
Information Sciences 179 (2009) 967–979
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Building a cost-constrained decision tree with multiple condition attributes

Yen-Liang Chen a,*, Chia-Chi Wu a, Kwei Tang b

a Department of Information Management, National Central University, No. 300, Jhongda Road, Chung-Li, Jhongli City 320, Taiwan, ROC
b Krannert School of Management, Purdue University, West Lafayette, IN 47907, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 February 2008
Received in revised form 16 November 2008
Accepted 19 November 2008

Keywords:
Data mining
Decision analysis
Cost-sensitive learning
Classification
Decision tree
0020-0255/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.ins.2008.11.032

* Corresponding author. Tel.: +886 3 4267266; fa
E-mail address: ylchen@mgt.ncu.edu.tw (Y.-L. Ch
Costs are often an important part of the classification process. Cost factors have been taken
into consideration in many previous studies regarding decision tree models. In this study,
we also consider a cost-sensitive decision tree construction problem. We assume that there
are test costs that must be paid to obtain the values of the decision attribute and that a
record must be classified without exceeding the spending cost threshold. Unlike previous
studies, however, in which records were classified with only a single condition attribute, in
this study, we are able to simultaneously classify records with multiple condition attri-
butes. An algorithm is developed to build a cost-constrained decision tree, which allows
us to simultaneously classify multiple condition attributes. The experimental results show
that our algorithm satisfactorily handles data with multiple condition attributes under dif-
ferent cost constraints.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Classification, which is a data mining task, necessitates the building of a model or a classifier for a given set of pre-clas-
sified examples in order to classify categories of new events [19]. Of the numerous approaches, decision trees are probably
the most common of the classification models [1,7] and have been successfully used in various applications, including med-
icine, manufacturing, production, financial analysis, astronomy, and molecular biology [5]. Existing studies have identified
several advantages to the use of decision trees: no domain knowledge is needed for classification, they are able to handle
high dimensional data, they are intuitive and generally easy to comprehend, they are simple and fast, and they have good
accuracy [5].

Basically, a decision tree is nothing but a directed acyclic graph containing a root, a set of nodes, and a set of edges. Within
the decision tree, an internal node denotes the test of a decision attribute, a branch represents the outcome of this test, and a
leaf node is associated with a condition attribute label. Fig. 1 shows a decision tree with the condition attribute ‘‘B_Car”,
which indicates whether a customer will buy a car or not (1 = buy; 0 = not buy).

Most decision tree algorithms are designed for the classification of data with a single condition attribute. In many real
world applications, however, we need more than one condition attribute per record. For example, a bank not only needs
to evaluate a customer’s credit rating but also needs to be able to predict his/her likelihood to ask for a loan in the near fu-
ture. In medical diagnosis, the doctor needs to diagnose many kinds of diseases based upon test results and patient symp-
toms. In both cases, it is necessary to predict the values of multiple condition attributes according to a given set of decision
attributes.

To the best of our knowledge, no previous decision tree studies have ever addressed the issue of classifying multiple
condition attributes. This is not surprising, because if no costs are associated with the decision attributes or if there are
. All rights reserved.

x: +886 3 4254604.
en).

mailto:ylchen@mgt.ncu.edu.tw
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

<=30
30…40

>40

yes no

yes no

medium low

Age

tnedutS tnedutS

Income

1

0

0

0
 1

 1

high

 1

Fig. 1. Example of a decision tree.

968 Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979
no budgetary concerns, the multiple condition attributes problem can be solved independently by building a decision tree for
each condition attribute. For example, if the physician needs to ascertain the potential for four different kinds of disease,
there is no need to build a decision tree to determine all four disease potentials simultaneously. Instead, separate decision
trees can be built to determine each of these four diseases.

Unfortunately, building independent decision trees for each condition attribute does not work when classifying multiple
condition attributes under a total budgetary constraint. The difficulty lies in the fact that these decision trees may share
some common decision attributes. For example, when determining multiple disease potentials there may be some common
tests that can be used. The first time the test is done, we, of course, need to expend money to obtain it. Afterwards however,
the previously obtained test results can be used to determine other potential diseases without accruing any additional cost.
In other words, the cost of a test occurs only once, no matter how many times its results are used. In these types of situations,
traditional approaches may encounter the following difficulties:

(1) It is difficult to determine how much of the budget should be allocated to classifying a condition attribute since there
are numerous budget allocation combinations for the condition attributes.

(2) Since the test results can be shared by multiple decision trees, these trees are not independent. Due to their inter-
dependency, they cannot be built independently.

To minimize these difficulties, we develop an algorithm which can be used to build cost-constrained decision trees to
classify multiple condition attributes. Our algorithm can assign a future record a label for each condition attribute, without
spending more on test costs. The structure and termination condition of the nodes in the decision tree are also altered to
adapt to this context. Fig. 2 shows an example of a cost-constrained decision tree with two condition attributes, B_Car
and Credit. In this tree, a label can be assigned to a condition attribute at an internal node, if the data in this node is discrim-
inating enough to determine the label (e.g., n3,n5,n6). A leaf node may include either one label (e.g., n7,n12,n17) or two labels
(e.g., n10,n18,n20).
04>03=<

30…40

yes no

high low

medium

yes no

low

medium

n1

n2 n3 n4

n5 n6
n7

n8

n9 n10

n11

n12 n14

high low

medium

high low

medium

high

n13

n15 n17

n16

n18 n20

n19

Student Student

Age

Income

Income Income Income

{(B_Car, 1)}

{(B_Car, 1)} {(B_Car, 0)}

{(Credit, 0),
(B_Car, 1)}

{(Credit, 0),
(B_Car, 0)}

{(Credit, 0)}

{(Credit, 0)} {(Credit, 0)}

{(Credit, 0)}

{(Credit, 1)} {(Credit, 1)}

{(Credit, 1)}

{(Credit, 1)}

{(Credit, 1)}
{(Credit, 1),
(B_Car, 1)}

{(Credit, 0),
(B_Car, 1)}

Fig. 2. Example of a cost-constrained decision tree with multiple condition attributes.

Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979 969
This study makes two significant contributions. First, we model a new decision tree problem, classifying multiple condi-
tion attributes under a cost constraint. Second, an algorithm is developed to solve the proposed problem. The remainder of
this paper is organized as follows. We first review some related work in Section 2. In Section 3, we formalize the problem
then introduce the algorithm in Section 4. The performance evaluation is presented in Section 5. Conclusions and suggestion
for future work are discussed in Section 6.

