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Abstract

We propose a new approach to performing market basket analysis in a multiple-store and multiple-period environment. In using
the method, the user first defines a time concept hierarchy and a place (location) hierarchy, according to his or her application and
needs. A set of contexts is systematically derived from the two hierarchies by combining the concept levels of the two hierarchies.
We developed an efficient algorithm for extracting the association rules, which meet the support and confidence requirements for
all the contexts. Using the approach, a decision maker can analyze purchasing patterns at very detailed concept levels of time and
place, such as a combination of days and stores, at more general levels, such as a combination of quarters and states, and
combinations of detailed levels of one with general level of the other, such as a combination of days and regions. In addition to this
flexibility, the association rules are well organized, because they are generated according to the contexts derived from the time and
place hierarchies. A numerical evaluation shows that the algorithm is efficient in running time and may generate more specific and
richer information than the store-chain rules and the traditional rules.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Market basket analysis (also known as association
rule mining) is a data mining method that examines a
large transactional database to determine which items
are most frequently purchased jointly. Since its intro-
duction by Agrawal, Imielinski, and Swami [1], it has
drawn much research interest and has quickly developed
into a major research area. Brief literature reviews have
been given by Chen, Han, and Yu [5] and Han and
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Kamber [8]. Numerous applications have been identi-
fied, including, for example, cross-selling [4,10], Web
site analysis [3,20,16], decision support [11,13,22],
credit evaluation [7], privacy issue [17,19], criminal
event prediction [23], customer behavior analysis
[9,12,15,18] and fraud detection [14,21].

The basic form of association rules is based upon the
assumption that if a customer purchases a certain set of
items from a store, he or she is more (or less) likely to
purchase another set of items. Consider two non-over-
lapping subsets of product items, X and Y, an association
rule in form of X⇒Y indicates a purchase pattern that if a
customer purchases X then he or she also purchases Y.
Two measures, support and confidence, are commonly
used in selecting association rules. Support is a measure
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of how often the transactional records containing both
X and Y in the database, and confidence is a measure of
the accuracy of the rule, defined as the ratio of the
number of transactional records with both X and Y to the
number of transactional records with X only. The main
challenge in practice is to develop an efficient algorithm
for extracting association rules which meet the selection
criteria from large databases consisting of large numbers
of product items and transaction records. The Apriori
algorithm [1] has been shown as an efficient method for
the basic association rules described above.

A common assumption used in association rules is
that product items under consideration are on shelf all
the time across all stores (if multiple stores and multiple
time periods are considered). This assumption posts a
serious limitation because, in today's competitive busi-
ness environment, most major companies have sub-
sidiaries, branches, or stores in many geographical
locations. Furthermore, these companies use different
product-mix strategies in different stores (locations) and
change them dynamically over time. As a result, impor-
tant purchasing patterns may not be correctly identified
by the traditional methods.

To overcome this problem, Chen, Kang, Shen, and Hu
[6] proposed a method, called the store-chain association
(SCA) rule, which adds “contexts” to the traditional rules
to indicate combinations of the time and place, where
the rules are applicable. Consider a rule, for example,
{notebook computer, extendedwarranty}⇒{laser printer}
with contexts: (March 1, store 50), (March 2, store 50),…,
(May 30, store 50), (March 1, store 51),…, (May 29, store
51), …, and (May 31, store 73). This rule suggests that a
noticeable portion of the customers who purchased a
notebook computer with an extended warranty also pur-
chased a laser printer in the listed combinations of days
and stores.

The SCA rules have addressed several important
problems associated with the traditional association rules
in the multiple-store and multiple-period environment.
In particular, they take into account the on-shelf time of a
product. However, as illustrated in the above example,
contexts associated with rules may be fragmented and
unorganized, especially when stores have very different
product mixes and change them very frequently. As a
result, it may be difficult to use the rules to form business
strategies. For reference, we call the SCA rules are rule-
based because the output of the method is a set of rules
with attached contexts.

