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Diagnosis
ility from electrocardiographic recordings has been an important method for
assessing cardiovascular autonomic regulation. Researchers have conducted extensive analyses on normal as
well as pathological hearts, however, it is still unclear whether increasing or decreasing the complexity of
heart rate variability is a characteristic of healthy systems. In this study, we find the existence of well-
harmonized homeostasis in heart rate fluctuations, in particular, the evidence is verified among different
individuals including healthy subjects, ICU patients, and one child with brainstem dysfunction. The
methodology we used is composed of two parts, in which one is the consideration of reduction of
cardiorespiratory fluctuations inherited in the original R–R intervals and the other is based upon the concept
of nonlinear dynamics to construct the low-dimensional trajectory in the angle plot. The cross-correlation
measure between the theoretical angle map and the numerically derived angle trajectory is used to separate
recovery (0.73±0.13) from deterioration (0.25±0.08) of ICU patients. In addition, a simple physiologic
(deterministic) model of the interaction between the cardiovascular system and baroreceptor control of
arterial pressure is used to explain why homeostasis can exist in heart rate fluctuations. Our study provides a
potential link between the clinical data and circulatory system.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
It is known that both an epilepsy seizure and a heart attack may be
considered as dynamic diseases used to describe diseases highlighted
by a change in normal body rhythms.What are normal body rhythms?
Conceptually, they are a healthy body's simple rhythms. From this
point of view, the different body parts will tend towards homeostasis,
and the interrelated systems reach a balance or have simple occasional
behavior. Nevertheless, researchers suggested that chaos is the natural
way to join different situations in the body. Goldberger et al. (1994)
have conducted an extensive analysis of normal and pathological
hearts, and claim that chaos provides the body with the flexibility to
respond to different stimuli. Thus, healthy systems want to exhibit
chaotic/complicated fluctuations. More recently, Andrés et al. (2006)
provided a study on cardiac dynamics, and they found that the
existence of premature ventricular contraction increases the embed-
ding dimension of heart rate variability (HRV). In addition, patients
with congestive heart failure also show an increase in the embedding
dimension of HRV. Therefore, it is still unclear whether increasing or
decreasing the complexity of HRV is a characteristic of healthy
systems.

Analyzing HRV from electrocardiographic (ECG) recordings has
been an important method for assessing cardiovascular autonomic
l rights reserved.
regulation (Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology, 1996). The
most commonly used prognostic HRV index has been the standard
deviation in N–N intervals (SDNN; one of linear methods), which is
analyzed over a 24-h period for risk stratification. Spectral analysis of
HRV allows assessment of frequency-specific fluctuations in heart rate
and provides prognostic information beyond the SDNN measure.
Although all the measures of HRV differ in their manner of
computation and analysis, these methods are fundamentally based
on moment statistics and describe the magnitude of HRV. It is
therefore not surprising that SDNN and spectral analysis all have a
relatively close mutual correlation, and that there are only minor
differences in prognostic power between them. More recently,
nonlinear dynamics has opened new approaches for studying and
understanding the characteristics of heart rate (Goldberger, 1996).
These methods differ from the above-mentioned measures of HRV in
that they are not designed to assess the magnitude of variability.
Rather, they estimate the correlation properties and complexity of
HRV and other features in heart rate dynamics that are not uncovered
by methods based on variance and mean. One of typical nonlinear
measures is Poincaré plot analysis that allows visual and quantitative
analysis of instantaneous and continuous R–R interval variability and
also provides more powerful prognostic information on patients with
heart failure and on arrhythmic risk (Huikuri et al., 1996).

In the clinical data, it is known that sinus rhythm in very sick
patients often varies in a regular way that appears much simpler
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in form than the variability observed in normal, healthy indi-
viduals (Goldberger et al., 1990). Besides, deterministic homoclinic
orbits illustrated in the Poincaré plot can be directly observed
from symptomatic sinus node dysfunction (Bergfeldt and Haga,
2003). Nevertheless, Kantz and Schreiber (1998) concluded that
there is no clear evidence for determinism in R–R intervals.
Therefore, the conservative working hypothesis would be that
the process which governs the initiation of new cardiac cycles is
effectively stochastic, superimposed by the regulations of auto-
nomic nervous system.

