric function and the surface plasma frequency depend on the
average electron density only, independent of the surface properties; however for Q # 0;
the Q-dependence of the above two quantities both depend sensitively on the surface
properties of the system considered.

PACS.  73 .90 .  +f - Other topics in electronic structure and electrical properties of
surfaces, interfaces, and thin films.

PACS. 73.61. At - Metal and metallic alloys.
PACS. 71.45.Gm - Exchange, correlation, dielectric and magnetic functions, plasmons.

I. INTRODUCTION

There are several well-known dielectric function sum rules for bulk metallic materials

[l]. These sum rules relate the dielectric function and the plasma frequency and are useful

for checking results obtained from a.pproximations  or model calculations. Among these sum

rules the most important and fundamental one is, perhaps, the so-call longitudinal f-sum

rule. While all sum rules may be derived from the Kramers-Kronig relations and the known
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and its expression may be simplified as ~(Q,o;z~)  (for .zr < 0, 22 > 0). In deriving the

surface sum rule we will show that the dielectric function E,(Q,w) in Eq. (2) should be

the position-dependent dielectric function ~(Q,w; 21)  evaluated at the surface ~1 = 0. The

dielectric function evaluated at other locations e(Q,w; ~1 < 0) will not satisfy the sum rule

Eq. (2). Therefore the dielectric function E,(Q,w) in Eq. (2) is really a ìsurfaceî dielectric

function because it is the dielectric function ((Q, w; ~1) evaluated at the surface zr = 0.

The local nature of the surface dielectric function cs(Q,w) implies that the surface

plasma excitation is a localized excitation. This can be understood from the relation 4tot =

c$~~~/E,(Q,w), which is tlre extension of Eq. (3) to the semi-infinite system. The surface

plasma excitation occurs when E,(Q,w) = 0 which is not satisfied by the dielectric function

c(Q, W;  ~1) evaluated at other locations zr < 0. JIowever the localization length for the

surface pla.sma excitation is different for different Q modes. This can be seen from the fact

(cf. Sec. II) that the difference between ~(Q,w; zr) and cs(Q,u)  may be roughly measured

by the factor (1 -e Qîë). For ]zr] << l/Q, wehave c(Q,~;zr)  z E~(Q,w). Therefore we may

define a localization length t for mode Q as IQ N l/Q. For Q + 0, [Q becomes very large

and the surface pla.sma  excitation extends deep into the interior of the medium. However

for small but finite Q, the localization length may become very short. For example, for

Q N 0.01 k,v (k, is the Fermi wavevector) IQ may become only a few lattice constants. For

this Q the surface plasma excitation is strongly localized at the surface. From the a.bove

analysis of the Q-dependence of the localization length IQ, it is then easy to understand

why the surface plasma frequency for the Q = 0 mode ~~(0) is practically a bulk property

and independent of the surface properties, but for the Q # 0 modes the dispersion relation

us(Q) is strongly dependent on the surface charge density profile [3-51.

In Sec. II we derive the surface dielectric function sum rule by using the IPBJh/L

model. We follow closely the approach used by h4ahan [l] to calculate the inverse of the

dielectric function for a semi-infinite system and the surface sum rule is then derived. For

this particular model we find that the right-hand side of the sum rule Eq. (2) is independent

of Q to all orders. In Sec. III ive discuss properties of the dielectric function f-sum rule

by using a different approach which does not involve any microscopic calculations. \Ve will

argue that in general the linear coefficient Q in Eq. (2) need not bc zero and it is a surface

dependent quantity.

I I .  INFINITE POTENTIAL BARRIER MODEL

In this Section we use the infinite potential barrier jellium model (IPBJM) to derive

the sum rule Eq. (2). For this particular model we find that the right-hand side of Eq.

(2) is independent of Q to all orders. LVe follow closely the method used by Mahan [I]

in his derivation of the bulk sum rule Eq. (1). 12 ëe  consider an electron gas in the space

I.. _L-
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-L 2 z,y < L, -1 < t 5 0, with an infinite potential barrier at both z = 0 and 2 = -[

surfaces. VVe assume the positive background is uniformly distributed in the volume to

keep the system electrically neutral, and thus we are considering the jellium model. We use

periodic boundary conditions in the X- and y-directions to simulate the infinite extended

nature in these two directions, and let ! -+ co at the end of the calculations. To shorten our

notations we adopt the convention that f = (z,y,z) E (R,z)  and k = (k,,k,,k,) E (K,k).
The normalized single electron wave function can be written as

where v = 4L2! is the volume of the system. Periodic boundary conditions in the X- and

y-directions and the condition that &(T) = 0 at z = -e and z = 0 require k,, k, = y/L,

