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1. Introduction

The beta variates and Dirichlet random vectors are extensively used in the areas of Bayesian statistics, stochastic modeling
and simulation, program evaluation and review techniques (PERT), critical path method (CPM), and project management
and control systems (Lange, 1995; Gupta and Nadarajah, 2004; Tian et al., 2010; da-Silva et al., 2011). Over the years, many
algorithms have been introduced in the literature for the computer generation of beta variates and Dirichlet random vectors.
For example, the beta generating function rbeta() in the R default package stats R Development Core Team (2008) is based
on the algorithms by Cheng (1978); the beta generating function rand() in SAS utilizes the algorithms by Atkinson and
Whittaker (1976), Cheng (1978) and Atkinson (1979); the beta generating function betarnd() in MATLAB Statistics Toolbox
uses both the order statistics method and Jéhnk’s method (Jéhnk, 1964; Rubinstein and Kroese, 1981); and the Dirichlet
generating functions rdirichlet() and rDirichlet() in the R packages MCMCpack and compositions utilize the method based
on the transformation of gamma variates (Hogg and Craig, 1978; Aitchison, 1986). The shortcoming for the existing software
packages is that most algorithms used to develop the beta and Dirichlet generating functions are dated (the readers can
refer to Hung et al. (2009, 2011) for a review of recent developments on beta and Dirichlet generating functions). Besides,
their efficiency (i.e., computer generation time) is usually not robust to changes in hardware/software platform. From the
viewpoint of implementation, it is better to use state-of-the-art algorithms so that maximum efficiency can be achieved on
different computer platforms (e.g., 32 or 64-bit processors, Windows or Mac OS X operating systems, etc.).

In this study, we present a new R package rBeta2009, which contains functions rbeta() and rdirichlet() for generating
beta variates and Dirichlet random vectors, respectively. The package mainly utilizes the recent guidelines provided by
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Hung et al. (2009, 2011) for choosing the most efficient generating algorithms in accordance with the values of the shape
parameters. In addition to providing high-speed generation, the package is also designed in a way that (i) it has good
statistical properties; (ii) it is robust to changes in computer platform; and (iii) it is easily integrated with other software.
These are criteria commonly used for evaluating a random number generator (Wichmann and Hill, 2006). The rest of this
work is organized as follows. Section 2 introduces the guidelines based on which the generating functions are developed.
Section 3 illustrates the usage of package rBeta2009 and explains how the package is designed so as to achieve its portability
and adaptability. Section 4 evaluates the proposed package in terms of efficiency, robustness, accuracy, and randomness. For
efficiency and robustness, the proposed package is compared with the existing R package(s) in terms of computer generation
time on various hardware and software platforms. For accuracy, both the univariate and multivariate goodness-of-fit tests
are performed by means of the Kolmogorov-Smirnov statistic based on the generated random numbers/vectors. For testing
randomness, the Ljung-Box (or Portmanteau) statistic is applied. Section 5 summarizes the results. The developed R package
is available from Comprehensive R Archive Network (CRAN) at http://CRAN.R-Project.org/package=rBeta2009.

2. Guidelines for the generating functions

A standard beta variate Beta(c, 8) has the probability density function

I'(ax+
foo = TP a1 i1 g <x<t, (1)
I'(a)I"'(B)
with o, 8 > 0 being shape parameters. As a multidimensional generalization of beta variate, a k-variate random vector
(Yq, ..., Y is said to have a Dirichlet («1, . . ., a41) distribution if the joint density function is given by
apq1—1
o+ -+ k1) a—1 ay—1 ag—1 :
fO.o0 = WOy (1= ) w : (2)
T L) Mg ' 72 ¢ ; ’
wherey; > Oforalli =1,...,k, Zi;l yi < 1,and a4, ..., axy1 > 0 are shape parameters. In this section, we introduce

the guidelines utilized by package rBeta2009 for generating beta random numbers and Dirichlet random vectors.

2.1. Guideline for generating beta random numbers

Hung et al. (2009) proposed a useful guideline for choosing a state-of-the-art algorithm for generating the Beta(w, 8)
random number and evaluated the guideline through various performance metrics. Our package mainly utilizes this
guideline but removes one algorithm (called Kennedy’s MK) that was used when the shape parameters « and § are both less
than one and @ + 8 > 1.2. This was done since the Kennedy’s MK algorithm is in fact a stochastic search method (i.e., an
approximate method) that generates “asymptotically” the desired beta distribution, which may increase uncertainty in the
generated random numbers. Based on the empirical study carried out by Hung et al. (2009), in our package, the Kennedy’s
MK algorithm is replaced by another algorithm called BOO (Sakasegawa, 1983). In summary, the beta generating function in
rBeta2009 utilizes the following guideline for choosing the most efficient algorithm:

e fora, 8 < 1, choose the B0OO algorithm (Sakasegawa, 1983);

e fore <1 < Bora > 1> f,choose the BO1 algorithm (Sakasegawa, 1983);

e for @, B > 1, choose the B4PE algorithm (Schmeiser and Babu, 1980) if one parameter is less than 1.2 and the other is
larger than 4; otherwise, choose the BPRS algorithm (Zechner and Stadlober, 1993).

