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Abstract—In traditional decision (classification) tree algorithms, the label is assumed to be a categorical (class) variable. When the

label is a continuous variable in the data, two possible approaches based on existing decision tree algorithms can be used to handle

the situations. The first uses a data discretization method in the preprocessing stage to convert the continuous label into a class label

defined by a finite set of nonoverlapping intervals and then applies a decision tree algorithm. The second simply applies a regression

tree algorithm, using the continuous label directly. These approaches have their own drawbacks. We propose an algorithm that

dynamically discretizes the continuous label at each node during the tree induction process. Extensive experiments show that the

proposed method outperforms the preprocessing approach, the regression tree approach, and several nontree-based algorithms.

Index Terms—Decision trees, data mining, classification.
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1 INTRODUCTION

DATA mining (DM) techniques have been used exten-
sively by many businesses and organizations to

retrieve valuable information from large databases and
develop effective knowledge-based decision models. Clas-
sification is one of the most common tasks in data mining,
which involves developing procedures for assigning objects
to a predefined set of classes. Main classification methods
existing today include decision trees, neural networks,
logistic regression, and nearest neighbors.

Decision trees (DTs) have been well recognized as a very
powerful and attractive classification tool, mainly because
they produce easily interpretable and well-organized results
and are, in general, computationally efficient and capable of
dealing with noisy data [1], [2], [3]. DT techniques build
classification or prediction models based on recursive
partitioning of data, which begins with the entire training
data; split the data into two or more subsets based on the
values of one or more attributes; and then repeatedly split
each subset into finer subsets until meeting the stopping
criteria. Many successful applications have been developed
in, for example, credit scoring [4], fraud detection [5], direct
marketing, and customer relationship management [6].

In developing DT algorithms, it is commonly assumed that
the label (target variable) is a categorical (class) variable or a
Boolean variable, i.e., the label must be in a small, discrete set

of known classes. However, in many practical situations, the
label is continuous in the data, but the goal is to build a DT and
simultaneously develop a class label for the tree. For example,
in the insurance industry, customer segments based on the
losses or claim amounts in the insured period predicted by
relevant risk factors are often created for setting insurance
premiums. Furthermore, in supply chain planning, custo-
mers are grouped based on their predicted future demands
for mapping with products or supply channels [7].

Two possible approaches based on existing decision tree
algorithms can be used to handle these situations. For
convenience in our discussion, we call these Approach 1
and Approach 2, respectively. Approach 1 uses a data
discretization method in the preprocessing stage to convert
the continuous label into a class label defined by a finite set
of disjoint intervals and then applies a decision tree
algorithm. Popular data discretization methods include
the equal width method [8], the equal depth method [9],
the clustering method [10], the Monothetic Contrast
Criterions (MCCs) method [11], and the 3-4-5 partition
method [12]. Many researchers have discussed the use of a
discretization method in the preprocessing stage of
Approach 1 (see [13], [14], [15], [16], [17], [18], [19]).
Approach 2 simply applies a regression tree algorithm,
such as Classification and Regression Trees (CARTs) [20],
using the continuous label directly.

However, these two approaches have their own draw-
backs. In applying Approach 1, the discretization is based on
the entire training data. It is very likely that the results cannot
provide good fits for the data in leaf nodes because the general
goal of a tree algorithm is to divide the training data set into
more homogeneous subsets in the process of constructing a
tree. We provide an illustration in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2009.24, to
support this claim. Using the second approach, the size of a
regression tree is usually large, since it takes many nodes to
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achieve small variations in leaf nodes [21]. Furthermore, the
prediction results are often not very accurate [22].

We aim to develop an innovative DT algorithm, namely
Continuous Label Classifier (CLC), for performing classifica-
tion on continuous labels. The proposed algorithm has the
following two important features:

1. The algorithm dynamically performs discretization
based on the data associated with the node in the
process of constructing a tree. As a result, the final
output is a DT that has a class assigned to each
leaf node.

2. The algorithm can also produce the mean, median,
and other statistics for each leaf node as part of its
output. In other words, the proposed method is also
capable of producing numerical predictions as a
regression tree algorithm does.