(p = o,*l,&ta;..) and X: = k, = p~i/t (p = 1,2,3,.  . ., thus k > 0). \;cíe  follow Newns

[6] us ing cosqz  (q = p7r/e, p = 0,1,2;.., thus (I 2 0) to be the basis functions for the

Fourier transform of functions of 3. The electron density operator p(~) can then be written

in terms of the creation (annihilation) operator CL (Ck), which creates (annihilates) an

electron with wave function Go,

eiQ'n cos qz p(Q, q) ,

K+Q,k+q + &,k CK+Q,k-ql  ) q> 0, (7)

where we have defined the creation and annihilation operators, CK,I; and Ck,k, with negative

or zero k by CK,_~ E -CK,~, and Ci,_q E -CL,q, if q >_ 0. This is because in the original

definition of the electronic state (K, k), that the state with k 5 0 is not defined. Note that

the density operator p(Q = 0,q = 0) is the state with uniform density (in -C 2 .z < 0),

which coincides with the positive background density for the jellium model.

In order to calculate the dielectric function we put two external  charges Zre and Zze

at ~1 and ~2, respectively. By considering the interactions between the external charges

and the charges in the system, the Hamiltonian of the total system is

2H = Ho + ,f;Y:,, - j=l5 Zj e2 / d3r ëFíS:

=  ~0 + 2122
J

d2Q
C2T>2 4Q)e zQ~(R,-R,)-Qlq--72/

_ 5 T $ u(Q)  p(Q, q) eiQíRJ  /_l dz e-QizJ-zi  CO& p,

j=l

(8)

ii-_- i.
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where He is the Hamiltonian for the unperturbed IPBJM system; v(Q) = 2re2/Q;  po is

the positive background density operator and C’  means that the term Q = q = 0 is not

included in the sum to account for the uniform positive background density. The second

equality is obtained by expanding the factors ~/IT - ~ë1  as in Eq. (4).

Now we consider H - He = V as the perturbation potential, then the total energy of

H can be calculated from the linked cluster theorems [l] as

Utd = Uo - $ fJ Ue ,
e - i

(9)

where d.c.d. stands for different connected dia.grams. In Eqs. (9) and (lo),  Uo is the

energy of H when V = 0; ,f? = l/kBT (kfj is the Boltzmann constant and T the absolute

temperature); V (T) E eHoTVemHo 7 is the perturbation potential V in the interaction picture

with imaginary time 2 = r/i (ti = 1); T, denotes r-ordering operator; and (A) is the thermal

average of A with respect to the unperturbed system. For our purpose it is sufficient to

calculate the expansion terms in Ue which are proportional to 2122. From the definition of

the dielectric function c(Q; zl, q), we have

*’ = ìî J d2Q v(Q)
(27r)2  4Q; 3, z2)

,~Q~(~r~,)-Qla-~zl 7 (11)

where AU is the sum of all terms in (10) which are proportional to Zr&. Eq. (11) can be

easily understood by comparing it with the second term of the right-hand side of Eq. (8)

which is the bare interaction energy between Zre and Zze; while Eq. (11) is the screened

interaction energy which involves both of the second and the third terms in Eq. (8).

It is important to note that in calculating the dielectric function c(Q;  zr,zz) defined

in Eq. (ll), we have to express AU to be a double integral over & whose integrand is

proportional to exp( -Q 1 z1 - 221).  In evaluating AU from Eq. (lo), we find that in general

the coefficient of exp(-QI z1 - 221) in the integrand will depend on both zr and 22, and

therefore the dielectric function will depend on both zr and z2 by Eq. (11). However, it is

not difficult to see that if we choose zr < 0 and ~2 > 0, then the zz-dependence disappears.

This is because then the absolute signs have no effect on the functions 1.~2 - zrl and 122 - ~1

which appear in Eq. (8). Then both the bare potential and the screened potential will be

proportional to eeQzz and which is the only z2-dependence for both potentials. The ratio

4ezt/&,t  then eliminates the az-dependence completely. The dielectric function therefore

depends on z1 only (for z1 5 0, z2 > 0), and can be written as c(Q;zl).  The choice of

zr < 0 and 22 > 0 not only simplifies the expression of the dielectric function, but also

has its physical importance. This choice means that we have a probe outside the medium
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(~2 > 0) and measure the response inside the medium (zr 5 0). This represents most of

the experimental situations and therefore this is the most important dielectric function we

have to consider. The expression of the dielectric function E(Q; ~1) simplifies further if we

choose ~1 to be on the surface (~1 = 0 in our geometry). Other choices of ~1 will make the

expression of the dielectric function much more complicated. The main difference between

z1 < 0 and z1 = 0 is that the integral over z in the last term of Eq. (8) (with j = 1) will

result in a term which is proportional to (1 - eQí1).  This term is zero for ~1 = 0, but it is

a positive and nonzero  quantity for ~1 < 0.

