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We develop a real-space method for the calculation of surface electronic structure. The approach is
based on the linear muSn-tin orbitals and recursive Green s-function methods and can achieve self-
consistency efhciently. As an application, the local density of states of Cu(110) atoms is calculated. The
charge transfer between layers close to the surface is presented. We also derive the work function, which
is in good agreement with experimental values.

I. INTRODUCTION

In this paper, we present an ab initio method for the
self-consistent calculation of surface electronic structure.
The method is based on the tight-binding linear muffin-
tin orbitals (TB-LMTO) theory and the calculation of the
electronic states is carried out in real space using the re-
cursive Green's-function method. The method is capable
of dealing with various types of surfaces such as thin-film
surfaces, semi-infinite surfaces, step surfaces, etc. In this
paper, we choose the semi-infinite perfect Cu(110) surface
as a benchmark for demonstrating the applicability of
this method. The perfect surface can be studied more
efficiently with a two-dimensional k-space method. Since
the eigenstates of the perfect surface are extended in two
dimensions, this case study should provide a stringent
test for the efficiency of the real-space method proposed.

Although there have been numerous publications de-
voted to the calculation of metal surface electronic struc-
ture, our approach has major advantages in that it is a
real-space method, it is self-consistent (in the local densi-
ty approximation), and it can efficiently deal with large
imperfect surfaces. As can be found from Refs. 1 —6,
most surface calculations are performed by using the re-
peated slabs techniques. This approach is suitable for
thin films but may not adequately represent a semi-
infinite system, which has only one surface and becomes
more bulklike a few layers inward from the surface. Re-
cently, Bormet, Wenzien, and Sche@.er developed a
Koringa-Kohn-Rostoker (KKR) Careen-function method
for semi-infinite crystal and used it to study the adsorp-
tion of atoms on Al(111) surface. Skriver and Rosen-
gaard also employed a LMTO Green's-function method
to study surface energy and work function ' systemati-
cally and obtained very accurate results. Our real-space

method, however, can treat both the semi-infinite and
thin films efficiently. In fact it can also be applied to sys-
tems with less symmetry such as the stepped surface.
For the Cu(110) surface, which has received less attention
in the past, we not only self-consistently calculate the lo-
cal density of states (DOS) of atoms on the surface and
below but also obtain the charge transfer extending out of
the surface. As we shall see, this extension of charge is
related to the work function.

II. RECURSIVE GREEN'S FUNCTION AND LMTO

The calculation uses the tight-binding LMTO with the
atomic-sphere approximation (TB-LMTO-ASA). The de-
tails of the theory are described by Skriver and Ander-
sen, Jepsen, and Glotzel. ' The method is found to work
quite well with metallic systems and can be extended to a
full potential method" for more complicated systems
such as alloys and semiconductors. The method is based
on the density-functional theory' with local-density ap-
proximation. The effective one-electron potential in-
cludes the usual Hartree term, electron-ion interaction,
exchange-correlation potential, and Madelung term. The
Madelung term is needed because there will be charge
transfer between muffin-tin spheres, and it is crucial in
the surface self-consistent procedure. The fundamental
principles outlined above are very much the same as what
Skriver and Rosengaard used in their calculations for sur-
face properties. ' The major difference arises when we
apply them in real space instead of k space.

We use the bulk potential parameters as input for the
surface calculation. The basis set includes the s, p, and d
orbitals. The f orbitals are excluded to make the Hamil-
tonian matrix smaller and to save computing resources.
Being a real-space method, the Hamiltonian matrix is
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built layer to layer. The layer is in turn constructed out
of chains of atoms. The exact geometry depends on the
nature of the system and its symmetry. The matrix ele-
ments of the Hamiltonian are calculated with screened
linear muffin-tin orbitals and with their overlap terms. '

The Green's function G(z ) is defined as

G(z) =(z H)—

where z is a complex number and H is the Hamiltonian of
the system. The density of states D(E) can then be ob-
tained from the following equation:

1D(E)= ——limTr lmG(E+ie),
7T e—+0

(2)

where Tr and Im denote the trace of the imaginary part
of G(E+ie) To. avoid direct inversion of matrix, which
for very large systems could take up large memory space
and even overwhelm the computing facility, we apply the
recursive equations' ' to handle the job. Consider first a
small system with Hamiltonian H'n' and Green's function
G'n', which can be easily calculated using direct inver-
sion. We next change the system by adding to it a layer
of atoms. The Hamiltonian for the larger system now be-
comes

H(n+1)
H'n' V

where h is the Hamiltonian of the added layer and V is
the coupling of the layer to the subsystem. Then, using
the recursive equations, the Green's function G'"+" of
the enlarged system can be calculated by

G(n+1) G(n+1)
11 12(n+1)

G(n +1) G(n +1) (4)
21 22

where

G(n+1) [( I ) P +G(n)V) —]

G(n +1) —G(n) yG(n +1)
12 22

G(n+1) =G(n+1)y+G(n)
21 22

G(n+1) G(n)+ G(n+1) @+6(n)
11 12

Thus, using this recursive set of equations, we can per-
form our calculation using small matrices while enlarging
the system until it includes the whole system or until it
converges for the case of an infinite system. The recur-
sive Green's-function method has been used in many con-
texts such as the layer KKR method used in low-energy
electron diffraction theory' as well as the iterative tight-
binding procedures worked out by Cyrot-Lackmann'
and Haydock, Heine, and Kelly. ' We found the pro-
cedure outlined above to be the most efBcient one because
of the following: (1) It provides a framework for a sys-
tematic, real-space, local approach to the study of com-
plex systems with low symmetry. (2) It is easily adapted
to stable numerical computation. (3) At a given stage of
its development, it includes all the information concern-
ing all the degrees of freedom enclosed within that step.
Thus, if the convergence of a system property is reached,

the result will represent the system property without any
confusion. (4) It leads to a direct determination of the
eigenfunction in terms of the local basis functions, thus
providing a convenient way to include the self-consistent
procedure in the calculation if one is desired. The detail
discussion can be found in Wu, Cocks, and Jayanthi. '

III. THE CALCULATION OF THE Cu(110) SURFACE

[110]

8 8 1st empty layer

2nd empty layer

FICx. 1. Two empty layers over the Cu(110) perfect surface.
Darker and lighter circles represent atoms in two different
planes with mutual distance a /2, where a is the lattice constant.

One of our goals in the example is to obtain the charge
distribution on the Cu(110) surface. To allow the elec-
tron to occupy the space outside the Cu surface, we add-
ed two layers of empty spheres to the surface. In Fig. 1

we show the two empty overlayers to the surface, each
with the same geometrical arrangements as the corre-
sponding fcc layers inside. We expect the electrons mov-
ing in the overlayers to be much like free electrons and
their initial potential parameters to be similar to the emp-
ty spheres in other applications. '

As stated in Sec. II, how many layers are enough to en-
sure the system is semi-infinite depends upon whether the
layers we are interested in could achieve reasonable con-
vergence. We found that using up to 22 layers, the local
DOS of the tenth layer below the surface has converged
toward the bulk DOS. Each of the 22 layers consists of
20 Cu atoms and a two-dimensional periodic boundary
condition is imposed in each layer. The entire system
consists of 440 atomic spheres, which is a large system
when self-consistent calculations are involved. As a
matter of fact, the calculation of Madelung potential sug-
gests that starting from the sixth layer inward the atoms
are essentially bulklike. The Madelung potential appears
because each layer with excess charge is affecting the oth-
er charged layers. In order to simplify the calculation we
only include the monopole term. It is calculated with
Ewald's method converted to meet the two-dimensional
requirements. This conversion does not produce an exact
analytical form and must be calculated numerically. The
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two empty layers are included in the self-consistent calcu-
ation in the following way. One Cu atom or o tom or one empty

sp ere from each layer is taken out to form a neutral cell.
ithin the cell charges flow between the atoms in a way

dictated by the self-consistent potential. The output pa-
rameters from such a limited procedure are then taken as
the new input for another round of DOS calculation. Fi-
na y the self-consistency is considered attained when the
potential parameters no longer have significant varia-