2. Related work

Many algorithms have been developed for decision tree induction. In most of these methods, an attempt is made to max-
imize classification accuracy without any consideration to cost; see for example, ID3 [14], C4.5 [15], CART [2], Quest [10], and
GATree [13]. Since classification in real world applications may involve different types of costs, such as misclassification
costs or test costs, much attention has been given to the cost-sensitive classification issue in recent decades. Discussions
of misclassification costs include [3,4,6]. Additionally, [11,12,16] have tried to balance classification accuracy and test costs.
In recent years, more and more attention has been focused on both misclassification costs and test costs, such as in
[8,9,17,18]. Instead of information gain, in the studies mentioned above, the sum of the misclassification and test costs
has been used as the splitting criterion for attribute selection. In some of these studies cost has been taken as an adjustment
function, in others cost has been regarded as a constraint, while in others, any kind of cost has been disregarded. All in all,
whether cost-sensitive or not, all these algorithms only classified a target record with a single condition attribute. As a con-
sequence, no previous algorithms have been able to solve problems where there are multiple condition attributes and where
a total cost constraint is specified.

3. Problem definition

Decision tree induction involves the building of a decision tree from a training dataset D, which consists of a collection of
records. A record dk, which is the kth record in D, consists of a number of decision and condition attribute values, as indicated
by the tuple in Fig. 3. It can be seen that there are m decision attributes and n condition attributes; ax (dk) is the value of the
xth decision attribute in dk, while cy (dk) is the label of the yth condition attribute in dk. An example, training dataset D is
shown in Table 1. Within the training dataset in Table 1, ‘‘Age”, ‘‘Income”, and ‘‘Student” are decision attributes that can
be tested, while ‘‘Credit” and ‘‘B_Car” are condition attributes that must be determined.

A decision tree T is a directed acyclic graph that contains a root, a set of nodes, and a set of edges. Fig. 2 shows a decision
tree built from the training dataset in Table 1. We use ni to denote the ith node in decision tree T. An internal node ni in the
decision tree is associated with a decision attribute s (ni), which splits ni. For example, in Fig. 2, n1 and n3 are internal nodes,
where s (n1) = ‘‘Age” and s(n3) = ‘‘Income”.

An important difference between our decision tree and traditional decision trees is that the labels for the condition attri-
butes can be determined at an internal node if this internal node’s data is discriminating enough. Let CLpair be a pair com-
posed of a condition attribute and its assigned label. A CLpair takes the form of (cy, ly), where cy is a condition attribute and ly
is a label of cy. For example, consider node n5 in Fig. 2 containing CLpair (‘‘B_Car”, 1). This means that label 1 is assigned to
condition attribute B_Car at node n5. For any node ni in a decision tree, we use L (ni) to denote the set of CLpairs attached to ni,
and O(ni) to denote the set of condition attributes that have not yet been determined in node ni. Semantically, L(ni) indicates
a1(dk) … am(dk) c1(dk) … cn(dk)

Fig. 3. Record format.

Table 1
Training data set D.

Record Age Income Student Credit B_Car

d1 <=30 High No 0 0
d2 <=30 High No 1 0
d3 31� � �40 High No 0 1
d4 >40 Medium No 0 1
d5 >40 Low Yes 0 1
d6 >40 Low Yes 1 0
d7 31� � �40 Low Yes 1 1
d8 <=30 Medium No 0 0
d9 <=30 Low Yes 0 1
d10 >40 Medium Yes 0 1
d11 <=30 Medium Yes 1 1
d12 31� � �40 Medium No 1 1
d13 31� � �40 High Yes 0 1
d14 >40 Medium No 1 0

970 Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979
which labels have been assigned to which condition attributes in node ni, and O(ni) are the remaining condition attributes
that still have no values in node ni. For example, O(n1) = {‘‘Credit”, ‘‘B_Car”} and L(n1) = /, O(n3) = {‘‘Credit”} and
L(n3) = {(‘‘B_Car”, 1)}, O(n10) = / and L(n10) = {(‘‘Credit”, 0), (‘‘B_Car”, 0)}.

There are many edges in a decision tree. We use an ordered pair hni,nji to denote an edge that links nodes ni and nj, where
ni is the father node of nj. Either a single value or an interval of values of s (ni) is assigned to edge hni,nji to represent the test
conducted there. For example, hn1, n3i in Fig. 2 is an edge that links n1 and n3. The interval ‘‘30� � �40” is assigned to this edge
to represent the condition that the age must be fall within the interval ‘‘30� � �40”.

As mentioned above, a decision tree is built from a training dataset D. Initially, all records in D are located at the root of
the decision tree. Afterwards, the dataset is partitioned according to each node’s tested attribute. The distribution of the re-
cords in Table 1, with respect to the decision tree in Fig. 2 is shown in Fig. 4.

We use Dni
to denote the set of records dk located in node ni. In Fig. 4 for example, we have Dn4 ¼ fd4; d5; d6; d10; d14g and

Dn6 ¼ fd1; d2; d8g. We use Dni
ðax ¼ vÞ to denote the subset of records dk 2 Dni

satisfying ax (dk) = v. For example,
Dn6 ð\income" ¼ \high"Þ ¼ fd1; d2g. In addition, we use Dni

ðcy ¼ lÞ to denote another subset of dk 2 Dni
satisfying cy (dk) = l.

For example, Dn4 ð\B Car" ¼ 0Þ ¼ fd6; d14g.
Conducting tests on decision attributes always creates costs. TestCost(ax) represents the cost of conducting a test for deci-

sion attribute ax. In Table 2, we set test costs for all the decision attributes in Table 1.
The total test cost for a record accumulates as this record goes through the internal node. Thus, we use ArrCost(ni) to de-

note the total cost required for a record to travel from the root to node ni. For example, in Fig. 2, the value of ArrCost(n5) is 16.
Given a training dataset with multiple condition attributes, the problem of building a cost-constrained decision tree with

multiple condition attributes can be defined as building a decision tree that maximizes the classification accuracy of all con-
dition attributes. Additionally, the total cost of classifying a record cannot exceed a given threshold maxcost.

4. The algorithm

In this section, we propose a new algorithm to classify multiple condition attributes with a cost constraint. The outline of
our algorithm is shown in Fig. 5. The framework looks like C4.5, however, to adjust to the context of the new problem, we
propose a new splitting criterion, a new node structure, and an additional adjusting phase. In this section, we demonstrate
our algorithm by using it with the training dataset shown in Table 1. The test cost of each attribute is listed in Table 2 and the
total cost maxcost is set at 16.