In this paper, we propose a context-based approach to
extract association rules based on a pre-determined
structure of contexts. In contrast to the SCA rules, we
first form a time and a place concept hierarchies, by
defining a sequence of mapping from a set of low-level
concepts to higher-level, more general concepts [8].
Consider the time and place (location) hierarchies in
Fig. 1. These time and place hierarchies are defined by
users and arranged in increasing granularity from top to
bottom. The time hierarchy consists of year, quarter,
month, and day. At each hierarchy level, there are
several higher granularity levels. For example, spring,
summer, fall, and winter are the higher granularity levels
of the hierarchy level, year. Similarly, country, region,
city, and store comprise the place hierarchy.

We develop an efficient algorithm to extract associa-
tion rules for all combinations of time and place hierarchy
levels. The results would help a decision maker analyze
purchasing patterns at very detailed concept levels of both
time and place, such as a combination of days and stores,
at more general levels, such as a combination of quarters
and states, and combinations of detailed levels of one with
a general level of the other, such as a combination of days
and regions. In addition to this flexibility, the association
rules are well organized, because they are generated
according to the contexts systematically derived from the
time and place hierarchies.

This paper is organized as follows.We formally define
the problem statement in Section 2 and, in Section 3, we
develop an algorithm for extracting association rules for
all the contexts derived from given concept hierarchies of
time and place. In Section 4, we perform two experiments
to evaluate the proposed algorithm. Finally, the conclu-
sion is given in Section 5.

2. Problem definition

We consider a market basket database D, containing
transaction records frommultiple stores overmultiple time
periods. The records are first sorted by a store identifier
and then by time. For ease of presentation, the cardinality
of a set, say ∑, is denoted by |∑|. Let I={i1, i2, …,in} be
the set of product items included inD, where ik represents
the kth item. Let X be a subset of items in I. We refer to X
as a k-itemset if it contains k items or |X|=k. Furthermore,
each transaction record inD is a subset of I and is attached
with a timestamp and store identifier to indicate the time
and store that the transaction occurred.

Let T={T1, T2, …, Ta} and P={P1, P2, …, Pb} denote
the time and place (location) hierarchies, and Ti and Pj
denote the i-th granularity level ofTand the j-th granularity
level of P, respectively. We let T1 be the set of the smallest
time units considered, and T2, T3, …, Ta be arranged in
decreasing granularity. A typical example is T={days,
months, quarters, years}. Similarly, we let P1 be the set of
individual stores, and P may be {stores, states, regions,



Fig. 1. Place and time hierarchies.
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countries}. Let Ti={T(i,1), T(i,2) , …, T(i,x), …, T(i, ni)} and
Pj={P( j,1), P( j,2) , …, P( j,y), …, P( j, mj)}, where ni is the
number of time periods at level i of T andmj is the number
of places at level j of P.

Without loss of generality, let Tt′ and Pp′, t′≥1 and
p′≥1, be the highest time and place granularity levels,
respectively, that the user is interested in generating
association rules. For given t′ and p′, we need to con-
sider totally (a− t′+1)×(b−p′+1) combinations of time
and place granularity levels. To simplify our presenta-
tion, we use a lattice structure to represent the set of these
combinations with each node in the lattice corresponding
to the combination a time granularity level and a place
granularity level. Accordingly, we define the TP lattice,
which satisfies the following three conditions:

(1) node (Ti, Pj) exists in TP for t′≤ i≤a and p′≤ j≤b
(2) arc from (Ti,Pj) to (Ti+1,Pj) exists in TP for t′≤ iba

and p′≤ j≤b
(3) arc from (Ti, Pj) to (Ti, Pj+ 1) exists in TP for i= t′
and p′≤ jbb.

Consider a time hierarchy T and a place hierarchy P,
each with four levels, and t′=2 and p′=2. The TP
lattice with nine nodes is shown in Fig. 2.

2.1. Context and section

The term Section, denoted by Si,j
k , refers to the

subset of transactions in database D, which occurred in
time Ti,x and store Pj,y, where k= (y−1)×ni+x. For
example, consider two concept hierarchy levels in
Fig. 1: area ( j=3) and month (i=2). There are thirty-
six combinations of areas and months. According to
the definition, S2,3

1 is the subset of transactions in Gulf
Coast (P3,1) and March (T2,1), S2,3

2 is that in Gulf Coast
and April, …, and S2,3

36 is that in East Coast and
February.