We conduct extensive numerical experiments to evaluate
the proposed algorithm, which includes mainly compar-
isons with Approaches 1 and 2 and several nontree-based
methods. We implement Approach 1 as follows: apply C4.5
as the DT algorithm using the class label generated by
discretization based on equal depth, equal width, k-means,
or MCC in the preprocessing stage. We use CART as the
regression tree algorithm for Approach 2. In addition, we
compare the proposed algorithm with several nontree-based
methods, including naı̈ve Bayes, K-nearest neighbor (K-
NN), support vector machine for classification (LibSVM)
[23], simple linear regression (SLR), multiple linear regres-
sion (MLR), and support vector machine for regression
(SVMreg) [24].

Seven real data sets are included in the experiment, and
cross validation is used in our evaluation. We apply the
10-fold cross-validation (CV) scheme to large data sets, and
the fourfold CV to small data sets. We use accuracy,
precision, mean absolute deviation (MAD), running time,
and memory requirements as the comparison criteria. Note
that accuracy measures the degree to which we can correctly
classify new cases into their corresponding classes, and
precision reflects the tightness (widths) of the intervals that
the class label is defined. These two criteria are potentially
conflicting because when precision is low (wider intervals
are used), it is easier to achieve higher precision, and vice
versa. Therefore, these two criteria are used simultaneously

in our evaluation. Finally, MAD is used to compare
numerical predictions, in particular, by the proposed
approach and Approach 2.

The experimental results show that the proposed
algorithm can outperform Approach 1 and the nontree-
based methods in both accuracy and precision. We also find
that the proposed algorithm is capable of producing more
accurate numerical predictions than CART.

The remainder of this paper is organized as follows: In
Section 2, we formally state the problem. We introduce the
proposed algorithm in Section 3. An extensive numerical
evaluation is performed in Section 4. We review related
work in Section 5 and give a conclusion and discuss several
possible extensions in Section 6.

2 PROBLEM STATEMENT

Before giving a formal problem statement, we use a simple
example to describe the problem and its requirements and
expected results. Consider the training data given in Table 1,
which contains 15 cases (records) with Expenditure as the
(continuous) label and Gender, Marital Status, and Depen-
dent Status as potential predictors.

Suppose that a DT algorithm produces the tree shown in
Fig. 1. As in a typical DT, each internal node corresponds to
a decision based an attribute and each branch corresponds
to a possible value of the attribute. Using this tree, we can
predict the range of Expenditure for a customer with a
specific profile. Note that the range of Expenditure at a leaf
node is not obtained by a discretization method in the
preprocessing stage, but that is determined using the data
distribution at the node after the tree has been developed.
When a class label is a desired output of the algorithm, we
may use the intervals in Expenditure determined by the
data at the leaf nodes to define the classes for the label.

The problem is formally defined as follows. Suppose that
the data for developing a DT have been randomly divided
into the training and test sets. Let D denote the training set
and jDj the number of cases in D. The goal is to develop the
CLC algorithm for constructing a decision tree T ¼ ðV ;EÞ
using D, where E is the set of branches and V is the set of
nodes in the tree. We can use the test set to evaluate the tree
obtained from the training set. For each case in the test set,
we traverse the DT to reach a leaf node. The case is correctly
classified if its value of the continuous label is within the
range of the interval at the leaf node. We use the percentage
of correctly classified cases as the measure for the
DT’s accuracy. In addition, we apply the DT to the test set
and use the average length of the intervals at the leaf nodes
as the measure for the DT’s precision. We aim to construct a
DT and simultaneously develop a class label with the best
performance in precision and accuracy from a data set
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TABLE 1
A Training Data Set with 15 Customers

Fig. 1. A DT built from the training data set in Table 1.



containing a continuous label. For convenience in presenta-
tion, we use “label” as the continuous variable in the
original data and “class label” as an output of the algorithm
hereafter in the paper.

3 THE PROPOSED ALGORITHM

The CLC algorithm generally follows the standard frame-

work of classical DT methods, such as ID3 [25] and C4.5 [26].

The main steps of the algorithm are outlined as follows:

1. CLC (Training Set D);

2. initialize tree T and put all records of D in the root;

3. while (some leaf vb in T is a non-STOP node);
4. test if no more splits should be done from node vb;

5. if yes, mark vb as a STOP node, determine its

interval and exit;

6. for each attribute ar of vb, do

evaluate the goodness of splitting node vb with

attribute ar;

7. get the best split for it and let abest be the best split

attribute;
8. partition the node according to attribute abest;

9. endwhile; and

10. return T .