The new splitting criterion, the multi-dimensional information gain, is the most important part of the new algorithm and
will be introduced in Section 4.3. It stems from two other concepts, information need and distance, which are discussed in
Section 4.2. Furthermore, to formally define the information need, we must transform a set of condition attributes into a
Table 2
Test costs of decision attributes from Table 1.

ax TestCost (ax)

Age 6
Income 5
Student 10

n1

<=30
30…40

>40

yes no

high low

medium

yes no

low

medium

n2 n3 n4

n5 n6 n7

n8

n9 n10
n11

n12 n14

high low

medium

high low

medium

high

n13

n15 n17

n16

n18 n20

n19

d1~d14

d1, d2, d8,
d9, d11

d4, d5, d6,
d10, d14

d3, d7,
d12, d13

d1, d2,
d8

d9, d11

d9

d11

d1, d2

d8

d3, d13 d7

d12

d4, d14
d5, d6,

d10

d5, d6

d10

Fig. 4. Distribution of records in a decision tree.

Input:
Training dataset D,
Test cost of each decision attributes TestCost(ax) ,
Threshold of total test cost maxcost,
Label assignment threshold
Terminal node threshold

Output:
A cost constrained decision tree with multiple condition attributes.

Process:
1. Build an initial tree

 1.1. Starting with a single node, root
 1.2. For each non-leaf node, ni

 1.2.1. Perform label assignment test to determine if there /* see Section 4.5
are any labels that can be assigned.

 1.2.2. Select an attribute according to splitting criterion to /* see Section 4.4
 further split ni.
 1.2.3. If terminal condition is satisfied, stop splitting and /* see Section 4.6
 assign ni as a leaf node.

2. Update the bottom nodes in the tree built in step1. /* see Section 4.7

Fig. 5. Outline of our algorithm.

Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979 971
multi-dimensional attribute. The transformation is described in Section 4.1. Finally, all other details are given in Sections
4.4–4.6 and 4.7.

4.1. Multi-dimensional attribute (MDA)

For node ni, let O(ni) = {c1,c2, . . . ,cw} be the set of condition attributes that have not yet been determined in node ni. In this
way, we can transform the attribute set O(ni) into a multi-dimensional attribute (MDA). For example, O(ni) = {c1,c2, . . . ,cw} is
transformed into cMDAðniÞ ¼ ðc1; c2; . . . ; cwÞ. Accordingly, the labels of a record dk in ni can be represented as an MDA label,
which is a vector with w elements. Thus, we have cMDAðniÞðdkÞ ¼ ðc1ðdkÞ; c2ðdkÞ; . . . ; cwðdkÞÞ, where cy (dk) is the label of cy in
dk. We use MDL(ni) to denote the set of all possible MDA labels in ni, and let mdlz(ni) be the zth MDA label in MDL(ni). In
our example, since O(root) = {‘‘Credit”, ‘‘B_Car”}, we have cMDA(root) = (‘‘Credit”, ‘‘B_Car”), MDL(root) = {(0,0), (0,1), (1,0), (1,1)},
mdl1(root) = (0,0), mdl2(root) = (0,1), mdl3(root) = (1,0), and mdl4(root) = (1,1). Therefore, the training dataset in root can be
transformed into the form seen in Table 3.

4.2. Information need and distance

After transforming the condition attributes into an MDA, the information need proposed in ID3 can be applied. Therefore,
the expected information for the labels in ni can be given by InfoðDni

Þ ¼ �
PjMDLðniÞj

z¼1 pzlog2ðpzÞ, where pz is the probability of an
arbitrary record in Dni

with label mdlz(ni), and is estimated by
Table 3
Transfo

Record

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14
jrecords with label mdlzðniÞ in Dni
j

Dni

:

rmed root records.

Age Income Student (Credit, B_Car)

<=30 High No (0, 0)
<=30 High No (1, 0)
31� � �40 High No (0, 1)
>40 Medium No (0, 1)
>40 Low Yes (0, 1)
>40 Low Yes (1, 0)
31� � �40 Low Yes (1, 1)
<=30 Medium No (0, 0)
<=30 Low Yes (0, 1)
>40 Medium Yes (0, 1)
<=30 Medium Yes (1, 1)
31� � �40 Medium No (1, 1)
31� � �40 High Yes (0, 1)
>40 Medium No (1, 0)

972 Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979
In Table 3, there are four different MDA labels (0,0), (0,1), (1,0), and (1,1) in MDL(root), and their ratios are 2/14, 6/14, 3/14,
and 3/14, respectively. Therefore, the value of Info(Droot) is 1.877.

Traditional information need, however, does not reflect the distance between two MDA labels, which may cause bias. For
example, let us look at the two datasets shown in Fig. 6. The information needs of the two datasets are identical. In D1, how-
ever, all c1 labels are the same, while in D2, the ratio of c1 labels for 1 and 0 is 50:50. It is clear that D1 is better than D2,
because D1 can more easily correctly classify c1 than D2. For this reason, the distance within a dataset should be considered
for the traditional information need.

To estimate the average distance within a dataset, we first define the distance between two records. Suppose d1 and d2 are
two records in ni and O(ni) = {c1,c2, . . . ,cw}. Disni

ðd1; d2Þ, the distance between these two records in ni, is defined asPw

y¼1
ðcyðd1Þ�cyðd2ÞÞ

w , where cy(d1) � cy(d2) = 0 if cy(d1) = cy(d2), else cy(d1) � cy(d2) = 1, and w is the number of elements in O(ni).
Consider the sample dataset Dni

shown in Fig. 7. If O(ni) = {c1,c2}, the distance between d1 and d2 is ð1�1Þþðc�dÞ
2 ¼ 1

2.
The average distance within a dataset ADisðDni

Þ is the average distance between any two records in this dataset. Let dj and
dk be the jth and kth record in Dni

, respectively. Now, we define the function of ADisðDni
Þ as
ADisðDni
Þ ¼

PjDni
j

j¼1

P
k<jðDisni

ðdj; dkÞÞ
jDni
j � ðjDni

j � 1Þ � 1
2

:

Although the above formula is correct, the computation may be time-consuming for large datasets. Since many labels in the
training dataset are the same, the number of different labels is usually much smaller than the total number of all records.
Therefore, we can rewrite the original definition of ADisðDni

Þ based on the distance between two MDA labels.
The distance between two MDA labels mdl1(ni) and mdl2(ni) is defined as Disðmdl1ðniÞ;mdl2ðniÞÞ ¼ Disni

ðd1; d2Þ, where d1

and d2 are any two records in node ni with MDA labels mdl1 (ni) and mdl2 (ni), respectively. Therefore, the original definition
of ADisðDni

Þ can be rewritten as
ADisðDni
Þ ¼

XjMDLðniÞj

j¼1

X
k<j

ðDisðmdljðniÞ;mdlkðniÞÞ �wðmdljðniÞ;mdlkðniÞÞÞ; ð1Þ
w(mdlj (ni), mdlk (ni)) is the weight of the distance between these two MDA labels and wðmdljðniÞ;mdlkðniÞÞ ¼
jDni
ðcMDAðni Þ

¼mdljðniÞÞj�jDni
ðcMDAðni Þ

¼mdlkðniÞÞj
jDni
j�ðjDni

j�1Þ�1
2

.