Recently, studies were made to create either deterministic or
stochastic models describing the behavior of R–R intervals based on
the understanding of the physiological mechanisms underlying their
variations (Rosenblum and Kurths, 1995; Seidel and Herzel, 1998;
Ivanov et al., 1998). Suder et al. (1998) paid their attention on the
evolution of angular component of the R–R interval map in humans
undergoing paced respiration at a frequency close to 0.1 Hz, and the
deterministic structure was found in the angle map. Their point of
view is that the complexity of spontaneous respiratory movements
obviously precludes the identification of finite dimensional attractors
in heart rate fluctuations within the frequency range of breathing,
i.e., so-called respiratory sinus arrhythmia (RSA). Therefore, one way
to overcome this problem is to introduce paced breathing. The main
result of their paper is that HRV during voluntarily induced slow-
paced breathing obeys a one-dimensional, nonlinear law of motion.
In addition, the one-dimensional law of motion breaks down for
cycle lengths close to that of spontaneous breathing. More recently,
Balocchi et al. (2004) derived/studied RSA from the heartbeat time
series using empirical mode decomposition. In their study, the
spontaneous respiratory signal (i.e., respirogram) was recorded
simultaneously with ECG, in which they found the existence of
phase and frequency synchronization between the R–R intervals
associated breathing and the respiratory signal itself. Moreover, it
can be verified that the phase distribution of the respiratory signal
displays a noise-like homogeneous profile in a range from −π to π
(Wu et al., 2006). According to these findings, it could be
hypothesized that RSA fluctuations include a noisy part which is
from the condition of spontaneous breathing.

In the present study, we report the existence of well-harmonized
homeostasis in heart rate fluctuations, in particular, the evidence is
verified among different individuals including healthy subjects, ICU
patients, and one child with brainstem dysfunction. Our analyzing
method is a nonlinear measure which allows visual and quantitative
analyses of instantaneous and continuous R–R interval variability.
Basically, our calculations are based upon the traditional concept of
fluctuations in nature, in which a mixture of deterministic and
stochastic factors should be considered. In order to extract the
deterministic factor embedded in R–R intervals, a noise-reduction
method is used to find the final as well as deterministic R–R intervals
displaying a one-dimensional and well-harmonized nonlinear angle
map derived from the Poincaré plot, in which the so-called home-
ostasis can be realized. In this study, we also provide a clinical research
on risk stratification for ICU patients in terms of the angle plot.
Surprisingly, the outcome of analyzed 25 patients is well described by
the present method. Moreover, a simple physiologic (deterministic)
model of the interaction between the cardiovascular system and
baroreceptor control of arterial pressure is used to explain the status
of ICU patients, which could be the result from the influence of time
delay in the human baroreceptor-mediated reflex. Thus, our study
provides a potential link between the clinical data and the circulatory
system.

The remainder of this paper is organized as follows. Subjects and
methods are given in Section 2. Section 3 contains the central part of
our paper including analyzing the clinical data, surrogate data
analysis, and model simulations. Discussions and concluding remarks
are given in Sections 4 and 5, respectively.
2. Subjects and methods

2.1. Subjects

A group of 25 healthy normal subjects were recruited/recorded in
the Taipei Veterans General Hospital, where sex (10 females and 15
males), age (30±1 years), and body mass index (21.5±0.4 kg/m2).
And 25 patients with diseases including those requiring admission to
intensive care unit such as myocardial infarction, multiple organ
dysfunction syndrome, sepsis, and heart failure were recruited in
this study. The study protocol was approved by the local ethics
committee and all participants gave their informed consent. The
study was conducted according to the principles of the Helsinki
declaration.

2.2. Study protocol

For all healthy normal subjects, no alcoholic or caffeine-containing
drinks were taken for at least 24 h before the study. The examination
was performed in a quiet room during the daytime. Subjects received
ECG measurement in the supine position after five min rest. During
the ECG measurement, subjects were instructed to fully relax, stay
awake, and not to speak.