Fig. 2. An example of the TP lattice.
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Based on the definitions of itemset and section, we
define three types of context:

(1) The context of itemset X, denoted by cx1(X), is the
set of all time-store pairs (combinations) where all
items in X are on shelf. Note that X may consist of
only one item.

(2) The context of section Si,j
k , denoted by cx2(Si,j

k ), is
the set of all time-store pairs in the section.

(3) The context of the itemset X in section Si,j
k ,

denoted by cx3(X, Si,j
k ), is the set of all time-store

pairs in cx2(Si,j
k ), where all items of X are on shelf.

In other words, cx3(X, Si,j
k )=cx1(X)∩cx2(Si,j

k ).

2.2. Rule selection criteria

Similar to the traditional association rule selection,
we use support and confidence as the selection criteria.
However, these two criteria have to be time- and place-
specific and, very importantly, to reflect whether the
items are on shelf.

Let itemset X=A∪B and A∩B=ϕ. We define two
supports for rule A⇒B in section Si,j

k . The first is context
support, which is the relative frequency of occurrences
of itemset X in given context cx2(Si,j

k ), defined as

nC X ; cx2 Ski; j

� �� �
¼ count X ; cx2 Ski; j

� �� �
=jcx2 Ski; j

� �j;
where |cx2(Si,j

k )| is the number of transactions occurring
in context cx2(Si,j

k ) and count (X,cx2(Si,j
k )) is the number of

transactions containing X in cx2(Si,j
k ). If ξC(X,cx2(Si,j

k ))
exceeds a given context support threshold δS, then we
call X a context-large itemset in section Si,j

k . We use CLi,j
k

to denote the set of all context-large itemsets in Si,j
k .

The second is actual support, which is the relative
frequency of occurrences of itemset X in given context
cx3(X,(Si,j

k )), defined by

nA X ; cx3 X ; Ski; j

� �� �

¼ count X ; cx3 X ; Ski; j

� �� �
=jcx3 X ; Ski; j

� �j;
where |cx3(X,Si,j
k )| is the number of transactions oc-

curring in context cx3(X,Si,j
k ) and countðX ; cx3ðX ; Ski; jÞÞ

is the number of transactions containing X in cx3(X,Si,j
k ).

Note that the context support is the same as that defined
for the traditional association rules, and the actual
support is based on only the transactions in which the
items in X are on shelf.

We further define the confidence of rule A⇒B in
section Si,j

k , denoted by χ(A⇒B), as:

vðAZBÞ ¼ nAðA [ B; cx3ðA [ B; Ski;jÞÞ
nAðA; cx3ðA [ B; Ski;jÞÞ

¼ countðA [ B; cx3ðA [ B; Ski;jÞÞ
countðA; cx3ðA [ B; Ski;jÞÞ

:

Accordingly, a rule is called a section rule in Si,j
k if its

context support and confidence are, respectively, larger
than pre-determined threshold δS and δC. For conve-
nience, we use SRi,j

k to represent the set of all section
rules in section Si,j

k .Our goal is to extract all section rules
fromD for all combinations of time and place granularity
levels defined in the TP lattice.

3. Algorithm

We present an efficient algorithm for extracting all
section rules from database D. The algorithm is outlined
in Fig. 3. We first discuss the main concepts of the
algorithm and then use an example to illustrate the
algorithm. A more detailed, technical description of the
algorithm, including specific structures and functions, is
given in the Appendix.

We first define several symbols used in describing
the algorithm. Let PL represent the set of all context-
large itemsets at time starting level t′ and place starting
level p′; i.e., PL combines all context-large itemsets
in all sections associated with lattice node (Tt′, Pp′).
It can be verified that if an itemset is not included in
PL, it would not be context-large in any larger sections
constructed afterwards by combining the sections in



Fig. 3. The proposed algorithm.
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(Tt′, Pp′). We also define HTas a hash tree with a specific
node structure, and HTi,j

k the hash tree obtained by
adding the count information in Si,j

k to HT.
We use Fig. 4 to explain the proposed algorithm. For

convenience in describing the algorithm, we use t′=2
and p′=2. In phase 0 of the algorithm, we find the
context-large itemsets in each section of (T2, P2) by the
Apriori algorithm or the FP-tree algorithm and combine
them to obtain PL. We then construct a hash tree HT
from PL. At this point, HT does not contain any count
information. This process is described by lines 4 and 5
in Fig. 3.