Consider the two datasets in Fig. 6. Although their information needs are identical, their average distances are different,
ADis(D1) = 0.33 and ADis(D2) = 0.67.

4.3. Multi-dimensional information gain

To classify multiple condition attributes, we propose a multi-dimensional information function, MDInfo. MDInfo is a mod-
ified version of the information need that uses the average distance as an adjusting factor to reflect the distance within a
dataset. MDInfoðDni

Þ, the multi-dimensional information function of the dataset Dni
, is defined as
MDInfoðDni
Þ ¼ ADisðDni

Þ � InfoðDni
Þ: ð2Þ
(1, 0)

(1, 0)

(1, 1)

(1, 1)

(c1, c2)

(0, 0)

(0, 0)

(1, 1)

(1, 1)

(c1, c2) 1)(1 =DInfo 1)(2 =DInfo

D1 D2

Fig. 6. Two sample datasets.

b

a

a1

b

a

a3

1

0

c3

1

1

c1

d

c

c2

c

c

a2

d2

d1

Record

Fig. 7. Sample dataset.

Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979 973
Returning to the training dataset in Table 1, we now have Info(Droot) = 1.877, and we can obtain the average distance within
the records in root using Eq. (1). There are four different classes (0,0), (0,1), (1,0), and (1,1) in MDL(root), and their numbers
are 2, 6, 3, and 3, respectively. Therefore, we obtain ADis(Droot) = 0.51 and MDInfo(Droot) = 0.96.

After evaluating the MDInfo value of the dataset in a node with Eq. (2), we then split the node and partition the dataset
using the decision attribute with the smallest MDInfo value. Suppose Vx = {vx1,vx2, . . .}, which is the set of all possible values of
decision attribute ax. The dataset Dni

can be partitioned into jVxj disjoint subsets. The MDInfo value of partitioning Dni
with

decision attribute ax can be evaluated by MDInfoax
ðDni
Þ ¼

PjVx j
j¼1

jDni
ðax¼vxjÞj
jDni
j �MDInfoðDni

ðax ¼ vxjÞÞ.
For example, let us partition the dataset in root Droot with the decision attribute ‘‘Age”. Three sub-datasets are formed after

Droot is partitioned, as shown in Fig. 8. The values of MDInfo are 1.15, 0.33, and 0.58, respectively. Therefore, MDInfo‘‘Age”

(Droot), the MDInfo value of partitioning Droot with ‘‘Age”, is 0.71.
We use a multi-dimensional gain function MDGainax ðDni

Þ to evaluate the gain of conducting a test on ax in ni, where
MDGainax ðDni

Þ is defined as MDGainax ðDni
Þ ¼ MDInfoðDni

Þ �MDInfoax
ðDni
Þ. Therefore, MDGain‘‘age”(Droot), the gain of conduct-

ing a test on ‘‘Age” in Droot, is 0.25.

4.4. Splitting criterion

The splitting criterion for our algorithm is shown in Fig. 9. For each non-leaf node, we select a decision attribute under the
cost constraint maxcost. Since the total cost is limited, we select the decision attribute with the best gain/cost ratio.

In our example, for the training dataset in Table 1, in order to select a decision attribute to split root, we compute the
multi-dimensional information gain for each decision attribute. As a result, MDGain‘‘Age”(Droot) = 0.25, MDGain‘‘Income”(Droot) =
�0.01, and MDGain‘‘student”(Droot) = 0.10. Since ArrCost(root)=0 and the maximum cost threshold maxcost = 16, all these attri-

butes satisfy the cost constraint. Next, we compute the gain and cost ratio and get MDGain\Age"ðDroot Þ
TestCostð\Age"Þþ1 � 0:04, MDGain\Income"ðDroot Þ

TestCostð\Income"Þþ1 �
�0:002, and MDGain\Student"ðDrootÞ

TestCostð\Student"Þþ1 � 0:01. Thus, ‘‘Age” is the most economical decision attribute to split root with. For each node

nj splitting from ni, the initial states of nj are L(nj) = / and O(nj) = O(ni). Fig. 10 shows the temporary decision tree after split-
ting the root, where root is the first node n1 in this decision tree.

We adopt the strategy used by C4.5 for dealing with the problem of numeric data and missing decision attribute values.
Accordingly, we will split a numeric decision attribute into two branches by testing all possible split-points. Suppose there
are n different values v1,v2, . . . ,vn for a numeric decision attribute, where vi > vj for i > j. This means that n � 1 possible split-
points v1þv2

2 ; v2þv3
2 ; . . . ; vn�1þvn

2 will be tested. The point which maximizes the gain/cost ratio is selected as the split-point of the
numeric decision attribute. On the other hand, records which contain missing values for the tested attribute are partitioned
and distributed into different branches according to the relative frequency of known values.
For each non-leaf node ni

If there exists any decision attribute ax where
() () maxcostaTestCostnArrCost xi + and () 0>

ix na DMDGain

Select an attribute ax’ which has the maximum value of
() ()()1'' +xna aTestCostDMDGain

ix
from decision attributes

which satisfy the total cost constraint to further split node ni.
Else

Assign ni as a leaf, ni will be labeled with the major labels of records in ni.

≤

Fig. 9. Splitting criterion.

0 1 d14

1 0 d10

0

1

1

B_Car

1

0

0

Credit

d6

d5

d4

dk

1 0 d3

1 1 d7

1 0 d13

1 1 d12

B_CarCredit dk

1 1 d11

1 0 d9

0 0 d8

0

0

B_Car

1

0

Credit

d2

d1

dk

()"40...31""" =ageDroot
()"40""" >=ageDroot()"30""" <==ageDroot

Fig. 8. Three datasets produced by partitioning Droot.

n1

<=30
30…40

>40

n2 n3 n4

Age ArrCost(n1) = 0

ArrCost(n2) = 6 ArrCost(n3) = 6 ArrCost(n4) = 6

Fig. 10. Temporary decision tree after splitting the root.