2.3. Data acquirement

The raw R–R intervals were deduced from the adjacent normal
sinus beats, which were then transferred to a personal computer and
post-processed by a program. The missing intervals (due to extra-
systoles) were linearly interpolated and the resulting R–R intervals
were resampled at 4 Hz by the Berger method (Berger et al., 1986). All
analyzed data were checked by a qualified medical doctor. Therefore,
possible artifacts appeared in R–R intervals were deleted.

2.4. Nonlinear noise reduction

Suppose we have a scalar time series {xi}, i=1,…,T, where the xi
are composed of a clean signal yi with some noise wi added, xi=yi+
wi. The bw2N is called the absolute noise level. The reduction scheme
is to replace each noisy xi by the average value of this coordinate
over points in a suitably chosen neighborhood. The neighborhoods
are defined in a phase space reconstructed by delay coordinates. In
order to define the neighborhoods, one has to fix positive integers k
and l and construct embedding vectors xi=(xi − k,…, xi+ l) as usual.
Note that past and future coordinates are involved. Further, choose a
radius r for the neighborhoods. For each value xi find the set Ui

r of all
neighbors xj for which ||xj−xi||supb r, i.e., all segments of the
trajectory which are close during a time lasting from k iterations
in the past to l iterations in the future. Then, replace the “present”
coordinate xi by its mean value in Ui

r,

xcorri =
1

jUr
i j
∑
Ur
i

xj: ð1Þ

The implementation of the algorithm is straightforward. To obtain
optimal results it is essential to choose r, the size of the neighbor-
hoods, appropriately. In addition, the procedure can be iterated. If one
takes the rms of the correction made as a new value for r, r will
decrease exponentially with the number of iterations until eventually
no neighbors are found for any point and no further correction is made
(Schreiber, 1993).

To estimate the embedding dimension d for the reconstruction of
the phase space, the false nearest neighbor method proposed by
Kennel et al. (1992) is used to determine the lower bound of the
embedding dimension dl (Hegger and Kantz, 1999). The dl value for
different individuals, including healthy subjects and ICU patients, is



Table 1
List of parameters for model simulations

R 1.2×103

dyn s/cm5
r 52 dyn

s/cm5
C 1.0×10−3

cm5/dyn
Pn 89 mm Hg

Pv 25 mm Hg Ts 0.66 s Tm 1.2 s Vmax 86 cm3

α 31 γ 6.7×1013 β 72 K 7
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within the range 7≤dl≤15. Thus, in the present study we choose d=21
(i.e., l=10 and k=10) as the embedding dimension, which is large
enough to reconstruct the phase space for all analyzed subjects. In
addition, the initial r values we used are 50 ms.

2.5. Angle map

A first attempt at identifying the underlying process generating the
characteristic pattern of HRV is to plot the same data as a two-
dimensional scatter (Poincaré) plot of successive R–R intervals.
However, no sharply defined pattern is revealed in this plot; the
points scatter around an elliptical structure. All R–R intervals of
healthy subjects contain this feature, but they do not show a simple
nonrandom structure. The elliptical structure reflects the long-term
periodicity of R–R intervals under the control of the autonomic
nervous system.

As a next step, we focus on the angular motion of the points in the
scatter plot. This is done by introducing polar coordinates and by
neglecting the fluctuations of the radii. The transformation needs the
definition of a center. The center is defined as the mean values of R–R
intervals (RRa). For every pair of successive R–R intervals, an angle ϕ is
calculated. The angles are defined to vary between −π to π.

�n = arctan
RRn + 1−RRa

RRn−RRa

� �
ð2Þ

where ϕn and RRn represent the angle and the R–R interval at time
step n, respectively. It is deserved to note that testing for the angle
map using surrogate data to preserve both the power spectrum and
the histogram had been done in the work of Suder et al. (1998). In the
following we will give different examples to illustrate the determi-
nistic one-dimensional angle map can be derived under different
situations.

2.6. Surrogate data analysis

The purpose of surrogate data is to test for any nonlinearity in the
original data (Theiler et al., 1992). Surrogate signal is produced by
phase randomizing the original data. It has similar spectral properties
as of the given data. The surrogate data sequence has the same mean,
the same variance, the same autocorrelation function and therefore
the same power spectrum as the original sequence, but phase
relations are destroyed. In the case of data shuffling, the histograms
of the surrogate sequence and the reference sequence are identical.
The random phase spectrum is generated by using the method of
phase shuffle, where the phase values of the original spectrum are
used in random order.