2.2. Guideline for generating Dirichlet random vectors

It is known that the Dirichlet random vector can be generated by considering the transformation based on beta variates.

To see how this works, suppose X1, ..., X are independent beta random variables with X; ~ Beta(o;, i1+ - - +ags1), 1 =
1,...,k then by letting Y1 = X1,V = X; ]_[};1(1 — Xj) fori = 2,...,k the random vector (Yy,...,Y) has a
Dirichlet (a1, . . ., og4+1) distribution (Narayanan, 1990). In order to accelerate the generation speed based on this approach,

Hung et al.(2011) introduced three useful guidelines. These three guidelines are stated below, where Guideline 1 for choosing
the beta algorithm has been modified according to the description above in Section 2.1.

Guideline 1: choosing the fastest beta generation algorithm. Use the guideline stated in Section 2.1 for selecting the best
algorithm for generating the beta variates.

Guideline 2: re-ordering the shape parameters. Denote the ordered valuesofoy, ..., axt1 by oy, - . ., €1y, and letm (<
k 4 1) be the number of shape parameters less than one.
o If k1) < 1and (k + 1) is odd, generate the random vector from

Dirichlet (o¢(1y, 0(3)s - - + s Q(k—1)s C(k1)s (k) s QL (k—2)s (ks - - - > CL(4)s (D)5
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e if ¢y41) < 1and (k + 1) is even, generate the random vector from
Dirichlet (ot(1y, 0t(2), gy, « -« 5 Qk—1)» C(k1)s Ck—2)> Q(k—a)» - - - » 0U(5)5 O(3));
eif 1 < ap41y < 3and a(y > 1, generate the random vector from
Dirichlet (0 (k+1y, Ck—1)s Ck—2)» - - - » O(1)> (k) ;
e if 1) > 3 and ;) > 1, generate the random vector from

Dirichlet (oe+1), ks Ck—2)s C(k=3)s - - - » C(1)5 Cik—1))3

eifagsny > 1o <1, m> "%2 and o,y < 0.5, generate the random vector from

Dirichlet (a(1y, 0¢2), - - - Q(m—1)> C(mt1)» E(m+2)» -« - » Cke1)5 Om) )3
e otherwise, generate the random vector from

DiTiChlet(O{(k+1), O(k—1)s X (k=2)s - - - s O(1)5 Ot(k)).

Guideline 3: reducing the amount of arithmetic operations. Replace the formula Y; = X; H};}(l — X;j) in the beta

transformation method by Y; = X; (1 - ZJI;} Yj).

The package rBeta2009 basically utilizes the above three guidelines to generate the Dirichlet random vectors. For
implementation purpose, the beta transformation method along with these guidelines is summarized in the following
algorithm:

Step 1: Re-order the shape parameters a1, . .., a1 based on Guideline2 and denote the new ordering by o, . . ., o, ;-

Step 2: Fori =1, ..., k, generate independent beta random variables X; ~ Beta (asi, Z]k:llrl asj) by using Guideline1l.

Step3:SetY; =X;and Y; = X; (1 — ZJI;} Yj) fori =2, ..., k(Guideline3).

Step 4: Re-arrange the order of Yy, . . ., Y} suitably and return the desired vector.

3. Software design and implementation

In this section, we describe the design feature of package rBeta2009 from the perspective of memory allocation,
portability, and adaptability. We also illustrate the usage of this package. All numerical results presented in this section
were executed on 3.0 GHz AMD® Athlon™ 1 X4 640 processors with 8 GB of cache under the operating system of Microsoft”
Windows 7 64-bit Service Pack 1 (SP1).

3.1. Memory allocation and portability

Since the source code of package rBeta2009 was primarily written in C, to pass the R objects to C, we can simply use
the application program interfaces (APIs). There are two ways to call C functions using the R API: .C() and .Call(). The .C()
interface returns the arguments of the function (i.e., void or primitive values/pointers such as double/double *), and so it can
be simply wrapped with other software (e.g., Mathematica wraps value/pointer-type functions via the MathLink API; Python
wraps value/pointer-type functions via the ctype module; MATLAB wraps void-type subroutines through creating C source
MEX-files, etc.). The main shortcoming of using the .C() interface is that arguments such as as.double() or as.integer() need
to be claimed so as to ensure that objects are passed with a correct type. This means that memory pre-allocation for the
desired objects is necessary. To avoid the memory allocation problem induced by objects of large sizes, we utilize the .Call()
interface in package rBeta2009.