From Figs. 2(a) —2(f) the DOS of the top six layers,
p y ayer inward, arecounting from the outermost empt la d,

s own. In all the figures the Fermi energy is placed at
the zero of the energy scale. Table I gives the charge
transfer per atom of the six layers It '

is interesting to
note the outer empty layer has a charge of 0.45e per
mufFin-tin sphere and the inner empty layer has a higher
value of 0.60e. The DOS distribution of the first layer is

also narrower than the second on The. e s an p waves
contribute the most states in empty spheres, with only a
sma portion (less than 12%%uo) from d waves. This is of
course in agreement with the fact that the s and p waves
in Cu are more loosely bound to Cu and are therefore
more likely to extend above the Cu surface. The d waves
are so localized that they are virtually confined to the Cu
atom. When compared layer by layer, the surface Cu
atoms have the largest share of contribution with 0.32e
per atom, while the other layers release less than 0.1e per
atom. One also observes the DOS of Co u is getting more
bulklike from Fig. 2(c) to Fig. 2(f).

Our definition of work function is th e minimum energy
required to move one electron from the surface Cu to oc-
cupy the state of the empty sphere above the Fermi ener-

la er
gy. We obtain the value of 4. 1 eV for th t
ayer and 4.2 eV for the inner layer, in good agreement

with experimental data. Cxartland, Berge and
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FIG. 2. Local density of
states of (a) the outer empty lay-
er, (b) the inner empty layer, (c)
Cu in the surface layer, (d) Cu in
the layer below the surface, (e)
Cu in the second layer below the
surface, and (f) Cu in the third
layer below the surface.
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TABLE I. Charge transfer between the six layers shown
from Fig. 2(a) to Fig. 2(f).

Layer Total charge transfer

0.45

0.60

—0.32

—0.06

—0.09

—0.08

s

d
s

d

s

S

Orbitals

0.08
0.32
0.05
0.15
0.38
0.07

—0.21
0.58

—0.69
—0.25

0.84
—0.65
—0.27

0.84
—0.66
—0.25

0.84
—0.67

Slagsvold, ' for example, reported 4.48 eV for the (110)
face of a Cu single crystal. A value of 4.4 eV was provid-
ed by Hass and Thomas. Many factors could be respon-
sible for the discrepancy between the calculation and ex-
periment besides the local-density-approximation. One is
the omission of the dipole contribution in the Madelung
potential. Another is the use of the smaller basis set
that does not include the f orbitals, according to Cram-
pin. Despite these possible sources of errors our calcu-
lated work function seems surprisingly good. The major
reason could be that the work function is derived directly

from the local DOS, which may not be very sensitive to
those factors. Also pointed out by Szunyogh et al. , the
number of vacuum layers has negligible e8'ects on the
DOS. So our choice of two empty layers, which makes
the matrices smaller, is expected to derive reasonable
work function from the DOS.

IV. CONCLUSIONS

We develop an ab initio method for the calculation of
surface electronic structure. The real-space approach is
efficient and is expected to be applied to complex systems
such as stepped surfaces and surface adsorptions. In fact,
we have found it suitable for stepped surface and are
currently developing a fully self-consistent scheme for
that purpose.

The particular example of our self-consistent calcula-
tion of semi-infinite Cu(110) surface shows that charges
make their way into the region outside the surface. A di-
pole layer is thus formed by the negatively charged layers
outside the surface and the positive layers inside. The de-
rived work function is close to experimental values.
However, future development of the method could be
directed to study the efFects of what we have ignored in
the calculation to further improve the accuracy.
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