2.7. Mathematical model

In this study, we use the classic three-element Windkessel model
(Westerhof et al., 1971) to simulate HRV, which describes the
interaction between the cardiovascular system and baroreceptor
control of arterial pressure. On the basis of the Windkessel theory,
the dynamic relationship between the arterial pressure P(t) and the
cardiac output Q(t) is

dP
dt

−r
dQ
dt

=
1
RC

R + rð ÞQ−P½ �; ð3Þ

Q tð Þ = Vτ Pð Þ
Tτ Pð Þ =

V t−τð Þ
T t−τð Þ ; ð4Þ

where T and V mean, respectively, the period of the cardiac cycle and
the stroke volume, and τ is the time delay in the human baroreceptor-
mediated reflex. R, C, and r are, respectively, corresponding to a
peripheral resistance, a total arterial compliance, and an aortic
characteristic impedance. It is deserved to note that both T and V
depend on the arterial pressure P. According to the sigmoidal law, T(P)
can be described as

T Pð Þ = Ts + Tm−Ts
1 + γe−αP=Pn

; ð5Þ

where Ts and Tm establish the shorter and longer cardiac period and
match, respectively, the maximal vasodepressor-induced sympathetic
excitation and the maximal pressor-induced vagal activation (Franz,
1969). Pn corresponds to the steady level of arterial pressure. α and γ
are two fitting parameters which determine range and slope of the
linear region of the T(P) curve. As for the stroke volume–pressure
curve, the following expression is used.

V Pð Þ = Vmax

1 + β P
Pv
−1

� �−K ð6Þ

where β and K are fitting parameters, Vmax is the maximum stroke
volume, and Pv is the threshold for cardiac output. Table 1 illustrates
the detailed parameter values used for numerical simulations. It shall
be noted that the value of these parameters was estimated by best-
fitting data drawn from physiological literature (Milnor, 1989; Korner
et al., 1974).

Accompanying with the steady-state T–P as well as V–P curves,
Eqs. (3) and (4) can be reduced to a delay-differential equation with
one dynamical variable P(t). By putting the obtained P(t) into Eq. (5),
then the period of the cardiac cycle is derived.

3. Results

3.1. Normal subjects

Fig. 1 illustrates time evolution of R–R intervals with/without
nonlinear noise reduction. The original R–R intervals shown in the
panel I of Fig. 1 are obtained from a healthy male voluntarily recorded
under supine position. The recording process approximately lasts 2 h.
It is obvious to see that this data exhibits low-frequency trend
embedded in high-frequency fluctuations. Following the previous
assumption of linear combination of a clean signal and a noise source,
the deterministic R–R intervals can be derived after nonlinear noise
reduction, which is shown in the panel III of Fig. 1. Evidently, high-
frequency fluctuations are significantly reduced and the low-
frequency variability is left. In particular, the histogram of high-
frequency noisy fluctuations exhibits a symmetrical Gaussian-type
distribution (Fig. 2). The underlying physiological process for noisy
fluctuations can be revealed in terms of the well-known power
spectrum analysis, from which it is quite straightforward to under-
stand the contribution of noisy fluctuations being main from the
respiratory band (see Section 4). Therefore, the variability of R–R
intervals coming from RSA is treated as a stochastic source under our
reduction scheme.