With the choice of z1 = 0 and 22 > 0, we calculate AU from Eq. (10) by keeping

only terms which are proportional to 2, 22, and obtain

J d2Q
Au = -GZa  cí2Tj2  4Q> ,~QQ+~z)-QI~r4

Q2 1
(12)

(Q2 + q*Y (T,p(Q,q,r)p(-Q,q,O)) *

By comparing Eqs. (11) and (12) we obtain the inverse of the surface dielectric function

es(Q) = 4Q;a = 0

1

4Q, ;4
= 1_ *4Q)77’  (Q2:q2)' 6” dre'"'(T,p(Q,q,r)p(-Q,q,O))  T (13)

where we have introduced a factor eiw7 in the integrand of Eq. (13) to obtain the frequency

dependence of the dielectric function [I]. The integral over T can easily be carried out by

using the definition of the thermal average and the equality p(r) = eTHo peeTHo  to obtain

(ii = 1)

lmLtd,-,l = _= ìy  cíc(,-m”  _ e-PEm)p n,m

x(nlp(Q,q)lm)(mlP(-Q,rl)ln)6(w  + En

In deriving Eq. (14) we have used the following identity

1

2 - zo + i7)
--LL- i7r S(z - X0) )

2 - 20

(14)
Gil).

where P stands for a Cauchy  principal value and 77 is an infinitesimal positive quantity. In

Eq.  (14)  In) (or Id) d enotes a state of Ho, with total energy E, (or E,), which is specified

by a set of occupation numbers {n~,k};  and (nlAlm)  is the matrix element of A between

states 17~) and ]nz) (it should not be confused with the thermal average (A)). Finally it is

easy to obtain
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xc’ Q2

g (Q2 + q212 (nb(Q> dl++(-Q&4

= 2v(Q)TTF’  (Q2:q2)2
([[Ho,p(Q,q)l,p(-Q,q)l).

(16)

Now we have to evaluate the right-hand side of Eq. (16) to derive the sum rule. The double

commutator in Eq. (16) can be carried out by noting that the density operator commutes

with all terms in Ho except the kinetic energy terms. The result is (fi = 1)

([[Ho,p(Q,q)l,p(-Q,q)l)  = -& C (~K,~)[Q'&,o  + (Q" + q2>1, (17)
K,k>O

where m is the electron mass, and nK,k E CL k CK,I; iS the number Operator  for the State

(K,k). By substituting Eq. (17) into Eq. (i6) and converting the sum over q into an

integral, it is then a straightforward matter to derive the sum rule, by letting ! --+ 00 and

noting that Q # 0,

(18)

where n is the electron density and the last identity defines the well-known surface plasma

frequency w,(O). Therefore we have derived the surface dielectric function sum rule Eq.

(18) which is a special form of Eq. (2) with the right-hand side independent of Q to all

orders.

The above derivation of the sum rule is based on the simplified IPBJM model, whose

surface electron charge density is known not close to that of real metal surfaces. It is known

that IPBJM predicts a wrong surface plasmon dispersion relation [3-51, which depends

sensitively on the surface charge density profile [3]. B eca,use the surface sum rule involves

the surface dielectric function which is a strong localized quantity for Q # 0, there are good

reasons to ask the question: Will the same sum rule Eq. (18) hold for all surface models

even for Q # O? This may not be an easy question to answer rigorously, because for other

surface models it is not easy to carry out microscopic calculations analytically. However it

is not difficult to prove rigorously that in the limit Q f 0, the sum rule Eq. (18) will hold

for all planar surfaces, regardless of their surface propertities. For small but finite Q, we

have no rigorouly answer but there are good reasons to believe tha.t linear and higher order

terms of Q will appear in the right-harld side of the sum rule for other surface models, and

therefore the general form of the surface sum rule is Eq. (2) rather than Eq. (18). We will

use a different approach? other than microscopic calculations, to study this question in the

next Section.
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I I I .  DISCUSSIONS

In Sec. II we have seen that the dielectric function f-sum rules, Eq. (1) as well as