The .Call() interface allows us to pass the R objects into the C environment and return the R data structure (such as matrix
and list) without matching up the arguments. In addition, it uses functions such as allocMatrix to efficiently allocate/manage
memory. It is noted that when .Call() is used, R objects are represented as a data structure in C, called an S-expression or SEXP
(Symbolic EXPression). To convert the returned SEXP data structure into standard data types that can be incorporated with
other software, we can simply remove the headers Rdefines.h, R.h, Rmath.h, the calls PROTECT(), UNPROTECT(), and replace
SEXP by appropriate typedef (such as int or double). In addition, the following associated changes need to be made:

e Remove the calls GetRNGstate() and PutRNGstate(), substitute, for example, the SIMD-oriented Fast Mersenne Twister
pseudo-random number generator (Saito and Matsumoto, 2008) for the uniform random number generator unif_rand().

o Include the header algorithm and substitute functions fmin() and fmax() for functions min() and max(), respectively.

e Substitute pow() for the power function R_pow().
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Table 1

The computer generation time (in seconds) of 3 x 10° Beta(r, #) random numbers
based on different choices of power functions under the 32 and 64-bit processors.
Here, pow, R_pow, and exp-log represent the functions pow(a, b), R_pow(a, b), and
exp(b * log(a)) for computing a” in package rBeta2009, respectively.

Beta(w, B) 32-bit processor 64-bit processor

o B pow R_pow exp-log pow R_pow  exp-log

0.05 0.05 1.028 0.879 1.388 4.626 4719 0.862
0.5 0.660 0.521 0.919 3.205 2.846 0.542
1.3 0.473 0.419 0.679 2.410 2.450 0.392
7.3 0.516 0.462 0.731 2.544 2.617 0.435

0.5 0.5 0.675 0.345 0.934 3.159 0.345 0.552
1.3 0.528 0.332 0.777 2.621 0.674 0.440
7.3 0.684 0.522 0.976 3.445 1.525 0.572

1.3 1.3 0.450 0.410 0.505 1334 1.355 0.330
7.3 0.486 0.453 0.536 1.165 1.186 0.330

7.3 7.3 0.324 0.306 0.350 0.682 0.698 0.243

As for rendering the functions from returning double array pointer into returning void, we should make the claim for
the object to be returned as an input argument, say, replace the command “return out” by “return”, or simply remove the
command “return out” in SEXP.

Remark. The readers can refer to the documents of Eddelbuettel and Francois (2011) and R Development Core Team (2012)
for integrating other software packages with R.

3.2. Adaptability

It is worth noting that the algorithms used in package rBeta2009 mainly involve the calculation of power functions, say,
a’. In the primary source code C, this computation can be done by using either pow(a, b), R_pow(a, b) (by including the
header Rmath.h), or exp(b * log(a)). However, computational efficiency based on these three functions seems to be quite
different under 32 and 64-bit architectures. To illustrate this, computer times for generating various beta random numbers
based on these three different functions are shown in Table 1.

As can be seen from Table 1, R_pow(a, b) performs best (i.e., has the smallest execution time) under the 32-bit
architecture, while exp(b * log(a)) performs best under the 64-bit architecture for generating the beta random numbers
under consideration. Based on these numerical results, package rBeta2009 can be designed in a way that the most efficient
power function is chosen in accordance with a 32 or 64-bit platform. This is done simply by adding the following subroutine
in the package:

double power(double a, double b) {
#if __x86_64__ | __ppc64__
return(exp(b * log(a)));
#else
return(R_pow(a, b));
#endif

3.3. Implementation of the beta generating function

The function rbeta(n, shapel, shape2) in package rBeta2009 realizes the beta generating algorithm introduced in
Section 2.1. It simulates n Beta(shape1, shape2) variates. Examples for illustrating the usage of the rbeta() function are shown
below. First, the package needs to be loaded into R and a random number seed is arbitrarily set:

R > library(“rBeta2009”)
Attaching package: ‘rBeta2009'.

The following object(s) are masked from ‘package:stats’:
rbeta

R > set.seed(41352).