The associated angle maps corresponding to the R–R intervals
shown in panels I and III of Fig. 1 are illustrated in panels II and IV
of Fig. 1, respectively. In the recurrence plot of rotation angles for
the original R–R intervals, it exhibits quite scattered behavior
and does not show the deterministic one-dimensional structure



Fig. 1. Panels I and II denote the original R–R intervals and its corresponding angle map. Panels II and IV denote the deterministic R–R intervals and its corresponding angle map. Of
particular note is that the recording process approximately lasts 2 h. In order to clearly visualize the variation of R–R intervals, only truncated heart beats are shown in panels I and III.
But the angle maps shown in panels II and IV are derived from the complete R–R intervals.
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(panel II). Nevertheless, the angle map for the deterministic R–R
intervals displays a clear one-dimensional and well-harmonized
nonlinear motion (panel IV). Of particular note is that the
intersection points of the diagonal and the one-dimensional
deterministic curve are located at (π /4,π /4) and (−3π /4,−3π /4).
These points are corresponding to the fixed heart rate. The point
(π /4,π /4) is composed of three successive fixed R–R intervals
which are larger than RRa. In other words, three successive fixed
R–R intervals, smaller than RRa, are mapped to the point (−3π /4,
−3π /4). From the dynamical point of view, these two points can be
realized as saddle points, from which “deterministic” HRV is
regarded as intrinsically unstable.
Fig. 2. The histogram of high-frequency noisy fluctuations is obtained from taking the diffe
(panel III of Fig. 1).
3.2. ICU patients

Extracting the deterministic structure fromnoisy R–R intervals is of
importance in fundamental research. Nevertheless, it is an interesting
issue to test the nonlinear angle plot applied to risk stratification. So far,
there is no consensus about the best available index of HRV for clinical
use. Before we demonstrate the diagnostic results for ICU patients, we
shall admit that using the dynamic characteristic of healthy individuals
to predict the outcomes of ICUpatients seems to violate the basic logic.
However, this contradictory thinking contrarily inspires the different
point of view compared to intuition. There is no doubt that there are
two possible outcomes for ICU patients, in which one is transferred to
rence of the original R–R intervals (panel I of Fig. 1) and the deterministic R–R intervals



Fig. 3. Panels I and III denote two typical Poincaré plots for ICU patients. And the corresponding angle maps are shown in panels II and IV, respectively.

Fig. 4. The angle plot applied for the clinical diagnosis of two ICU patients, where
different color symbols correspond to different measures. (a) It is evident to see the
appearance of stable signs of life from patient A. Therefore, we judge this patient was
transferred to OCU. (b) On the contrary, patient B lost stable signs of life, therefore, we
judge this patient was dying. It shall be noted that the scattered points obtained from 24
August to 27 August have a tendency to fill in the plane. In order to clear visualization,
we just show the data obtained from 27 August.
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ordinary care units (OCUs) and the other is dying. The concept about
OCU patients with stable signs of life seems reasonable, which
definitely is the common point among healthy individuals. Therefore,
using the dynamic characteristic of healthy individuals is to diagnose
ICU patients with/without stable signs of life.

Fig. 3 provides two typical Poincaré plots for ICU patients. Panel I
displays normal sinus rhythm with a compact elliptical structure
exception of some ectopic heartbeats. In panel III it is evident to see
that ectopic heartbeats are predominant and, further, the compact
elliptical structure disappears and is replaced by the fanned out
pattern. To state more clearly, homoclinic orbits can be directly
observed in the panel III, which is known to be resulted from various
types of pathological states, e.g., symptomatic sinus node dysfunction
(Bergfeldt and Haga, 2003). After the process of noise reduction, the
associated angle maps corresponding to panels I and III of Fig. 3 are
illustrated in panels II and IV of Fig. 3, respectively. Panel II shows the
deterministic one-dimensional structure analogous to that of healthy
individuals, but in panel IV scattered points have a tendency to fill in
the plane. Therefore, we may say that these two ICU patients have a
distinct difference in mortality. Fig. 4 illustrates our dynamic risk
stratification for ICU patients based upon the nonlinear map analysis.
The last three days' ECG recordings of patient A are analyzed and
shown in Fig. 4(a), where stable signs of life are clearly demonstrated
during these days. Therefore, we diagnose patient Awas transferred to
OCU. Our diagnosis is right according to the hospital records. Fig. 4(b)
is the analyzed outcomes of patient B according to the last seven days'
ECG recordings. The three angle plots from 21 Aug. to 23 Aug. exhibit
deterministic one-dimensional curves. Nevertheless, the last four
days' angle plots are quite scattered, from which we judge patient B
was dying. Our prediction is proved again by the hospital records. It is
deserved to explain why patient B had a critical transition from 23
August to 24 August. According to historical records, medical doctor
suspected that the unexpected leakage after surgery could be themain
reason. Therefore, using angle maps to exactly predict the unexpected
leakage seems nontrivial, moreover, intensive studies in other
populations performed by independent investigators are definitely
necessary in that topic. In addition to patients A and B, the outcomes
of other 23 patients are also well described by the present method. In
order to quantify the relation between Eq. (3) and angle plots obtained
from ICU patients, we also calculate the cross correlation as a measure
which is 0.73±0.13 for patients with stable signs of life (n=10) and,
however, the other is 0.25±0.08 for critically ill patients (n=15),
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where the threshold separating the patient groups we used is 0.5.
Therefore, there is a significant difference between these two possible
outcomes of ICU patients. So far, it is known that a diagnosis of sepsis
for ICU patients was associated with decreased total HRV, which
strongly correlates with severity of illness (Garrard et al., 1993).
However, in our study the degree of change in total HRV is not a good
diagnostic index to describe illness severity of patient B. Thus, we
might suggest that nonlinear map analysis on HRV applied to clinical
utility could be promising. In order to give clear comparisons between
different analyzed groups, the cross-correlation measure is listed in
Table 2. Of particular note is that analyzing healthy subjects from the
physionet public website are also included in Table 2 (www.physionet.
org/physiobank/database). It is obvious to see that well-harmonized
homeostasis still can be observed in this normal sinus rhythm R–R
interval database.