In phase 1, since items may have different on-shelf
times in different stores, we scan the database again to
compute the counts of the itemsets in PL in all contexts
of lattice node (T2, P2). In producing the counting
Fig. 4. The broadcasting
information, we use a Table, namely the SI table, which
stores the item on-shelf information for each section in
the lattice note. Fig. 5-a shows a simple example of the
SI table, where i1, i2, …,in are items and S1, S2, …, Sm
are unit sections in (T1, P1). In the table, “1” and “0”
indicate, respectively, that the item is or is not for sale in
the corresponding store and time. We store these count
information of the itemsets into HT2,2

k for finding the
rules under different granularities of time and place.

In phase 2, instead of scanning the database again, we
use the hash tree with the count information in a higher
granularity level to derive the hash tree with the count
information in a lower granularity level by following the
broadcasting path in TP shown in Fig. 4. Basically, an
arc in the figure represents the process that a hash tree is
derived from another hash tree, and the entire sequence
path in the lattice.



Fig. 5. a. An SI table. b. An example of the SI table.

Fig. 6. An example of the hash tree.
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of operations is performed by moving to the right first
and upwards. A very important reason that these trees
can be combined is because all the hash trees associated
with each combination of time and place have the iden-
tical structure, i.e., the same nodes and arcs. Therefore,
several trees can be combined into one by adding their
counts in the corresponding nodes.

The proposed algorithm can be finished by scanning
the database three times. If the FP-tree algorithm is used
in phase 0 to find the context-large itemsets in each
section, two scans of the database are sufficient, because
the sections are non-overlapped with each other. In
phase 1, we need to scan the database to add the count
information to all the hash trees. As before, since these
sections are non-overlapped, one scan of database is
sufficient. Finally, no database access is required in
Phase 2, because the count information is available in
the hash trees constructed previously.

Having constructed HTt′,p′
k or HTi,j

k in general, we use
the count information in the tree to evaluate the support
and confidence levels for all possible rules in the corre-
sponding section or context in selecting the section rules.

Example. We use the example in Fig. 4 to illustrate the
algorithm. Suppose we have found the context-large item-
sets in each section of (T2, P2) and combined them into
PL={a, ab, ac, ad, abc, abd, acd, abcd, b, bc, bd, bcd, c,
cd, d}. Then, we build a hash tree HT as shown in Fig. 6.

In order to compute the counts of the itemsets in PL in
all contexts of lattice node (T2, P2) under different on-
shelf times in different stores, we first check the SI table
to find out which items are on-shelf within a certain
context. Through the SI table, we can compute the count
of the itemsets {b, c, bc} in S2,2

1 . Further assume that we
find the counts of b, c, and {b, c} in S2,2

1 are 2, 3, and 1,
respectively, and the total number of transactions is 4.
That is, count(b, cx2(S2,2

1 ))=2, count(c, cx2(S2,2
1 ))=3,

count(bc, cx2(S2,2
1 ))=1, ∣cx3(bc, S2,21 )∣=4. We store the
above count information in HT2,2
1 . Fig. 7-a shows how to

add the count information to the nodes corresponding to
the itemsets.Meanwhile,we assume thatHT2,2

1 ⊂HT3,2
1 and

HT2,2
2 ⊂HT3,2

1 . By combining HT2,2
2 and HT2,2

1 , shown,
respectively, in Fig. 7-b and a, we obtain a new hash tree
HT3,2

1 shown in Fig. 7-c. This illustrates that the count
information in a lower granularity level of the lattice can
be obtained from those in higher granularity levels.

Finally, we use the information stored in HTi,j
k to

compute the actual support and the confidence of the
rules in higher granularity levels to identify section rules
in the corresponding section. Let us consider the node
shown in Fig. 8 with label c, which immediately follows
the node with label b. After scanning all the unit
sections in S2,2

k , the node contains all count information
in section S3,2

k . Therefore, we can obtain the confidence
of the rules b⇒c and c⇒b as χ(b⇒c)=3/5=0.6 and
χ(c⇒b)=3/4=0.75.