Using Steps 4 and 5 of the algorithm, we determine the
nodes at which the tree should stop growing and the ranges
of the intervals for defining (the classes of) the class label.
Steps 6 and 7 are used to select the attribute for further
splits from a node. Let Gðvb; arÞ denote the goodness of
splitting node vb 2 V with attribute ar, and range(vb) the
interval with the smallest and largest label values in vb as
the endpoints. Using these definitions, we rewrite steps 6
and 7 into the following more detailed steps:

6. For each splitting attribute ar

a. For each descendant node vk of vb
Determine a set of nonoverlapping intervals

IV(vk) according to the data at node vk, where all

these intervals are covered by range(vk).
b. From all IV(vk), determine Gðvb; arÞ, the good-

ness of splitting vb with ar.
7. The attribute with the maximum goodness value is

the split attribute at vb.

We use three sections to explain the following key steps

in the algorithms:

1. (Step 6a) Determine a set of nonoverlapping inter-
vals at node vk 2 V .

2. (Step 6b) Determine G(vb; ar) from all IV(vk), where
vb is the parent node and vk includes all descendant
nodes generated after splitting.

3. (Steps 4 and 5) Stop tree growing at a node and
determine an interval for defining the class at the
leaf node for the class label.

3.1 Determining Nonoverlapping Intervals at vk

We use an example to illustrate Step 6a because the procedure

is quite complex. A formal and detailed description is given

in Appendix B, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TKDE.2009.24. In general, a distance-based partition

algorithm is used to develop a set of nonoverlapping

intervals IV(vk), following the distribution of the label at

descendant node vk.
For example, the label in Fig. 2a ranges from 10 to 90.

Since there are only few numbers between 30 and 50, we
may partition the range into three smaller, nonoverlapping
intervals: 10-25, 60-65, and 75-90, as shown in Fig. 2b. These
nonoverlapping intervals are found through the following
three phases.

1. First, a statistical method is used to identify “noise
instances,” which may be outliers or results of
errors. These instances can cause overfitting pro-
blems and are not likely to be seen in the test set or
new data. Hence, in order to successfully find a good
set of nonoverlapping intervals, we must first
remove noise instances.

To identify a noise instance, we count the number
of cases in its neighboring ranges. If the number is
small, we treat it as a noise instance and remove the
cases associated with it from the process of forming
the nonoverlapping intervals. For example, suppose
that the neighboring range of Ci is determined by
Ci � 16. From the data shown in Fig. 2a, the
neighboring range for C5 is from 24ð40� 16 ¼ 24Þ
to 56ð40þ 16Þ and C8 from 49ð75� 16Þ to 81ð75þ 16Þ,
etc. The number of cases within the neighboring
ranges for all the label values are {C1:33, C2:28, C3:27,
C4:28,C5:10,C6:11,C7:24,C8:29,C9:35,C10:27,C11:28}.
We treat C5 and C6 as noise instances and exclude
them and their corresponding data from further
consideration because their numbers are small.

2. After removing the noise instances, we divide the
remaining data into groups based on the distances
between adjacent label values. If the distance is
large, we assign them to different groups. Following
the same example, we found a large distance
between C4 and C7 as shown in Fig. 3a (after
removing C5 and C6). Therefore, we divide the data
into two groups, where Group 1 ranges from 10 to
25, as shown in Fig. 3b, and Group 2 ranges from 60
to 90, as shown in Fig. 3c.

3. We consider further partitions for the groups
obtained in the last step by identifying possible
splitting points in each group. For example, suppose
that we identify “C8” as a splitting point for Group 2,
as shown in Fig. 4a. We may divide the group into
two new groups: Group 2A ranging from 60 to 65 in
Fig 4b and Group 2B ranging from 75 to 90 in Fig. 4c.

As mentioned, we give a brief and informal introduc-
tion to the development of nonoverlapping intervals at
an internal node. A formal presentation is given in
Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2009.24.