3.3. Surrogate analysis

Surrogate analysis for the extracted deterministic data is per-
formed and shown in Table 2, from which the extracted time series is
statistically different from the surrogate. This rejects the null
hypothesis and hence the fluctuations in the extracted time series
have a deterministic/nonlinear structure. Moreover, surrogate analysis
for the extracted noise is also performed in this study. The surrogate
noise dataset was added to the extracted deterministic signal.
Repeating the nonlinear noise-reduction procedure, we find that the
new-generated deterministic signal behaves the same angle plot as
the old one. According to this finding, the hypothesis on noise
embedded in R–R intervals is further verified.

3.4. Model results

In thesemodel simulations we only stress on the evolution of angle
plots under the influence of time delay τ. When τ is smaller than 0.5 s,
heart rate is not time dependent and the corresponding Poincaré plot
shall exhibit a fixed point. The spontaneous heart rate fluctuations
appear when τ is larger than 0.5 s, where τ=0.5 s is a threshold for
occurring a supercritical Hopf bifurcation. In the range 0.5 s≤τ≤3 s the
angle map displays the well-harmonized trajectory [Fig. 5(a)].
However, the well-harmonized profile will be gradually destructed
due to the increase of τ values [Fig. 5(b)], and finally scattered points
have a tendency to fill in the whole plane [Fig. 5(c)]. The basic reason
for the angle plot shown in Fig. 5(c) is the appearance of spiky-like
heart rate fluctuations when τ is large enough, which is a well-known
phenomenon for delay-differential equations. Spiky fluctuations
indicate fixed heart rate cannot be temporally assembled, thus
scattered points in the angle plot cannot be accumulated at saddle
points, i.e., (π /4,π /4) and (−3π /4,−3π /4). Instead, scattered points
distribute in the whole plane. Compared to the map evolution of
Table 2
List of cross-correlation measures for different analyzed groups

Data from Taipei Veterans General Hospital

Healthy subjects Male (n=15) Female (n=10)

0.75±0.12 0.74±0.15
0.01±0.02a −0.01±0.03a

ICU patients Recovery (n=10) Deterioration (n=15)

0.73±0.13 0.25±0.08
−0.03±0.04a 0.02±0.03a

Data from the physionet public website

Healthy subjects Male (n=15) Female (n=13)

0.71±0.11 0.72±0.13
0.02±0.03a 0.01±0.03a

a Means results from surrogate data.

Fig. 5. Illustrations of the map evolution for different τ values. τ=(a) 2.5 s, (b) 3.2 s, and
(c) 4.3 s. In order to discriminate angle maps derived from the clinical data or model
simulations, θn is used to represent model results.
patient B shown in Fig. 4(b), we may say that the classic Windkessel
model not only well describes why homeostasis can exist in heart rate
fluctuations, but also provides a potential link between the clinical
data and the circulatory system.