4. Performance evaluation

We perform numerical experiments to (1) evaluate the
running time and the number of generated rules of the
proposed algorithm, and (2) compare the rules generated
from the proposed algorithm, the Apriori algorithm



Fig. 7. An example of adding counts and combining tree.
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[2] for traditional rules generation, and the store-chain
association rules proposed by Chen, et al. [6]. For ease of
reference, we use AR, SCAR, and CAR to represent the
Apriori algorithm, the store-chain association rules
algorithm, and the proposed context-based association
rules algorithm, respectively, in presenting the results.

The first experiment is based on synthetic data sets,
and, in the second experiment, we use a real sales data
set of a supermarket chain in Taiwan. The experiments
were carried out in the environment below:

(1) Operation system: Windows XP.
(2) Hardware: Pentium 3.0G processor, 1024MBmain

memory.
(3) Tool: Borland C+ language and JBuilder language.
Fig. 8. Rule generat
4.1. The first experiment

4.1.1. Data generation
In the first experiment, we randomly generated

several synthetic transactional data sets, using the data
generation algorithm proposed in [6] with some minor
modifications. The parameters used in data generation
are listed in Table 1, and the data generation process is
described as follows.

First, we select several time and place concept
hierarchies. For simplicity, we use the same number of
granularity levels, H, and branching degrees, B, for
the time and place hierarchies. Totally, we generate 8
data sets listed in Table 2. Consider the third data
set (labeled as B3H4), for example, it has 4 higher
ion in a node.



Table 1
Parameters used in simulation

Symbol Parameter

D Number of transaction
Q Number of stores
M Number of time periods
R Number of items
L Average length of transactions
Fl Average length of maximum potentially frequent itemsets
Fd Maximum number of frequent itemsets
Id Replace rates of items
Su, Sl The maximum and minimum sizes of stores
H The number of levels in the hierarchy
B The branching degrees in the hierarchy

Table 2
Data sets

Data set Branch
degrees

Hierarchies Number of
Transaction

Number of
Contexts

B2H3 2 3 100,000 9
B2H4 2 4 100,000 49
B2H5 2 5 100,000 225
B3H4 3 4 100,000 169
B4H3_D10 4 3 100,000 25
B4H3_D15 4 3 150,000 25
B4H3_D20 4 3 200,000 25
B4H3_D25 4 3 250,000 25
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granularity levels and 3 branches at each granularity
level. We further assume t′=2 and p′=2. As a result, the
total number of contexts for the TP lattice for the data
set is (1+3+9)×(1+3+9)=169. Based on the hierar-
chies, the numbers of stores (q), and time units (m), are
determined automatically as the number of leaf nodes.
For data set B3H4, q=m=27.

Secondly, we determine the number of transactions in
each context. The remaining part of data generation is
the same as that used in [6]. We briefly describe it as
follows. The store sizes are generated by a uniform
distrubution between Su and Sl. We assume that the total
number of transactions and the number of products on
shelf in a store are dependent on the store size. In
addition, we allow the stores to have different product
replacement ratios. In the data generation, these
relationships are established by generating m random
numbers for store i from a Poisson distribution with
mean Si, and we use the j-th number, denoted by Wij, as
the weight of store i in period j. Let Dij denote the
number of transactions in store i and period j. The total
number of transactions, D, for the data sets are listed in
the last column of Table 1 and distributed to the store i
in period j, following this rule:

Dij ¼ D
PP
m¼0

PT
n¼0

Wmn

�Wij:

Thirdly, we determine the number of products for
each context. Assume that the number of product items
for sale in a store is proportional to the square root of the
store's size. Then, the number of products in store i,
denoted by Ni, is determined by

Ni ¼ r

Max
ffiffiffiffi
Si

p� ��
ffiffiffiffi
Si

p
:

Note that the products sold in a store may change
over time, although Ni is kept the same in all periods.
Since Id is the proportion of products that will be
replaced in each period, store i replaces Ni× Id products
in each period. Furthermore, we follow the method used
by Agrawal and Srikant [2] to generate the maximum
number of frequent itemsets, Fd, with an average length
of Fl.