Now, we generate ten Beta(4.3, 1.1) random variates as follows:

R > rbeta(10, 4.3, 1.1)

[110.8551216 0.7952882 0.8843819 0.8751342 0.5245602 0.9142886 0.8428009
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Table 2

The computer platforms considered for evaluating the efficiency of package rBeta2009.
Operating system CPU Cache
Windows 7 SP1 Intel® i7-3520M @ 2.90 GHz 8 GB DDR3-1600
Ubuntu Linux 12.10 Intelé i7-3520M @ 2.90 GHz 8 GB DDR3-1600
Mac OS X 10.8.2 Intel® Core™ 2 Duo @ 2.4 GHz 4 GB DDR3-1067

[8] 0.9901657 0.9044049 0.5308266.

Now, we generate ten Beta(0.6, 7.2) random variates as follows:

R > rbeta(10, 0.6, 7.2)

[1]5.476593e—02 2.516238e—01 4.813845e—02 2.643006e—02 7.112204e—02
[6] 3.909095e—01 1.727862e—05 2.018599e—01 6.598838e—05 2.456395e—02.

3.4. Implementation of the Dirichlet generating function

The function rdirichlet(n, shape) in package rBeta2009 generates nk-variate Dirichlet random vectors with the shape
parameters collected in the (k + 1)-dimensional vector “shape”. Instead of returning a k-component vector (y1, ..., Yx),
rdirichlet() returns a vector (y1,...,Yx, 1 — ZL y;) with (k + 1) components so as to make the dimensionality of the
output consistent with other existing packages such as MCMCpack and gtools. The usage of the function rdirichlet() is
illustrated in the following example, which simulates seven 3-variate random vectors from the Dirichlet (1.5, 0.7, 5.2, 3.4)
distribution:

R > set.seed(41352)
R > rdirichlet(7,c(1.5,0.7, 5.2, 3.4)).

[ 1] [, 2] [, 3] [, 4]

0.126182368  0.016922990 0.7430068  0.1138878
0.340030480  0.003867118  0.5466362  0.1094662
0.103226485 0.118618688  0.6603255  0.1178294
0.117983104  0.004902538  0.3256576  0.5514568
0.004467648  0.019712145 0.3093933  0.6664269
0.066052490  0.102936431 0.6683340  0.1626771
0.152099005  0.080641869  0.3782559  0.3890032

—_—r—_—_—_—_——_—
N U WN =
R )

)

When the input parameters are not valid (e.g., the shape parameters are negative), an error message is issued:
R > rdirichlet(7,c(—1.5,0.7,5.2, 3.4)).

Error in rdirichlet(7, c(—1.5,0.7, 5.2, 3.4)):
Shape parameters should be all positive.

4. Performance evaluation

In this section, an empirical study is carried out to evaluate package rBeta2009 in terms of efficiency, robustness,
accuracy, and randomness.

4.1. Efficiency and robustness

We first demonstrate the efficiency and robustness of package rBeta2009 by comparing it with the existing R packages
in terms of computer generation time. Table 2 provides a list of computer platforms used to carry out these numerical
comparisons, which mainly includes three types of operating systems (Windows 7, Ubuntu Linux, and Mac OS X). It should
be mentioned here that both the 32 and 64-bit R binaries can be executed on Windows 7 and Mac OS X 10.8.2, while only
the 64-bit binary can be executed on Ubuntu Linux 12.10.

Table 3 presents the computer times of the beta generating function in both package rBeta2009 (in boldface) and the R
default package stats executed on various computer platforms. Note that each computer time is recorded based on 3 x 10°
generated beta variates with a wide range of selected shape parameters. As can be seen from Table 3, the package rBeta2009
significantly outperforms the default package stats in generating all beta variates considered in this study throughout
all platforms. In some cases such as Beta(0.1, 1.1), the improvement of computer generation time is, surprisingly, up to
71%-81%.

Tables 4 and 5 present the computer times of the Dirichlet generating functions in package rBeta2009 (in boldface)
and two competing packages MCMCpack and compositions executed on various computer platforms. Here again, each
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Table 3

The computer times (in seconds) of packages rBeta2009 (in boldface) and
stats on various computer platforms. Each computer time is recorded
based on 3 x 10° generated Beta(c, f) variates.

o B Windows7SP1  Mac0SX10.8.2 Ubuntu12.10
(32-bit binary)

0.1 0.1 0360 0780 0921 0.971
0.8 0.225 0870 0472 1.099
1.1 0.169 0893 0328 1.137
2.5 0211 0847 0384 1.133
100 0208 0814 0397 1.086

0.8 0.8 0402 0664 0675 0.741
11 0.368 0.665 0.623 0.790
2.5 0447 0721 0739 0.840
100 0553 0.800 0901 0916