4. Discussions

Janson et al. (2001) introduced amodel derived for the dynamics of
angles of return timesmap of a periodic self-oscillatory systemweakly
forced by an arbitrary harmonic signal. The explicit map describing

http://www.physionet.org/physiobank/database
http://www.physionet.org/physiobank/database
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the dynamics of angles for weak harmonic forcing is found to take the
simple analytic form

�n = arctan 2 cos 2πn− cot�n−1ð Þ ð7Þ

where ξ is the rotation number, which is defined as the ratio of these
two frequencies. If ξ tends to a very small values, this map equation
can well describe the angle plot shown in the panel IV of Fig. 1.
Therefore, based upon this theoretical model, we can further realize
that the deterministic one-dimensional structure we obtained might
be mainly resulted from the interaction of two independent
frequencies, which could be explained via the function of autonomic
nervous system on HRV, i.e., a kind of well-harmonized homeostasis.
In addition, Eq. (7) can be extended as the limiting case resulting from
a larger number of oscillators, where the oscillating frequencies are
located in two different narrow bands. Owing to this concept, the
appearance of a little bit noisy structure in the panel IV of Fig. 1 is
expected.

The exhibition of autonomic nervous system can be traditionally
realized via spectral analysis on HRV. In fact, interpretation of the
spectrum itself is an active area of research. Usually the spectrum is
broken into three regions for analysis. (a) The very low frequency
(VLF) region covers from 0.000 to about 0.040 Hz. This region cannot
usually be resolved but would be related with long-term factors such
as thermoregulation of heart rate. (b) The low frequency range (LF,
0.040–0.150 Hz) often shows a peak at about 0.100 Hz, the origin of
which is still unclear. Increased LF power may indicate sympathetic
activation. (c) The high frequency region (HF, 0.150–0.400 Hz) covers
rapid variations in heart rate due to vagal activity. In particular, human
respiratory sinus arrhythmia is often seen between 0.180 and
0.400 Hz. And the central frequency for VLF, LF, and HF is
corresponding to 0.003 Hz, 0.100 Hz, and 0.250 Hz, respectively.
Table 3 illustrates linear measures, including SDNN as well as spectral
analysis, for ICU patients. Obviously, most of these linear indices,
exception of low-frequency power, are not good to identify the
situations of ICU patients.

It is known that the spectral ratio LF/HF, i.e., the balance between
sympathetic and vagal activities, was a classical homeostasis index for
clinical diagnosis (Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiology,
1996). Nevertheless, Yien et al. (1997) clearly demonstrated that
progressive increases in the power density values of both VLF and LF
components appeared to be related to recovery for ICU patients.
Conversely, progressive decreases in the power density values of these
spectral components were indicative of deterioration and fatality. In
the present study, the spectral power contributed by vagal tone is
significantly reduced by using nonlinear noise-reduction method. The
obtained deterministic one-dimensional angle map, in the point of
view of autonomic tone, should be relevant to both VLF and LF. It is
also deserved to note that the central-frequency ratio of VLF and LF is
0.03, which is close to the description by Eq. (7). To our best
knowledge, it is little known that the correlation between VLF and LF
Table 3
Results of SDNN and spectral analysis on ICU patients

ICU patients Recovery (n=10) Deterioration (n=15) P value

SDNN (ms) 20.9±12.7 12.8±8.9 ns
LF (ms2) 107.5±199.5 11.3±16.3 b0.05
HF (ms2) 43.4±72.7 14.8±20.7 ns
LF/HF 2.9±1.9 2.3±3.2 ns
LFn (nu) 68.5±13.2 50.7±23.7 ns
HFn (nu) 31.2±14.2 48.3±24.7 ns

SDNN, standard deviation of the R–R intervals; LF, Low-frequency power; HF, high-
frequency power; LF/HF, the ratio of Low-frequency to high-frequency power; LFn, LF in
normalized units; HFn, HF in normalized units; and ns, no significance. All variables
were obtained from 15-minute recordings and the level of statistical significance was
set at Pb0.05.
could be a prognostic homeostasis index for ICU patients. In other
words, our findings are quite different from the classical risk
stratification (i.e., LF/HF) due to autonomic imbalance (Curtis and
O'Keefe, 2002), and might be complementary to results reported by
Yien et al.