3.2 Computing the Goodness Value

Let RLði;jÞ be the interval covering Ci to Cj and vk be a
descendant node of vb. Suppose that after applying Step 6a

HU ET AL.: A DYNAMIC DISCRETIZATION APPROACH FOR CONSTRUCTING DECISION TREES WITH A CONTINUOUS LABEL 1507



1508 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 11, NOVEMBER 2009

Fig. 3. The second phase: Find nonoverlapping intervals based on the distances between adjacent label values. (a) Data after removing C4 and C5.

(b) Group-1. (c) Group-2.

Fig. 4. The third phase: For each interval, further partition it into smaller intervals if necessary. (a) Group-2. (b) Group-2A. (c) Group-2B.

Fig. 2. Step 6a generates IV(vk) according to the data in vk. (a) Data distribution at a node and (b) Three intervals.



to partition the data in vk, we have obtained a set of
nonoverlapping intervals IV ðvkÞ ¼ fRLu1;u2

; RLu3;u4
; . . . ;

RLu2s�1;u2s
g. Let jIV ðvkÞj denote the number of intervals in

IV(vk) and jRLði;jÞj ¼ Cj � Ci. Let D(vk) be the data
associated with node vk and jDðvkÞj be the number of cases
at node vk.

Our goal is to compute Gðvb; arÞ, the goodness of
splitting vb with ar, from all IV(vk), which requires that we
first obtain the goodness value for each descendant node vk,
denoted by GðvkÞ and then evaluate the following formula:

Gðvb; arÞ ¼
X

for all k

jDðvkÞj
jDðvbÞj

GðvkÞ:

The goodness value of node vk;G(vk) is computed from
IV(vk). A larger G(vk) suggests that the intervals in IV(vk)
form a better partition for the class label. In this paper, we
define G(vk) based on three factors.

The first one is the standard deviation, which is used to
measure the degree of concentration of the data at a node. A
small standard deviation is desired because the data are
more concentrated. We use Dev(vk) to denote the standard
deviation at node vk.

The second factor is the number of intervals ðjIV ðvkÞjÞ. A
smaller number of intervals suggest that the data at the
node are more concentrated in a smaller number of ranges.
Therefore, we have a higher probability of correctly
classifying future data into the correct interval or a higher
accuracy level.

The third factor is the length of intervals. The intervals
should be as tight as possible, since shorter intervals imply
higher precision. Therefore, we define CR(vk), the cover
range of node vk, as

where vb is the parent node of vk. We will use the example
in Figs. 2a and 2b to show the calculation of CR(vk). From
the information given by the figures, we obtain

IV ðvkÞ ¼ fRLð1;4Þ; RLð7;8Þ; RLð9;11Þg;
jRLð1;4Þj ¼ 25� 10 ¼ 15; jRLð7;8Þj ¼ 65� 60 ¼ 5; and

jRLð9;11Þj ¼ 90� 75 ¼ 15:

Assuming that jrangeðvbÞj ¼ 100� 0 ¼ 100; CRðvkÞ is given
as

Since the goodness of a node is better if it has lower
standard deviation and fewer and tighter intervals, we
define the goodness value of node vk as

GðvkÞ ¼
1

DevðvkÞ
� 1

log2ðjIV ðvkÞj þ 1Þ �
1

CRðvkÞ
:

Finally, we select the attribute with the largest goodness
value as the splitting attribute to complete Step 6b.

3.3 Stopping Tree Growing

Let R be the range of the label for the entire training set D,
majority be the interval in IV(vb) containing the “majority” of
the data at a node, percent(vb, majority) be the percentage of the
data at vb whose label values are in majority, and length(ma-
jority) be the length of majority. If one of the following
conditions is met, we stop splitting at node vb. Otherwise, we
attempt to produce further splits from the node.

1. All the attributes have been used in the path from
the root to vb.

2. percent(vb, majority) > �DR && length(majority)/
R < �LN, where �DR and �LN are two given thresholds.

3. jDðvbÞj=jDj < �D, where �D is a given threshold.
4. The goodness value cannot be improved by addi-

tional splits.