Eq. (18), can be derived by analytic microscopic calculations for some workable models and

explicit expressions for the bulk plasma frequency wp (0) and the surface plasma frequency

w,(O) can be obtained in terms of the electron mass m and density n. From the sum rule

it is readily seen that while the right-hand side of Eq. (1) is independent of q to all orders,

but the left-hand side involves the q-dependent bulk dielectric function c(q,u). In other

words, the sum rule gives only the plasma frequency up(q)  in the q --+ 0 limit, no matter

what value of q is given in the dielectric function c(q,w).  The q-dependent bulk plasma

frequency is known to have the dispersion relation up(q) = wp(0)(  1 + 3q*v~/lOw~(O)  + . . *),

which can not be obtained from the sum rule Eq. (1). Tlle above result also occurs for the

surface dielectric function sum rule for the IPBJM model. The right-hand side of Eq. (18) is

Q-independent while the left-lland side involves the Q-dependent surface dielectric function

E~(Q,w).  For the IPBJM model [5], it is known that the Q-dependent surface plasma

frequency is us(Q) = ws(0)(l  + uQ + . .), w ele a is a positive constant. Therefore the theh .

surface sum rule Eq. (lS), as in the bulk case, does not give the surface plasmon dispersion

relation us(Q),  it gives only the limiting frequency w,(Q = 0). Although microscopic

calculations give us the form of the sum rules, it is not easy to see why the above results

happen, i.e., why the left-hand side is explictly  dependent on q, or Q, but the right-hand

side is independent of q, or Q, to all orders. Another related question is: Does the form of

the surface sum rule Eq. (1s) hold for all surface models ? Again it is not easy to answer

this question by using analytic microscopic calculations, because for other surface models

it is not easy to have analytical expressions for the electron wave functions and therefore

no analytic microscopic calculations colud be performed.

In this Section we will look at the f-sum rule in a different way which requires

no specific models and no microscopic calculations. By using this method we can obtain

rigorous results for the sum rules in the limitin g cases q --+ 0 (for the bulk case) and Q + 0

(for the surfa.ce ca.se).  For small values of q or Q there are unknowns in the sum rule by

using this approach and these unknowns have to be resolved by microscopic calculations

by using specific models. Despite of the shortcoming we think it is worthwhile to introduce

the method here as it relates the dielectric function, the plasmon dispersion relation and

the j-sum rule, that it may give us more insights about the sum rule. In particular we will

use this approach to study how the surface sum rule Eq. (18) may be modified for models

other than IPBJRI. To introduce this approa.ch we discuss the bulk case first and it is then

a straightforward matter to extend the discussion to the surface case.

It is well known that the q-dependent plasma frequency c+,(q) is the frequency for

which the dielectric function E(~,w) is zero. Therefore in general vve ca.n write the dielectric
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function, in the frequency regime qvF/w  < 1 (v~ is the Fermi velocity),

form

VOL.33

in the following

09)

where the function f(q,W) is unknown but it maybe written in the form (qvF/w << 1)

(20)

where A and B are dimensionless constants. The form of f(q, U) satisfies the condition that

c + 1 as w + co. By substituting Eq. (19) into Eq. (15) we easily obtain the sum rule in

the following form

(21)

The applicability of Eq. (15) to the dielectric function is assured by the fact that the

dielectric function is a response function and obeys principles of causality. Therefore for a

homogeneous electron gas, from Eqs. (1) and (al), we have

+%I>
c?, f+(d) = w30). (22)

The q-dependence of w;(q)  is exactly cancelled by the factor f(q,Wp(q))  (it is not easy to

understand how or why but it does) and therefore we have a. q-independent right-hand side

in the sum rule Eq. (1). By using the relation Eq. (22), one can calculate the coefficients A

and B in Eq. (20) from the known bulk plasmon dispersion relation UP(q) to obtain A = 0

and B = 3/5. The q- and w-dependent dielectric function e(q,W) can then be obtained from

Eq. (19) by using the known values of A and B. It is worthwhile noting that with A = 0

and B = 3/5 the function f(q,w) will always be nonzero for all qvF/w << 1, and thus the

dielectric function c(q,w)  has only one root for a given q. Thus for a given q there is only

one plasma mode, as predicted by microscopic calculations and experimental observations.