Finally, for each context PiTj, we generate Dij

transactions. All the transactions in the data sets will be
generated by a Poisson distribution with mean L and a
series of maximum potentially frequent itemsets. If an
itemset generated from the process has some items not
sold at store i in period j, we remove these items, and
then continue adding items to the transaction until we
have reached the intended size. If the last itemset exceeds
the limit of this transaction, we remove the part that
exceeds the limit. When adding an itemset to a transac-
tion, we use a “corruption level,” c=0.7, to simulate the
phenomenon that all the items in a frequent itemset do
not always appear together. Information on how the
corruption level affects the procedure of generating items
for a transaction can be seen in the paper of Agrawal and
Srikant [1]. The following parameter values are used in
data generation: the average length of transactions=6,
the average length of maximum potentially frequent
itemsets=4, the maximum number of frequent item-
sets=1,000, the number of items=1,000, the replace-
ment rate=0.01, Su=100, and Sl=50.

4.1.2. Results
We study the effects of the number of concept levels

on the running time of and the number of rules generated
by the three algorithms. In Fig. 9-a, the results of the
running time are reported for three data sets, B2H3,
B2H4, and B2H5, under several selected levels of
support ranging from 0.1% to 1%. Note that the
numbers of contexts associated with B2H3, B2H4 and



Fig. 9. a. Running Time of three algorithms. b. Number of rules generated by three algorithms.

158 K. Tang et al. / Decision Support Systems 45 (2008) 150–163
B2H5 are 9, 49, and 225, respectively. Since the AR
and SCAR algorithms do not generate rules based on
contexts, their running times are not affected signifi-
cantly by the number of concept levels. We found that
the AR algorithm requires slightly less time than the
SCAR algorithm. On the other hand, the running times
of the CAR algorithm increase very rapidly as the
number of concept levels increases from 3 to 5. This is
expected because the CAR algorithm generates rules for
each context. Furthermore, for data set B2H5, the CAR
algorithm has to generate rules for 225 contexts.
However, for the minimum support of 0.1%, its running
time is only 12 times of that of the AR algorithm. These
results further support that the CAR algorithm is
efficient.

In Fig. 9-b, we report the numbers of rules generated
by the three algorithms. Because the CAR algorithm
generates rules for each context, the average number of
rules per context is reported, while the total numbers of
rules are reported for the other two algorithms. As
expected, the results show that the numbers of rules
increase as the minimum support decreases for all the
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three algorithms. Furthermore, the numbers of rules
generated by the three algorithms are very close when
the minimum support is larger than or equal to 0.25%,
but a large separation is observed when the minimum
support is at 0.1%. This result suggests that many
itemsets in the data sets have a low frequency. For
example, the number of rules generated by the AR
algorithm for B2H3 is 146 when the minimum support
is .25%. Since the SCAR and CAR algorithms use
smaller bases for calculating the support, we expect they
produce larger numbers of rules. As the figure shows,
when the minimum support is set at a low value, the
numbers of rules generated by the three algorithms are
very different.

The second part of the evaluation is on the effects of
the complexity of the concept hierarchies on the per-
formance of the CAR algorithm. We applied the CAR
algorithm for data sets B2H3, B4H3, B2H4, B3H4, and
B2H5. The results are reported in Fig. 10. Note that the
numbers of the contexts associated with these data sets
are, respectively, 9, 25, 49, 169, and 225. As expected,
the running time increases as the number of contexts
increases or the minimum support decreases. The results
also indicate that the running time of the CAR algorithm
does not increases as fast as the number of contexts does.
For example, when the minimal support is 0.1%, the
running time increases from 83 s to 740 s while the
number of contexts increases from 9 to 225. The reason
for this encouraging result is because in phase 2 of the
CAR algorithm, the hash tree of a larger context is
obtained by combining the hash trees of smaller contexts
without additional database scans. This result justifies
Fig. 10. The effects of the number
using hash trees of the same structure in the algorithm to
store the count information for all contexts.

Finally, we study the effects of the data size on
the performance of the CAR algorithm. We use the
algorithm for three databases generated from B4H3,
with the sizes ranging from 10 k to 1000 k. In Fig. 11,
we show the running times of the algorithm for the
database under minimum supports from 0.25% to
1.00%. As expected, the time increases as the database
size increases. However, the results also suggest that the
algorithm is efficient because the running time does not
increase proportionally with respect to the size of the
database.

