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I use a self-consistent electronic structure calculation to study the system of Cu(001) that
has an impurity atom replacing one of the surface Cu atoms. The calculation makes use of
the tight-binding linear muffin-tin orbitals (TB-LMTO) and is carried out in real space.
I am able to derive the spin-polarized local densities of states for the impurity Cr and
Fe respectively, which have peaks below the Fermi level. Charge transfers between the
impurities and their neighbors also result in different distributions of magnetic moments
for the two impurity systems, with the Cr having approximately 0.5µB and the Fe atom
having a negligible magnetic moment.

PACS number(s): 73.20.At, 71.15.-m, 71.15.Mb

1. Introduction

In the article I report an electronic structure calculation of Cu(001) surface using an

ab initio method. The surface is semi-infinite and has an impurity atom replacing

one of the surface Cu atoms. Similar configuration on iron substrate has been

studied1 and is found to be stable and a starting point for alloying process. With

the technique of scanning tunneling microscopy (STM), it is now possible to identify

individual surface atoms with their distinctive surface spectra.2,3 Since peaks in the

spectra correspond to high densities of states of the electrons, a calculation of the

surface electronic structure can indirectly serve the same purpose as of the STM.

It can further be used to derive related magnetic and optical properties, which find

ever-increasing applications in microelectronics.

Development of surface physics and complex materials has stimulated the re-

search of novel methods to calculate the associated electronic structures. Having a

unified and straightforward formulation is essential for a method that is aimed at the

treatment of large systems. It is also imperative that the formulation lead to man-

ageable computation task. Over the years the linear muffin-tin orbitals (LMTO)4

developed by O. K. Andersen has been one of the most efficient method in dealing

with electronic structures. Later development5,6 has made it easier for tight-binding

calculations and thus more suitable for complex systems. A real-space calculation
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is also possible under such a scheme, taking advantage of the easy combination of

the TB-LMTO and Green’s function.

Systems with low symmetry are more easily treated in real space. Without the

restrictions imposed by the periodicity as normally required in k space calculation,

the system looks natural and the formulation can be much simpler. A method that

combines the TB-LMTO and Green’s function has been used in surface calculation7

and tested for its efficiency8 in the latest improvements of the scheme. Green’s func-

tion has been chosen as an effective tool in electronic structure calculations.1,9–14

My latest calculation8 also indicates that the relationship between the computation

time and the number of atoms involved is still linear with as many as 768 atoms in-

cluded in the system. That affords us an efficient treatment of the impurity problem

on Cu(001).

2. Method of Calculation

The method has its origin in the LMTO method under the atomic sphere approx-

imation (ASA).15 The ASA greatly simplifies the formulation and offers accurate

results for many systems, such as the metal surface when surface relaxation can be

neglected.16 Under the ASA, the orbitals are connected to the envelope function K

which is the regular solution of the Laplace equation, centered at R,

KRL(rR) = (rR/w)−l−1YL(rR) , (1)

where w is the average Wigner–Seitz radius. K can be expanded in the atomic

sphere at R′ as the following,

KRL(rR) = −
∑
L′

(rR′/w)l
′ YL′(rR′)

2(2l′ + 1)
SR′L′,RL

= −
∑
L′

JR′L′(rR′L′)SR′L′,RL , (2)

where J is the irregular solution of the Laplace equation and S is the structure

matrix, which can be independently calculated regardless of what actually occupy

the atomic spheres. With the formulation carried out in real space the geometri-

cal structure of the system is built into the calculation in the most natural way.

According to Andersen et al.5,6 a tight-binding scheme can be derived by reducing

the amplitude of the envelope function from inside each of the atomic spheres with

proper chosen cutting parameters Q̄,

J̄ = J−KQ̄ . (3)

The new so called screened envelope function can be expressed as the following

matrix,

K̄∞ = K− J̄S̄ . (4)

K̄∞ and J̄ are now matched with the orbitals, which are a linear combination of

wave function ϕν and its energy derivative ϕ̇ν , both calculated at a fixed energy
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value Eν within the framework of the density functional theory17,18 and local den-

sity approximation (LDA). The matching coefficients are now parts of the Hamil-

tonian and overlap matrix of the system. An orthogonalizing process can further

eliminate the presence of the overlap matrix. The Green’s function now takes on

the simple form,

G(z) = (z −H)−1 , (5)

where H is the Hamiltonian of the system after orthogonalization. The local density

of states (DOS) D(E) can be calculated from the following equation,

D(E) = − 1

π
lim
ε→0

Tr Im G(E + iε) , (6)

where Tr and Im denote the trace of the imaginary part of Green’s function

G(E + iε).

The calculation of DOS may look daunting since it demands repeated inver-

sions of large complex matrices. With the help of a set of recursive equations,19,20

however, direct inversion can be avoided. Results are derived faster from a series

of operations involving only much smaller matrices, which are divided blocks of

G(E + iε). One advantage of using this scheme is that the recursive Green’s func-

tion has the flexibility needed in treating a complex system. Portions of the system

can be targeted for calculation while others are ignored without jeopardizing the

accuracy of the selected local physical properties.