When we stop growing at vb, we assign the interval
covering most of the data (i.e., the majority interval) as the
range for the class associated with the node. Before we
finalize a majority interval, we try to merge it with adjacent
intervals if it can cover more cases without losing too much
precision. After we have determined that no more merges
are possible, the majority intervals are used to define the
classes associated with the leaf nodes, and thus, the class
label for the tree.

4 PERFORMANCE EVALUATION

In Table 2, we list the data sets used in the experiments,
which were downloaded from the UCI Machine Learning
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Repository [27]. Four data sets—DS-3, DS-5, DS-6, and DS-7

—were adopted without changes because they have

continuous labels. The remaining three data sets—DS-1,

DS-2, and DS-4—have class labels. We use a continuous

variable in the same data set as the label. We implemented

the proposed algorithm in the Java language under the

Microsoft XP operating system on a PC with a Pentium 4,

2 GHz processor and 1,024 MB main memory.
As discussed in Section 3.3, three thresholds, �LN; �DR,

and �D, are used in the CLC algorithm to control the tree

growth. In the algorithm, one stopping condition is based

on whether the length of the majority interval is tight

enough (controlled by �LN) and whether the amount of data

in the majority interval is sufficient (controlled by �DR).

Another stopping condition is based on whether the

amount of data in the node is small enough (controlled by

�D). In our pretest experiment, we observed the results of

the CLC algorithm by varying the values of these three

threshold values. After the pretest, we selected the best

combination of the values for each data set and used them

as the predetermined thresholds in constructing the DT.

Table 3 contains these values and the precision and

accuracy evaluated from cross validation of the results

obtained by the CLC algorithm.
To evaluate the performance of the CLC algorithm, we

performed the X-fold cross validation for each data set

according to the following steps:

1. Divide the entire data set into X equal-sized subsets
using stratified sampling.

2. For each subset, build a decision tree based on all data
not belonging to the subset, and compute the accuracy
and the precision using the data in the subset.

3. Obtain the average of the X accuracy rates as the
accuracy of this cross-validation run.

For small-size data sets, the test results may be biased if

we set X too large. Therefore, we set X ¼ 4 for small data

sets including DS-1, DS-3, DS-4, DS-5, and DS-6. For large

data sets, DS-2 and DS-7, we set X ¼ 10. In each of the

X cross-validation test runs, the same parameter settings,

including the seed values of random numbers for partition-

ing the data, were used for all the algorithms.
Three experiments were performed. The first is to

compare CLC and C4.5 with four popular data discretiza-

tion methods. The second is to compare CLC and CART.

The third includes two comparisons: one in the running

times of CLC, C4.5, and CART, and the other in the
accuracies of CLC and several nontree-based methods.

4.1 First Experiment: Comparing CLC and
Approach 1

In this experiment, we use accuracy and precision as our
evaluation criteria, where precision is defined as

1� the averge interval length of all test data

the total range of class labels in the data set
:

In other words, a higher precision implies tighter
prediction intervals.

We select four unsupervised discretization methods
proposed by Dougherty et al. [12] to convert a label into a
class label defined by k intervals, using the equal width,
equal depth, k-means clustering, and MCC methods. These
four discretization methods are discussed later in Section 5.
After preprocessing, we use C4.5 with the class label
produced by discretization to construct a decision tree.
For convenience, we use EW-T to denote the approach of
using C4.5 with the equal width discretization to build
decision trees. Similarly, ED-T, KM-T, and MCC-T refer to
the approaches of using C4.5 with the equal depth,
k-means, and MCC preprocessing methods, respectively.

We first compare CLC with EW-T. For a fair comparison,
we set the width of the bins in equal width discretization
equal to the average interval length of the leaf nodes when
we use a tree produced by CLC to classify the test data. This
allows us to compare the accuracies of the two methods
under the same precision level. The results of the compar-
ison are given in Table 4, which clearly indicates that the
average accuracy of the trees built by CLC is significantly
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TABLE 4
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higher than that of EW-T. Furthermore, the results also
suggest that CLC produces more reliable trees because the
variation in accuracy is consistently much smaller.