4.2. Results with SC-POS data set

We evaluate the algorithm by using a real data set,
called SC-POS, which is the sales data of a chain
supermarket in Taipei, Taiwan. The transaction data of
the SC-POS were obtained from twenty stores between
July 1, 2002 and November 28, 2002. Each transaction
in the SC-POS data set is a customer's shopping record,
including the purchase date, time, and purchased items.
A series of data pre-processing and cleaning tasks were
performed, including generating the SI table. The final
data set contains 123,323 transactions. Since items' on-
shelf and off-shelf times are not available, we generate
the SI table by assuming that an item is off-shelf if
it is not sold in three days or longer. In Fig. 12, we
show the running time of the CAR algorithm for the real
data set under minimum support from 0.1% to 1.0%.
The results indicate that the algorithm can have a
of contexts on running time.



Table 3
Results with SC-POS data set

Case Rules

1 SCAR Cakes⇒Milk
[(P1, 2002/7/1∼2002/11/28)],
[support=0.56%, confidence=27.7%]

CAR P1, 2002/7: [Cakes⇒Milk
(support=0.55%, confidence=32.57%)]
P1, 2002/8: [Cakes⇒Milk
(support=0.55%, confidence=32.93%)]
P1, 2002/9: [Cakes⇒Milk
(support=0.50%, confidence=25.54%)]
P1, 2002/10: [Cakes⇒Milk
(support=0.62%, confidence=26.07%)]
P1, 2002/11: [Cakes⇒Milk
(support=0.60%, confidence=25.36%)]
P1, 2002/3rd quarter: [Cakes⇒Milk
(support=0.53%, confidence=29.7%)]

2 SCAR Ice-cream⇒ soft drink
[(P1, 2002/7/1∼2002/11/28)],

Fig. 11. The effects of the data size on running time.
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reasonable running time even when the minimum
support is low.

Because of the stores' homogeneity in location, we
only use a time concept hierarchy in our analysis. The
time concept hierarchy is defined as: year, quarter, and
month. For comparison, we apply the SCAR and CAR
algorithms to the data set and set the minimum support
and confidence at 0.5% and 10%, respectively. Table 3
includes three cases where interesting differences were
observed in the experiment.

The results in the first case suggest that although a
rule may be extracted by both the SCAR and CAR
algorithms, the CAR rules may carry more precise and
richer information. For example, “Cakes⇒Milk” was
obtained by both the algorithms. From the SCAR rule,
we can only explain it in its overall context. In contrast,
from the CAR rule, we know that the same rule is
applicable in various different time-intervals, from
monthly intervals to quarterly intervals. As shown in
the table, the rule's support is stronger in October and
November, and its confidence level is higher in July and
August. In the second case, the rule is generated by
SCAR, but it does not hold in CAR in several time
periods. As shown in the table, the SCAR rule “ice
cream⇒ soft drink” held from July to November.
Fig. 12. Running Time of the real data set SC-POS.
However, the sales of these two items declined after
October, which was the beginning of fall. The results of
CAR show that the rule did not hold in October and
November. In the third case, the SCAR rule “Health
[support=0.56%, confidence=10.1%]
CAR aP1, 2002/10: [Ice-cream⇒ soft drink

(support=0.27%, confidence=5.5%)]
aP1, 2002/11: [Ice-cream⇒ soft drink
(support=0.14%, confidence=3.7%)]

3 SCAR aHealth Food⇒Vegetable
[(P1, 2002/7/1∼2002/11/28)],
[support=0.49%, confidence=26.2%]

CAR P1, 2002/10: [Health Food⇒Vegetable
(support=0.55%, confidence=24.2%)]
P1, 2002/11: [Health Food⇒Vegetable:
support=0.78%, confidence=32.6%)]

a The rule does not meet the support requirement, the confidence
requirement, or both.



Fig. A-1. An example of the node structure

Fig. A-2. Function HTree(HT,St′,p′
k ).

Fig. A-3. Function combine(i,j,k).
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Food”⇒Vegetable” does not have sufficient support
from July to November. However, these two items are
commonly consumed together during the winter in
Taiwan. The rule is identified as a CAR rule in October
and in November.