974 Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979
4.5. Label assignment test

Table 4 shows D(n3) which is the dataset in node n3. In D(n3), all labels of the condition attribute ‘‘B_Car” are 1. Thus, the
records in n3 can be classified as ‘‘B_Car=1” and the condition attribute ‘‘B_Car” can be eliminated from n3.

Before selecting an attribute to further split a node, we first perform a label assignment test. For the records in node ni, let
ml(ni,cy) be the majority label of condition attribute cy. If the ratio of ml (ni,cy) exceeds the label assignment threshold h, ml
(ni,cy) can be assigned and cy can be eliminated from ni. That is, L(ni) = L(ni) [(cy,ml(ni,cy)) and O(ni) = O(ni) � cy. After the
label assignment test, L(n3) = {(‘‘B_Car”, 1)} and O(n3) = {‘‘Credit”}.

4.6. Termination condition

A node ni will stop splitting and be labeled a leaf node when one of the following conditions is satisfied: (1) after label
assignment, no condition attributes are left in ni. In other words, O(ni) = /. (2) According to the splitting criterion in Section
4.4, no attribute can be selected for further splitting. (3) The number of records in ni is less than the terminal node threshold
u. In this case, ni is labeled with the records’ majority labels in the parent node of ni. Fig. 11 shows the output of the first step
obtained using our algorithm. We use a square to represent a leaf node. There are seven leaf nodes and the budget does not
allow any beneficial tests.

4.7. Updating the bottom nodes

In the initial decision tree, those nodes whose descendants are all leaves are called bottom nodes, such as n2 and n3 in
Fig. 11. Originally, we used the best ‘‘gain/cost” ratio to pick a splitting attribute. Since no further tests will be conducted after
Table 4
Dataset in node n3.

dk Age Income Student Credit B_Car

d3 31� � �40 High No 0 1
d7 31� � �40 Low Yes 1 1
d12 31� � �40 Medium No 1 1
d13 31� � �40 High Yes 0 1

n1

<=30
30…40

>40

n2 n3

High

medium

low

 n5 n6 n7

High

medium

low

n8 n9 n10

Age

Income Income
(B_Car, 1)

(Credit, 0)
(B_Car, 0)

(Credit, 0)
(B_Car, 0)

(Credit, 0)
(B_Car, 1) (Credit, 0) (Credit, 1) (Credit, 1)

(Credit, 0)
(B_Car, 1)

n4

ArrCost(n1) = 0

ArrCost(n2) ~

ArrCost(n4) = 6

ArrCost(n5) ~ ArrCost(n10) = 11

Fig. 11. Output of the first step of our algorithm.

Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979 975
splitting a bottom node, however, we should choose an attribute that provides the largest gain. Therefore, we update the bot-
tom nodes in the tree built in Step 1 as follows. For each bottom node ni, select a decision attribute ax that has the maximum
MDGainax ðDni

Þ from the decision attributes satisfying ArrCost(ni) + TestCost(ax) 6maxcost to further split node ni. Each child
node of ni, nj, is a leaf node. Condition attribute cy, which has not yet been determined in nj, will be determined according
to the majority label of cy in nj. The final decision tree is shown in Fig. 12. After this step, we replace ‘‘Income” with ‘‘Student”
in n2 because MDGain\Student"ðDn2 Þ ¼ 0:77, which is larger than MDGain\Income"ðDn2 Þ ¼ 0:55.

5. Performance evaluation

The performance of our algorithm is evaluated by implementing four different methods, which are listed in Table 5. We
evaluate the four methods under different cost constraints and different numbers of condition attributes.

We conducted experiments on five datasets obtained from the UCL Machine Learning repository. These datasets were
chosen because they were used in [17] and their cost data was also donated in [17]. The datasets’ properties are listed in
Table 6. There is only one condition attribute in each of these datasets. Therefore, we randomly selected several decision

n1

<=30
30…40

>40

n2 n3

yes no

 n5 n6

High

medium

low

n7 n8 n9

Age

Student Income
(B_Car, 1)

(Credit, 0)
(B_Car, 1)

(Credit, 0)
(B_Car, 0)

(Credit, 0) (Credit, 1) (Credit, 1)

(Credit, 0)
(B_Car, 1)

n4

ArrCost(n7) ~ ArrCost(n9) = 11

ArrCost(n5) ~ ArrCost(n6) = 16

ArrCost(n1) = 0

ArrCost(n2) ~

ArrCost(n4) = 6

Fig. 12. Final decision tree built by our algorithm.

Table 5
Four experimental methods.

Methods Description

M1 Sequentially build a decision tree for each condition attribute by C4.5 without a cost constraint
M2 Sequentially build a decision tree for each condition attribute by C4.5 with the budget equally allocated among all condition attributes. When

a decision attribute has been tested in the preceding decision tree, the test cost of this attribute will be set to 0
M3 Same as M2 but with the difference that the condition attributes which have been predicted can be incorporated as decision attributes with

test cost 0
M4 Use the proposed method to build a cost-constrained decision tree with multiple condition attributes

Table 6
Five datasets used in the experiments.

Dataset Number of decision attributes Number of instances Class distribution

BUPA liver disorders 5 345 Drinks < 3: 169 (48.99%)
Drinks P 3: 176 (51.01%)

Heart disease 13 303 <50% diameter narrowing: 164 (54.13%)
>50% diameter narrowing: 139 (45.87%)

Hepatitis prognosis 19 155 Die: 32 (20.65%)
Live: 123 (79.35%)

Pima indians diabetes 8 768 Healthy: 500 (65.10%)
Diabetes: 268 (34.90%)

Thyroid disease 20 3772 Hypothyroid: 93 (2.47%)
Hyperthyroid: 191(5.06%)
Normal: 3488 (92.47%)

976 Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979
attributes and assigned them as condition attributes in the experiments. Numerical decision attributes which were selected
as condition attributes were discretized into categorical variables. We also removed records which contain missing value in
any condition attribute.

We ran a cross validation in each experiment. Datasets were randomly split into ten parts. Ten pairs of the training and
test datasets were generated, where the test dataset involved one partition and the training dataset involved the other nine
partitions. We built decision trees with the training datasets and tested the trees with the test datasets. The final result from
each experiment is the average of the results obtained with the ten pairs of training and test datasets.