Concerning the classic Windkessel model, it is known that the
spectral power mainly falls into both VLF and LF bands when a longer
time delay is used to simulate (greater than 2 s). However, HF
component will be dominant in the power spectrum for a shorter time
delay (smaller than 1 s). Berger et al. (1989) estimated distinctly
different delays in response to vagal or sympathetic stimulations,
where vagal mediated changes begin almost immediately (≈0.6 s) and
sympathetic mediated changes may begin after 1.7–2 s. Therefore,
comparisons between Figs. 4(b) and 5 we may suggest that the
correlation between VLF and LF plays a critical role to determine
whether well-harmonized homeostasis exists in heart rate
fluctuations.

Till to now, several authors have studied nonlinear measures in
order to test their feasibility to identify changes in autonomic nervous
system. In particular, Hagerman et al. disrupted the autonomic
nervous activity to the heart with propranolol and atropine and
found a reduction in the largest Lyapunov exponent (Hagerman et al.,
1996). This confirms the potential value of using measures of
nonlinear dynamics as a tool for evaluating autonomic nervous
system to the heart. Interestingly, Hagerman et al. could not totally
eliminate the nonlinear structures in HRV by using combined
blockade. Thus they concluded that other mechanisms like circulating
hormones, preload, or afterload contribute to the nonlinearity in HRV.
Here, we give an example to address the underlying mechanisms of
HRV could be beyond the only consideration of autonomic nervous
activities. It is no doubt that the function of brainstem is strongly
related to autonomic nervous activities. However, we analyzed R–R
intervals of a little boy (4 years old) with brainstem dysfunction, and
found the cross-correlation measure is around 0.81, which has no
significant difference with those of normal subjects (see Table 1). This
finding suggests that HRV could be from many factors rather than
from autonomic nervous system, e.g., the classic Windkessel model.
The detailed results of brainstem dysfunction will be published in
elsewhere.

We would like to give more detailed remarks to address the
possible difference between linear and nonlinear diagnoses. It is well
known that linear SDNNmethod has a low accuracy for predicting the
occurrence of life-threatening arrhythmias. What is the shortcoming
of the SDNN method? We think it is a naturally born with problem. It
is well accepted that cardiac dynamics is highly nonlinear. Bifurca-
tions, chaos, and dynamical heterogenesis are all explored via
experimental as well as theoretical studies in mammalian (Focus
issue, 2002). A pronounced example of life-threatening arrhythmias is
to consider ventricular tachycardia (VT), which is regarded as
initiating abnormal/complicated spiral activities in ventricular tissue
(Focus issue, 2002; Shiau et al., 2004). Intuitively, detecting spiral
characteristics shall be analogous to HRV during VT period. These
spirals are under the control of nonlinear evolution, therefore, the
discovery of complexities buried in the nonlinear spiral could be
beyond the capability of the linear method.

Finally, we would like to make our analyzed data available for
analysis by other interested researchers. We wish that our data could
be useful to the community of researchers.

5. Conclusions

Based upon the hypothesis of RSA fluctuations as a stochastic
source, using the methods of noise reduction and angle map to extract
the well-harmonized deterministic structure from R–R intervals is of
great interest in both cardiac dynamics and nonlinear theory, where
the concept of the interaction between different oscillators is suitable
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to interpret our findings. Significant reduction of the contribution of
the HF component, fixed heart rate is verified as intrinsically unstable,
which could be influenced by both VLF and LF components.
Particularly, the cross-correlation measure between the theoretical
angle map and the numerically derived angle trajectory provides an
additional non-invasive index in clinical research. Moreover, a simple
physiologic model under the consideration of the influence of time
delay in the human baroreceptor-mediated reflex is used to explain
the clinical data. We wish that the discovery of well-harmonized
homeostasis in heart rate fluctuations can raise more attractive
studies in the future.
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