5. Conclusion

We propose a new approach for extracting association
rules from transactional records in a multiple-store and
multiple-period environment. For implementing the al-
gorithm, concept hierarchies of time and place (location)
are defined first for forming a systemic structure of
contexts. The proposed algorithm can efficiently extract
the rules which meet the support and confidence require-
ments for all the contexts derived from the time and place
hierarchies.

The numerical evaluation of the proposed method
shows that the algorithm is efficient in running time and
may generate more specific and richer information than
the store-chain rules and the traditional rules.

The paper has several possible extensions. The first is
to consider using clustering and segmentation tools to
building concept hierarchies or the TP lattice. The
obvious benefit of the approach is to relieve the user
from providing adequate time and place hierarchies.More
importantly, the result could simplify the hierarchy
structure and may significantly reduce the number of
contexts. The next possible extension is to develop an
item conceptual hierarchy or tree and base on which to
enhance the expressions of the rules. Finally, we can apply
the context hierarchy structure in extracting sequential
rules in a multiple-store environment.

Appendix

We give the following detailed information on several
key steps of the algorithm.

[1]. Hash tree

A specific structure, hash tree HT, is used to store the
count information of itemsets in PL. In different sections,
the hash tree will have different count information on



Fig. A-4 Finding CL itemsets. A-5 Finding section rules.
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each node. However, all these hash trees have the same
structure. This property facilitates us to combine the
count information along the broadcasting path.

We build a hash tree HT according to all itemsets
in PL, and each itemset in PL will have a counterpart
node in HT. The labels of the path from the root to a node
is denoted by X={i1, i2, i3 … ik}, where ij is the label of
the j-th node in the path and ik is the label of this node.

The informationmaintained in each node is |cx3(X,Si,j
k )|

and count(yj, cx3(X,Si,j
k )) for ∀yj⊆X; so, the size of a node

depends on its depth in the tree. Fig. A-1 contains an
example of the structure of a node in a hash tree. We use
this tree structure to store the count information of each
itemset in section Si,j

k into the corresponding node inHTi,j
k.

[2]. The function HTree (HT,St′,p′
k )

Considering the algorithm shown in Fig. 3, after
phase 0 of the procedure, shown from line 3 to line 5, we
have a hash tree HT constructed from PL.

Based on PL and the SI table, we can evaluate function
HTree(HT,St′,p′

k ) in phase 1. The detailed steps are shown
in Fig. A-2.

The purpose of this procedure is to obtain the actual
count of each itemset in PL in section St′,p′

k and store it in
hash tree HTt′,p′

k , so that we can calculate the actual
support and confidence more efficiently. To this end, the
procedure will repeatedly add the counts of every unit
section S1,1

2 ⊆St′,p′
k into HTt′,p′

k . For each unit section S1,1
i ,

it only adds the counts to the nodes where corresponding
itemsets are on shelf.

[3]. The function combine (i,j,k)

To have a better performance, we have to discover
the rules in a lower granularity without additional scans
of the database. To this end, we can build a hash tree in a
lower granularity level by combining hash trees asso-
ciated with higher granularity levels. The procedure is
shown in Fig. A-3.

Let us use HTi,j–1
k′ ⊂HTi,j

k to indicate the contexts of
HTi,j–1

k′ are a subset of those of HTi,j
k . In this case, we say

HTi,j–1
k′ is a child tree of HTi,j

k . We can combine all child
trees of HTi,j

k to form HTi,j
k . In step 4 of the procedure,

HTi,j
k←HTi,j–1

k1 +HTi,j–1
k2 means HTi,j–1

k1 and HTi,j–1
k2 combine

to obtain HTi,j
k . And the combine operation refers to

summing the support counts stored in corresponding
nodes in all trees involved. Specifically, the operation
is done by |cx3(X,Si,j

k )|=∑k′|cx3(X,Si,j–1
k′ )| and count (yi,

cx3(X,Si,j
k ))=∑k′count(yi,cx3(X,Si,j–1

k′ )).

[4]. Finding CL itemset and section rules

After the first two phases, we have the count infor-
mation. Thus, we use the information stored in HTi,j

k to
compute the context supports of the itemsets in Si,j

k and
then compute the confidence of the rules. If the con-
fidences of the rules exceed a given threshold δC, then
we add the rules into SRi,j

k . The main process is shown in
Figs. A-4 and 5.
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