For the surface case, it is still true that E,(Q,w) = 0 when w = w,(Q), and that

G(Q,w) + 1 as w -+ 00. Therefore we may write the surface dielectric function (QVF/W <<

1) as

G(Q,w) = fs(Q,w) (23)

where MQ, )w is unknown and can be expanded as f(q,w)  in Eq. (20), if q is replaced by

Q. By substituting Eq. (23) into Eq. (15) we easily obtain the surface dielectric function
f-sum rule as
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where w:(Q) is defined by the last identity. For IPBJM w:(Q) = w,(O), i.e., the Q-

dependence of w:(Q) is exactly cancelled by the function f$(Q,w$(Q))  just as the bulk

case. From the exact cancellation of the Q-dependence between W:(Q) and fs(Q,w,(Q))

and the known surface plasmon dispersion relation wS(Q) for the IPBJM model, one can

obtain the surface dielectric function for the IPBJM model as in the bulk case.

The next and more important question is that will the exact cancellation of the Q-

dependence between w,ì(Q) and fs(Q,ws(Q))  also hv en for all models of surface? It is

apparent that in the limit Q -+ 0 the exact cancellation always happens, and therefore the

sum rule Eq. (2) holds for all models of surfa.ce in the limit Q -+ 0. However for Q # 0

the situation is quite different. By examining the functional form of the surface dielectric

function in Eq. (23), it seems rather unlikely that the esact cancellation will happen for all

surfaces, as both the surface dielectric function E,(Q,w) and the surface plasmon dispersion

relation w,(Q) are sensitively dependent on the surface properties for Q # 0. We may say

that the case of exact cancellation (i.e., the right-hand side of Eq. (2) is independent of Q to

all orders) is an exceptional case rather than a general case. Although we cannot prove this

statement directly, there is evidence that the general surface dielectric function f-sum rule

is of the form of Eq. (2) with the linear coefficient o # 0. Thus IPBJM is a rather special

surface model. We may look at this problem by using a model which has a known surface

plasmon dispersion relation. For example we may use a surface model studied by Feibelman

[3] which has the surface plasmon  dispersion relation wS(Q) = w,(O)(l - 1.5Q + *es) for a

metal with electron density T, = 4 and Q is in units of .&-I. If a complete cancellation

of the Q-dependence occured between w:(Q) and f$(Q,w,(Q))  for this surface model, then

the function fS(Q,w) appeared in Eq. (23) would be of the following form

(25)

This would imply that fs(Q,w), as well as cs(Q,w), might become zero with a solution

w c( Q. This is impossible because if this happened, then we would have two surface

plasma modes for a given Q, which is certainly not true. Moreover the plasma frequency

is known to be a high frequency mode even in the Q -+ 0 limit. Therefore a solution with

w 0: Q for E,(Q,w) = 0 is not possible, and the complete cancellation of the Q-dependence

between w:(Q) and fss(Q,ws(Q>) cannot happen for all models of surface. Because the

surface plasmon dispersion relation ws(Q) is known to have a linear term in Q whose

coefficient depends on the surface properties of the system considered, therefore the general

surface dielectric function sum rule Eq. (2) will have a linear term in Q, whose coefficient is

a surface dependent quantity. It is worthwhile noting that for IPBJM the surface plasmon
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dispersion relation w,(Q) has a linear term in Q with a positive  coefficient. Therefore

a complete cancella.tion  between W:(Q)  and fs(Q,ws(Q)) will not lead to the trouble of

fs(Q,w)  = 0 for some w cx Q.

Finally we remark that theoretical _calcula.tions  of the surface plasmon dispersion

relation [3-51  have shown that w,(Q) mayí1rave an imaginary part which, to lowest order,

is proportional to Q. It is possible that fs(Q,  )w ma a soy 1 have a linear imaginary term.

The appearance of the imaginary terms in the surface dielectric function will complicate

the application of Eq. (15) to the surface dielectric function. However there is no difficulty

in resolving this complication if we keep only first order terms in Q. In the limit Q ---t 0,

both w,(Q) and fs(Q, )w are real and the above derivation of the sum rule holds. Therefore

the only effect of the linear imaginary parts is of first order in Q and will only affect the

ma.gnitude  and/or sign of the linear coefficient cr in Eq. (2). This can also be confirmed by

explicit application of Eq. (15) fi we keep only first order terms in Q.

In conclusion, we have defined a surface dielectric function, for a semi-infinite electron

system, which is a function of the frequency w and the two-dimensional wavevector Q

parallel to the surface. A sum rule is derived for the imaginary part of the inverse of the

surface dielectric fuction, which involves sum of all frequencies. In the Q + 0 limit, the

sum rule has exactly the same form as that of the bulk case, and it is only in this limit that

the sum rule applies to all models of surface. For small Q, linear and higher order terms of

Q will appear in the sum rule whose coefficients will be sensitive to the surfsce properties

of the system considered.
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