We further vary the number of bins k from 2 to 12 in
comparing CLC with ED-T, KM-T, and MCC-T. Fig. 5 is a
scatter plot used to compare CLC and ED-T in both
accuracy and precision. Each point in the figure represents
the accuracy and precision combination when a method is
applied to a data set. All of the points associated with
CLC are in the upper right part of the figure, implying
that the CLC algorithm produces results with both higher
accuracy and precision. We let Zone A be the minimum
rectangular area that covers all CLC’s points. The figure
clearly shows that all the points associated with ED-T fall
in the left side, the lower side, or the lower left of Zone A,
suggesting that they have either lower accuracy, lower
precision, or both. We also find that using more bins in
ED-T results in lower accuracy but higher precision.

Fig. 6 is a scatter plot for comparing CLC and KM-T. As
defined before, Zone A is the minimum area covering the
results associated with CLC. Although three points asso-
ciated with KM-T fall into Zone A, the overall conclusion is
still that CLC outperforms KM-T.

Fig. 7 is used to compare CLC and MCC-T. Since none of

MCC-T-related points fall in Zone A, we conclude that CLC

outperforms MCC-T.

4.2 Second Experiment: CLC and Regression Trees

In this section, we compare CLC with the popular regression

tree algorithm, CART. To be consistent, we use the average

as the numerical predicted value at each leaf node for both

algorithms. Two criteria are used in the comparison: 1) MAD

and 2) w-STDEV: weighted standard deviation.
We define MAD as follows:

MAD ¼ 1

N

XN
i¼1

1

R
jxi � P ðxiÞj

 !
;

where N is the total number of test cases, R is the total

range of the test data, and xi and P (xi) are the actual and

predicted values of the ith test case, respectively. We

further define w-STDEV as follows:

w� STDEV ¼
X

for all leaf node vi

jDðviÞj
N

� STDEV ðviÞ;
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Fig. 5. A comparison between CLC and ED-T.

Fig. 6. The comparison between CLC and KM-T.

Fig. 7. A comparison between CLC and MCC-T.



where jDðviÞj is the number of cases at leaf node vi and
STDEV(vi) is the standard deviation of the data at the leaf
node vi.

The results reported in Table 5 indicate that CLC
produces more accurate and reliable numerical predictions
than CART because its MAD and w-STDEV values are
consistently smaller.

4.3 Third Experiment: Supplementary Comparisons

First, we compare the running times of CLC and two
decision tree algorithms, C4.5 and CART. In the compar-
ison, we vary the data size to observe the performances of
these algorithms as the data size increases. Two data sets,
DS-6 and DS-7, are selected for the comparison. We
duplicate these two data sets repeatedly until reaching the
intended sizes. The running times and memory require-
ments are reported in Figs. 8 and 9, respectively. As
expected, the time increases as the data size increases, and
CLC consumes more time than the other two algorithms,
mainly because it performs discretization at each node.
However, its running time still stays within a very reason-
able range when the data size is fairly large. It is worth
noting that, in constructing a decision tree or a classification
algorithm, in general, accuracy is usually much more
important than the running time for developing a tree.
This is because a tree could be used repeatedly before it
needs updates or revisions.

In Fig. 9, we show the memory requirements for the
three algorithms. As expected, memory use increases as
data size increases. The results also indicate that all three
algorithms are efficient because the increase in memory use
is not as fast as that in data size.

Next, we compare CLC with three nontree-based
classification algorithms—Naı̈ve Bayes, K-Nearest Neigh-
bor (K-NN), and Support Vector Machine—for classifica-
tion (LibSVM) [23], and another three nontree-based
prediction algorithms—SLR, MLR, and Support Vector

Machine—for regression (SVMreg) [24]. We follow the
procedure used in Section 4.1 to convert the labels of the
data sets into class labels. Consequently, the comparison is
focused on accuracy while precision remains the same for
all the algorithms of interest. The results of the comparison
are listed in Tables 6 and 7, respectively, for classification
and prediction algorithms. We find the results in Table 6
are very similar to those in Table 4, suggesting that CLC
outperforms the three nontree-based algorithms. Further-
more, CLC has a smaller variation in accuracy, which
implies that the performance of CLC is more consistent.
Table 7 shows that CLC has the smallest MAD values in all
the data sets except one situation, where SVM(SVNreg) has
a slightly small MAD for DS-2. This confirms that CLC
performs well against the three nontree-based prediction
algorithms.