We propose two measures, AvgAcu and MDAAcu, to evaluate the decision trees. AvgAcu is the average accuracy of n con-
dition attributes. Let pcy (dk,T) be the predicted label of the yth condition attribute in decision tree T for dk, and let cy (dk) be
the true label of the yth condition attribute in dk. Then
AvgAcuðTÞ ¼
P

dk2test dataset

P
ycoryðT; dkÞ

jtest datasetj � n
coryðT; dkÞ ¼ 1; pcyðdk; TÞ ¼ cyðdkÞ;
coryðT; dkÞ ¼ 0; pcyðdk; TÞ–cyðdkÞ:

(

In many actual applications, however, all condition attributes have to be labeled correctly to make an appropriate decision.
For example, even if a bank could accurately evaluate their customer’s credit rating, it would be difficult to create a good
marketing plan if the customer’s likelihood to ask for a loan could not be predicted correctly. Therefore, we propose MDAAcu.
MDAAcu is the ratio of records for which all condition attributes are correctly classified. The equation for MDAAcu is
MDAAcuðTÞ ¼
P

dk2test datasetcorMDAðT;dkÞ
jtest datasetj

corMDAðT;dkÞ ¼ 1; 8yðpcyðdk; TÞ ¼ cyðdkÞÞ;
corMDAðT;dkÞ ¼ 0; 9yðpcyðdk; TÞ–cyðdkÞÞ:

(

5.1. Performance evaluation under different cost constraints

To evaluate our method under different cost constraints, we set a different maxcost for each of the experiments. To esti-
mate a reasonable upper boundary for the maxcost of a dataset, we first build a decision tree for each condition attribute by
C4.5 without a cost constraint. For each condition attribute, let the largest test cost spent to reach a leaf node be called its
tcost, and let MaxTotalCost be the sum of the tcost for all condition attributes. We can use this as a reasonable estimation of
the upper boundary of the maxcost of a dataset. Accordingly, to observe how the scarcity of cost impacts performance, we set
the maxcost at MaxTotalCost, 90% �MaxTotalCost, . . ., and 20% �MaxTotalCost, successively.

For experiments on the first four datasets, the label assignment threshold h is set to 90% and the terminal node threshold
u is set to 3. Because of the skewed class distribution in the Thyroid Disease dataset (92.47% of the records are in the ‘‘nor-
mal” class), the label assignment threshold h is set to 95% and the terminal node threshold u is set to 0 for experiments with
this dataset. In addition to the original condition attribute, we randomly select a decision attribute to be another condition
attribute. We implement the four methods with these two condition attribute datasets under different cost constraints. The
results are shown in Table 7, where the columns show the levels of the cost constraint from 100% �MaxTotalCost to
20% �MaxTotalCost, the rows show the various alternatives, and the cell values are the accuracies expressed as a percentage.

The results for M1 are shown in the first row in Table 7, where the value before the parentheses indicates the accuracy
while the value in parentheses indicates the total cost spent, i.e., MaxTotalCost. (Note that we first obtain the accuracy by
applying C4.5 for each condition attribute without a cost constraint. Then, we accumulate the costs spent in all trees, to ob-
tain the total cost spent to classify multiple condition attributes.) From the results of Table 7, we see that the proposed meth-
od M4 outperforms M2 and M3 for all datasets. It can also be seen that our method is very robust with respect to cost
constraints even for a small budget. The results achieved with our method are near those obtained with an abundant budget.
This proves that our method is very effective at using limited costs to achieve the best possible accuracy. Furthermore, we
found that our method surpasses M1 for three datasets (Heart Disease, Hepatitis Prognosis and Pima Indians Diabetes) while
achieving comparable accuracy for the other two datasets, but with much less cost. These results indicate that the multi-
dimensional attribute, which our algorithm uses to find the best split-point and select the splitting attributes, has good dis-
crimination ability.

M3, which incorporates the previously predicted condition attributes as decision attributes, is an extended version of M2.
However, the performance of M3 is roughly the same as that of M2. This result indicates that a condition attribute classified
in a prior decision tree may not be helpful to later ones. The reason may be that the predictions made previously may not
always be correct.

Table 8 shows the budget utilization rates by the four methods for the five datasets, where the columns indicate the levels
of the cost constraint from 100% �MaxTotalCost to 20% �MaxTotalCost, the rows indicate the various alternatives and the
cells show the budget utilization rates expressed as a percentage.

According to the results in Table 8, the budget utilization rates of M2 and M3 are relatively low. The reason for this result
may be that allocating the budget in advance is difficult. If too much budget is allocated to a condition attribute which does
not need so much, the result may be waste. On the other hand, if too little is allocated to a condition attribute which needs a
lot more, performance may be damaged. Since M2 and M3 allocate the budget equally among all condition attributes with-
out considering their differences, there must be some condition attributes that get more than they really need. It is no won-
der that the budget utilization rates of M2 and M3 are relatively low. In turn, the low budget utilization rate leads to the bad

Table 7
AvgAcu and MDAAcu obtained for each method in datasets: (a) BUPA liver disorders, (b) heart disease, (c) hepatitis prognosis, (d) pima indians diabetes, and (e)
thyroid disease.

Dataset Measurement Method Maxcost (form100% �MaxTotalCost to 20% �MaxTotalCost)

100% 90% 80% 70% 60% 50% 40% 30% 20%

BUPA liver disorders AdvAcu M1 72.05 (maxcost: 31.67)
M2 72.05 70.88 70.88 70.88 69.55 69.55 65.29 65.29 65.29
M3 72.20 70.88 70.88 70.88 69.55 69.55 65.29 65.29 65.29
M4 73.23 72.20 72.20 70.14 71.47 72.49 72.64 72.64 65.29

MDAAcu M1 48.52 (maxcost: 31.67)
M2 48.52 47.64 47.64 47.64 46.47 46.47 37.94 37.94 37.94
M3 48.52 47.64 47.64 47.64 46.47 46.47 37.94 37.94 37.94
M4 50.29 48.52 48.52 44.41 46.76 49.70 50.00 50.00 37.94

Heart disease AdvAcu M1 63.96 (maxcost: 469.70)
M2 62.75 62.75 62.06 62.24 62.24 62.75 58.79 58.96 58.96
M3 62.58 62.58 62.06 62.06 62.06 62.24 57.93 58.44 58.44
M4 65.68 65.68 65.68 65.68 65.68 65.68 66.03 65.86 65.34

MDAAcu M1 43.10 (maxcost: 469.70)
M2 43.10 43.10 43.79 44.13 44.13 44.82 40.68 39.65 39.65
M3 44.13 44.13 44.48 44.48 44.48 44.82 42.75 43.10 43.10
M4 47.24 47.24 47.24 47.24 47.24 47.24 47.93 47.93 45.86