Self-consistency procedures also help shorten the computation cycle. Through

a scaling process, automatic adjustments of the potential parameters and energy

value Eν are enacted in the repeated calculations of wave function ϕν and its en-

ergy derivative ϕ̇ν . The potential inside each atomic sphere includes the nuclear,

Hartree, Madelung and exchange-correlation potential under the LDA and impor-

tant Darwin corrections. A new round of DOS calculation can be started with the

output potential parameters from the scaling. But a third round is usually not

necessary, given the rapid convergence of parameters from the scaling procedures.

3. Results of Calculation

The system that is actually put into calculation has a total of 12 layers of atomic

spheres including two empty overlayers, which are prepared for charge extension

out of the surface layer. Each layer has 32 atomic spheres and is divided into four

chains. Since previous calculations indicate that six layers below the layer targeted

for convergent DOS are needed in the system, a total of 12 layers are assembled for

adequate results of DOS in the top six layers.

Figures 1(a) and 1(b) are the calculated DOS of the Cr atom on Cu(001), with

1(a) representing the majority spin and 1(b) the minority spin. Figure 1(c) is the

combined DOS for both spins. Shown in Fig. 1(a) is a peak 0.95 eV below the Fermi

level for the majority spin. For the minority spin, a peak is located 0.68 eV below

the Fermi level. Both are far lower in energy than the peak reported2 for a pure



April 22, 1999 15:46 WSPC/140-IJMPB 0095

392 C.-K. Yang

(a) (b)

(c)

Fig. 1. Local density of states of the impurity Cr atom on Cu(001) surface for (a) majority, (b)
minority, (c) both spins.

Cr(001) surface as being −0.05 eV. They are also lower than the peak at −0.3 eV

reported for a single Cr on Fe(001).3 However, both peaks should be easily identified

against the background of the surrounding Cu atoms on the same surface, whose

DOS are displayed in Figs. 2(a)–2(c) for the majority, minority, and combined spins

respectively.
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(a)

(b)

(c)

Fig. 2. Local density of states of the surface Cu surrounding the impurity Cr for (a) majority,
(b) minority, (c) both spins.

Substantial charge transfers are found between the impurity Cr, its nearest

neighbors on the surface and the empty spheres above the surface. Shown in

Table 1, instead of losing 0.87e as was calculated for a pure Cr(001) surface,21

the impurity Cr atom receives 0.98e, mostly from its four nearest neighboring Cu

atoms on the same surface. It is suggested that overlap of individual 3d energy

levels between the Cr atom and its neighbors creates local levels which are lower in

energy and attract nearby electrons. For nearest neighbors right above the surface,

each of the four equivalent empty spheres gains 0.55e. Also listed in Table 1 are

magnetic moments of the impurity Cr and neighboring Cu. The Cr has a magnetic

moment of 0.52µB and each of the four neighbors on the surface has about 0.33µB.

Together they form a paramagnetic island on the surface.
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Table 1. Charge transfers between the Cr atom on Cu(001) and each of its nearest neighbors on
and right above the surface.

Atomic sphere Total charge transfer (e) magnetic moment (µB)

Cr 0.98 0.52
Cu −0.94 0.33

Empty sphere 0.55 0.00

Figure 3 gives the DOS for each of the four nearest neighbors below the Cr

atom. It differs little from that of the same layer in a pure Cu(001) system. Surface

effects are not strongly felt at this layer and the presence of an impurity alone does

not have much disturbance. Shown in Fig. 4 is the DOS for each of the four nearest

empty spheres. Mostly made up of s and p waves, the DOS looks familiar for an

empty layer where electrons are loosely bound.

Fig. 3. Local density of states for each of the four nearest Cu atoms below the Cr.

Fig. 4. Local density of states for each of the four nearest empty spheres above the Cr.
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Fig. 5. Local density of states of the impurity Fe atom on Cu(001).

Table 2. Charge transfers between the Fe atom on Cu(001) and each of its nearest neighbors on
and right above the surface.

Atomic sphere Total charge transfer (e) magnetic moment (µB)

Fe 1.43 0.04
Cu −0.98 0.28

Empty sphere 0.48 0.00

Compared with the Cr, the DOS of Fe on Cu(001) has a distinctive feature.

As shown in Fig. 5, the DOS of the impurity Fe for both spins has two spikes.

Situated at 3.67 eV below the Fermi level respectively, the peaks are similar in

shape to the DOS of atoms on a pure Fe(001) surface,2 although their positions

are shifted considerably from the original values. Most interestingly, the impurity

Fe is virtually nonmagnetic, as shown in Table 2, while each of the surrounding Cu

atoms on the surface has a moment of 0.28µBxd. Also from Table 2, the Fe atom

collects 1.43e from neighboring atoms. Clearly, heavy charge redistribution due to

the presence of impurity is a deciding factor in local magnetism. With no long range

magnetic order present, a simple exchange of charge has the energy levels for both

spin of the Fe atom occupied equally.

4. Conclusions

By combining TB-LMTO and Green’s function we are able to calculate the

electronic structure in real space efficiently. The method is thus suitable for

systems with reduced symmetry. Although the method has its share of errors
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from the employment of the LDA and ASA, it offers easy formulation and pro-

vides reasonable results for a few known systems, requiring only modest com-

putation resources. In the article we are presented with spin-polarized local

DOS of impurities on Cu(001) and their exchange of charges with neighboring

atoms. We observe peaks of DOS associated with each impurity. They could be

important for surface identification and characterization and alloying process. In-

teresting local magnetism is also deduced from the calculation, offering one more

example of the method’s ability of treating local problems.
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