5 RELATED WORK

Many classification methods have been developed in the
literature, including DT, Bayesian, neural networks,
k-nearest neighbors, case-based reasoning, genetic algo-
rithm, rough sets, and fuzzy sets [28], [29]. DT is probably
the most popular and widely used because it is computa-
tionally efficient and its output can easily be understood and
interpreted.

There are two types of DTs according to the type of the

label: regression trees and classification trees [20]. The goal

of a regression tree is to predict the values of a continuous

label. It is known that, compared to other techniques, a

regression tree has the disadvantages of generally requiring

more data, being more sensitive to the data, and giving less

accurate predictions [22]. Main existing regression tree

algorithms are CART [20], CHAID [30], and QUEST [31].

Classification trees, the second type of DTs, attempt to
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Fig. 8. The effects of the data size on running time. Fig. 9. The effects of the data size on memory requirement.



develop rules for class labels. Quinlan developed the
popular ID3 and C4.5 algorithms [26], [32].

Continuous data discretization, another area related to
this paper, has recently received much research attention.
The simplest discretization method, equal width, merely
divides the range of observed values into a prespecified
number of equal, nonoverlapped intervals. As Catlett [33]
pointed out, this method is vulnerable to outliers that may
drastically skew the results. Another simple method, equal
depth, divides the range of the data into a prespecified
number of intervals, which contains roughly the same
number of cases. Another well-known method, MCCs [11],
divides the range of the data into k intervals by finding
the partition boundaries that produce the greatest contrast
according to a given contrast function. The clustering
method or the entropy method can be used to perform the
same task [12]. These popular data discretization methods
have been commonly used in the preprocessing phase
when constructing DTs with continuous labels and have
also been applied in various areas, such as data stream
[17], [18], software engineering [19], Web application [14],
detection [15], [16] and others [13].

As discussed in Section 1, the weakness of the
preprocessing approach using a discretization method is
that it is inherently a static approach, which essentially
ignores the likelihood that the data distributions could be
dramatically different at different nodes. This motivates our
approach, which dynamically discretizes data at each node
in the tree induction process. As shown in the last section,
the proposed algorithm outperforms the preprocessing
approach, the regression tree approach, and several non-
tree-based algorithms.

6 CONCLUSION

Traditional decision tree induction algorithms were devel-
oped under the assumption that the label is a categorical
variable. When the label is a continuous variable, two major
approaches have been commonly used. The first uses a
preprocessing stage to discretize the continuous label into a
class label before applying a traditional decision tree
algorithm. The second builds a regression tree from the data,
directly using the continuous label. Basically, the algorithm
proposed in this paper was motivated by observing the

weakness of the first approach—its discretization is based on
the entire training data rather than the local data in each
node. Therefore, we propose a decision tree algorithm that
allows the data in each node to be discretized dynamically
during the tree induction process.

Extensive numerical experiments have been performed
to evaluate the proposed algorithm. Seven real data sets are
included in the experiments. In the first experiment, we
compare our algorithm and C4.5 with the traditional
preprocessing approach including the equal depth, equal
width, k-means, and MCC methods. The results indicate
that our algorithm performs well in both accuracy and
precision. In the second experiment, we compare our
algorithm with the popular regression tree algorithm,
CART. The results of the experiment show that our
algorithm outperforms CART. In the third experiment, we
provide two supplementary experiments, including com-
paring the running times of our algorithm and C4.5 and
CART, and comparing the performances of our algorithm
and several nontree-based classifiers and prediction algo-
rithms. The results also confirm the efficiency and accuracy
of the proposed algorithm.

This work can be extended in several ways. We may
consider ordinal data, which have mixed characteristics of
categorical and numerical data. Therefore, it would be
interesting to investigate how to build a DT with ordinal
class labels or intervals of ordinal class labels. Furthermore, in
practice, we may need to simultaneously predict multiple
numerical labels, such as the stock price, profit, and revenue
of a company. Accordingly, it is worth studying how to build
DTs that can classify data with multiple, continuous labels.
Finally, constraints may exist on the selection of intervals to be
used to define a class label. For example, if the income is the
label of the data, we may require that the boundaries of all
intervals be rounded to the nearest thousand. We may add
this constraint or even a set of user-specified intervals in the
problem considered in this paper.
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