Hepatitis prognosis AdvAcu M1 66.66 (maxcost: 50.38)
M2 66.99 66.99 68.33 66.99 66.33 65.99 65.66 62.66 61.66
M3 68.66 67.99 69.66 67.99 66.33 65.99 65.66 62.66 61.66
M4 71.99 71.99 71.99 71.99 71.99 71.99 71.99 71.66 70.99

MDAAcu M1 41.33 (maxcost: 50.38)
M2 42.00 40.66 43.33 40.66 42.66 40.66 40.00 34.66 32.66
M3 44.66 42.66 45.33 42.00 42.66 40.66 40.00 34.66 32.66
M4 49.33 49.33 49.33 49.33 49.33 49.33 49.33 48.66 47.33

Pima Indians diabetes AdvAcu M1 74.73 (maxcost: 45.39)
M2 74.21 75.72 75.98 72.17 72.17 72.17 72.17 72.17 72.17
M3 74.34 75.32 75.65 72.17 72.17 72.17 72.17 72.17 72.17
M4 75.85 76.44 76.31 76.31 76.31 76.31 72.82 72.82 72.82

MDAAcu M1 57.23 (maxcost: 45.39)
M2 56.05 58.81 59.47 53.81 53.81 53.81 53.81 53.81 53.81
M3 56.71 58.02 58.55 53.81 53.81 53.81 53.81 53.81 53.81
M4 60.13 60.65 60.39 60.39 60.39 60.39 55.39 55.39 55.39

Thyroid disease AdvAcu M1 83.96 (maxcost: 75.11)
M2 82.89 81.23 81.23 82.42 82.62 81.16 81.16 81.16 81.16
M3 82.95 81.23 81.23 82.42 82.62 81.16 81.16 81.16 81.16
M4 82.62 82.62 83.55 83.28 84.01 84.08 83.02 82.82 81.63

MDAAcu M1 68.06 (maxcost: 75.11)
M2 66.04 63.39 63.39 65.78 66.18 64.72 64.72 64.72 64.72
M3 66.18 63.39 63.39 65.78 66.18 64.72 64.72 64.72 64.72
M4 65.51 65.51 67.37 66.84 68.3 68.43 66.84 66.57 65.25

Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979 977
performance; so, as seen in Table 7 the performance of M2 and M3 is inferior to that of M4. To sum up, the advantage of our
M4 method lies in the fact that it can fully utilize the budget without waste, which naturally results in a good performance.

5.2. Performance evaluation with different numbers of condition attributes

We now evaluate our method with different numbers of condition attributes. We first randomly drew four decision attri-
butes from each dataset. Then, we put each of them back and treated each as an additional condition attribute. This set of
experiments was conducted on only three datasets, Heart Disease, Hepatitis Prognosis, and Thyroid Disease, because the
other datasets did not have enough decision attributes. The value of maxcost was set at 50% �MaxTotalCost and the settings
of assignment threshold h and terminal node threshold u were the same as in Section 5.1. The results are shown in Table 9,
where columns represent the number of condition attributes, the rows give the various alternatives and the cell values show
the accuracies expressed as a percentage.

As seen in Table 9, as the number of condition attributes increases, the predicted accuracies decrease. This is true for all
three methods. The performance of our method (M4), however, is better performance when the number of condition attri-
butes is greater than one. A comparison of Tables 7 and 9 shows that our method (M4) greatly outperforms the others in
terms of MDAAcu measurement. This may be because other methods, which necessitate the building of an independent tree
for each condition attribute, ignore the interdependence of the condition attributes. For example, let us look at the dataset
shown in Fig. 13. The majority labels for C1, C2, and C3 are ‘‘1”, ‘‘1”, and ‘‘1”, respectively. In this dataset, however, the labels
for these three condition attributes are never ‘‘1” at the same time. As observed from this example, classifying each condition

Table 8
Budget utilization rates obtained from the four methods for datasets: (a) BUPA liver disorders, (b) heart disease, (c) hepatitis prognosis, (d) pima Indians
diabetes, and (e) thyroid disease.

Dataset Method maxcost (form100% �MaxTotalCost to 20% �MaxTotalCost)

100% 90% 80% 70% 60% 50% 40% 30% 20%

BUPA liver disorders M1 100.00
M2 77.04 59.48 66.91 76.47 75.73 90.88 0.00 0.00 0.00
M3 77.04 59.48 66.91 76.47 75.73 90.88 0.00 0.00 0.00
M4 100.00 84.72 95.31 97.37 89.22 90.88 56.80 75.73 0.00

Heart disease M1 100.00
M2 84.28 93.59 82.04 72.27 84.32 94.58 97.23 21.26 31.88
M3 86.03 95.53 80.39 71.97 83.96 94.16 94.47 21.26 31.88
M4 87.79 97.49 86.45 98.81 84.32 94.54 98.87 95.65 97.13

Hepatitis prognosis M1 100.00
M2 82.14 87.97 95.86 98.35 97.42 76.63 81.23 95.03 0.00
M3 82.14 87.97 95.86 98.35 97.42 76.63 81.23 95.03 0.00
M4 98.02 98.87 98.24 94.71 97.52 96.24 99.36 100.00 98.04

Pima Indians diabetes M1 100.00
M2 100.00 50.24 54.03 14.29 16.67 20.00 25.00 33.33 50.00
M3 100.00 50.24 54.03 14.29 16.67 20.00 25.00 33.33 50.00
M4 100.00 98.64 69.45 79.37 92.60 90.44 25.00 33.33 50.00

Thyroid disease M1 100.00
M2 100.00 74.58 83.91 90.54 71.23 28.53 35.66 47.54 0.00
M3 100.00 74.58 83.91 90.54 71.23 28.53 35.66 47.54 0.00
M4 96.01 98.76 94.84 99.46 96.23 98.23 99.44 99.08 96.94

Table 9
AvgAcu and MDAAcu obtained from each method for datasets: (a) heart disease, (b) hepatitis prognosis, and (c) thyroid disease.

Dataset Measurement Method Number of condition attributes

1 2 3 4 5

Heart disease AdvAcu M2 76.66 73.66 72.44 66.33 64.19
M3 76.66 73.50 72.33 66.25 65.53
M4 74.66 75.83 75.11 68.08 69.26

MDAAcu M2 76.66 55.33 39.00 18.66 11.00
M3 76.66 54.99 39.00 18.66 15.33
M4 74.66 58.99 46.00 25.33 21.33

Hepatitis prognosis AdvAcu M2 85.71 68.92 70.00 75.53 70.57
M3 85.71 68.92 70.00 75.53 70.57
M4 88.57 78.21 78.80 80.17 69.28

MDAAcu M2 85.71 42.85 32.14 34.28 19.28
M3 85.71 42.85 32.14 34.28 19.28
M4 88.57 59.28 51.42 45.00 19.28

Thyroid disease AdvAcu M2 96.81 90.14 93.14 94.46 95.41
M3 96.81 90.14 93.14 94.46 95.41
M4 93.76 92.52 94.60 95.55 96.28

MDAAcu M2 96.81 80.63 80.23 79.04 78.38
M3 96.81 80.63 80.23 79.04 78.38
M4 93.76 86.64 86.07 85.27 84.74

978 Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979
attribute independently may result in a low accuracy when classifying all condition attributes simultaneously. This phenom-
enon emphasizes the necessity of building a cost-sensitive decision tree to simultaneously classify multiple condition
attributes.

According to the results of the experiments as discussed above, it can be seen that our method outperforms the others due
to the following reasons:

(1) Multiple condition attributes are integrated into a single multi-dimensional attribute. In this way, all condition attri-
butes are taken into account to compute the multi-dimensional information gain for finding the most efficient test
under cost constraints. Therefore, when a numeric decision attribute is considered, we find the best split-point accord-
ing to the multi-dimensional attribute rather than a single condition attribute. As a result, our method offers better
performance than previous approach even when adopting the same strategy for dealing with numeric decision
attributes.

C1 C2 C3

1 0 1

1 0 1

1 0 1

1 1 0

1 1 0

0 1 1

0 1 1

0 1 1

Fig. 13. Sample dataset.

Y.-L. Chen et al. / Information Sciences 179 (2009) 967–979 979
(2) There are numerous budget allocation combinations and strategies for the condition attributes. Unfortunately, it is dif-
ficult to efficiently allocate the budget in advance among these condition attributes. In view of this difficulty, the pro-
posed method is able to classify all condition attributes within a single decision tree. This approach removes the
difficulty of budget allocation, and the experiment results show that our method utilizes the budget efficiently.

6. Conclusions and future work

Cost-sensitive classification has become a popular topic in recent years. Although it has been studied extensively, existing
studies have only classified a target record with a single condition attribute. In this study, we propose a new algorithm for
building a cost-constrained decision tree with multiple condition attributes. Along with the algorithm, we propose a new
splitting criterion, tree structure, and node termination condition. The results of the experiments show that our algorithm
performs well under different cost constraints and for different numbers of condition attributes, especially when all condi-
tion attributes must be labeled correctly.

In future, we consider the following possible extensions. First, according to the experiment results, the overfitting prob-
lem may impair our algorithm’s performance. Therefore, it may be necessary to add a tree pruning method to the algorithm
as a post-processing phase. Second, we will consider batch testing, where a number of samples are tested at the same time.
In this situation, the cost of conducting tests on a batch of samples may differ from the sum of test costs for many single
samples. Therefore, we will attempt to propose new algorithms that can build decision trees for batch testing. Finally, deci-
sion trees, such as ID3 and C4.5, classify categorical labels, while regression trees, such as CART, CHAID and QUEST, predict
continuous values. These two lines of research are closely related but distinct. In this paper, we only focus on decision trees.
How to further extend our techniques to regression trees is worth further investigation in the future.

References

[1] F. Berzal, J.C. Cubero, N. Marin, D. Sanchez, Building multi-way decision trees with numerical attributes, Information Sciences 165 (2004) 73–90.
[2] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, 1984.
[3] P. Domingos, MetaCost: a general method for making classifiers cost-sensitive, in: Proceedings of the Fifth International Conference on Knowledge

Discovery and Data Mining, San Diego, CA, ACM Press, 1999, pp. 155–164.
[4] C. Elkan, The Foundations of Cost-Sensitive Learning, in: Proceeding of the Seventeenth International Joint Conference on Artificial Intelligence, 2001,

pp. 973–978.
[5] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2006.
[6] M.T. Kai, Inducing cost-sensitive trees via instance weighting, in: Principles of Data Mining and Knowledge Discovery, Second European Symposium,

Springer-Verlag, 1998, pp. 23–26.
[7] I. Koprinska, J. Poon, J. Clark, J. Chan, Learning to classify e-mail, Information Sciences 177 (2007) 2167–2187.
[8] C.X. Ling, V.C. Sheng, Q. Yang, Test strategies for cost-sensitive decision trees, IEEE Transactions on Knowledge and Data Engineering 18 (8) (2006)

1055–1067.
[9] C.X. Ling, Q. Yang, J. Wang, S. Zhang, Decision trees with minimal costs, in: Proceedings of the 21st International Conference on Machine Learning,

2004.
[10] W.Y. Loh, Y.S. Shih, Split selection methods for classification trees, Statistica Sinica 7 (4) (1997) 815–840.
[11] S.W. Norton, Generating better decision trees, in: Proceedings International Joint Conference Artificial Intelligence, MI, Morgan Kaufmann, San Mateo,

CA, 1989, pp. 800–805.
[12] M. Nunez, The use of background knowledge in decision tree induction, Machine Learning 6 (1991) 231–250.
[13] A. Papagelis, D. Kalles, GATree: Genetically evolved decision trees, in: 12th IEEE International Conference on Tools with Artificial Intelligence, ICTAI’00,

2000, pp. 203–206.
[14] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81–106.
[15] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[16] M. Tan, Cost-sensitive learning of classification knowledge and its application in robotic, Machine Learning Journal 13 (1993) 7–33.
[17] P.D. Turney, Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence

Research 2 (1995) 369–409.
[18] Q. Yang, C. Ling, X. Chai, R. Pan, Test-cost sensitive classification on data with missing values, IEEE Transactions on Knowledge and Data Engineering 18

(5) (2006) 626–638.
[19] E. Yen, I.-W.M. Chu, Relaxing instance boundaries for the search of splitting points of numerical attributes in classification trees, Information Sciences

177 (2007) 1276–1289.

	Building a cost-constrained decision tree with multiple condition attributes
	Introduction
	Related Workwork
	Problem Definitiondefinition
	The Algorithmalgorithm
	Multi-dimensional attribute (MDA)
	Information need and distance
	Multi-dimensional information gain
	Splitting criterion
	Label assignment test
	Termination condition
	Updating the bottom nodes

	Performance evaluation
	Performance evaluation under different cost constraints
	Performance evaluation with different numbers of condition attributes

	Conclusions and future work
	References