1.1 11 0304 0534 0449 0611
25 0.241 0617 0357 0.704
100 0.267 0.734 0.586 0.820

2.5 2.5 0280 0579 0444 0.656
100 0258 0.629 0417 0.695

100 100 0.200 0.634 0330 0684
(64-bit binary)

0.1 0.1 0645 0704 0.760 0863 0.509 0.658
0.8 038 0712 0489 0900 0.288 0.650
1.1 0315 0700 0315 0858 0224 0.628
2.5 0338 0690 0377 0900 0.261 0.619
100 0394 0691 0364 0832 0.260 0.589

0.8 0.8 0397 0604 0481 0589 0.275 0539
1.1 0373 0611 0350 0.616 0.254 0.556
2.5 0435 0657 0420 0.673 0300 0.610
100 0550 0703 0509 0.738 0382 0.649

1.1 11 0258 0522 0268 0484 0.180 0.451
2.5 0.175 0578 0245 0558 0.140 0.493
100 0.209 0679 0.291 0638 0.203 0.566
2.5 2.5 0225 0545 028 0516 0.170 0.464
100 0244 0617 0296 0544 0185 0477

100 100 0193 0612 0251 0535 0.145 0.486

computer time is recorded based on 3 x 10° generated Dirichlet random vectors with a wide range of selected shape
parameters. As can be seen from Tables 4 and 5, the package rBeta2009 significantly outperforms both packages
MCMCpack and compositions in generating all Dirichlet random vectors considered in this study. In some cases such as
Dirichlet(1.1, 1.1, 1.1), Dirichlet (1.1, 1.1, 1.1, 0.5, 0.5), and Dirichlet (0.5, 0.5, 0.5, 1.1, 1.1), the improvement of computer
generation time is up to 74% (compared to package MCMCpack) and 87% (compared to package compositions), respectively.
In summary, all these numerical results demonstrate that package rBeta2009 is very efficient when compared to the existing
R packages for generating beta variates and Dirichlet random vectors. In addition, its performance is quite robust to changes
in computer platform.

Remark. The R packages MCMCpack, gtools, gregmisc, BGSIMD, phybase, MSBVAR, mc2d, and compositions all utilize
the method based on the transformation of gamma variates (Hogg and Craig, 1978; Aitchison, 1986) to generate Dirichlet
random vectors.

4.2. Accuracy

Next, we evaluate the accuracy of package rBeta2009 by performing goodness-of-fit test with the well-known
Kolmogorov-Smirnov (KS) statistic for the generated random numbers/vectors. Briefly, it can be described as follows. Let
X1, ..., X, be n observations drawn from a univariate distribution F and define the corresponding empirical distribution by
I:'(x) = % ZL] Iix;<xy» where I represents an indicator function. Let Xy < - - - < X(») be the order statistics of x1, .. ., x,. The
KS statistic is then defined as

Bn m;ax ‘I:‘(x) — F(x)'

) 1
max {0, max (i — Dj> . max (Dj _1 )} , (3)
1sj=sn \ n 1<j=n n
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Table 4

The computer times (in seconds) of packages rBeta2009 (in boldface), MCMCpack (in italic), and
compositions on various computer platforms. Each computer time is recorded based on 3 x 10°
generated Dirichlet («, a2, ov3) random vectors.

o =a a3 Windows 7 SP1 Mac OS X 10.8.2 Ubuntu 12.10
(32-bit binary)
0.1 0.1 1.082 1862 4380 2.014 2480 7.348

075 0.689 1934 4255 1360 2550 7.242
1.1 0910 1.842 4.091 1.616 2466 6.987
25 0993 1622 3978 1740 2249 6.755

0.75 0.1 0645 2123 4402 1185 2734 7.331
075 0872 2276 4629 1487 2920 7.406
1.1 0.768 2.199 4.645 1.241 2787 7.362
25 0.723 1940 4.635 1201 2673 7.134

11 0.1 0.545 1.849 4.184 0971 2479 7.032
075 0704 1903 4201 1195 2748 7.210
1.1 0.559 1.842 4733 0.966 2536 7.085
25 0.648 1.758 4.176 1.047 2376 6.898

25 0.1 0490 1.495 3.851 0912 2093 6.631
075 0962 1758 4384 1406 2276 6.886
11 0.564 1.590 4.199 0917 2188 6.684
25 0487 1.365 3.992 0.819 1956 6.632

(64-bit binary)

0.1 0.1 1386 1.671 4.138 1613 1959 6.006 1.059 1.339 3.768
075 0899 1663 4.038 1.020 1.893 5429 0.629 1426 3.569
11 1.041 1513 3779 1.059 1860 5217 0.780 1.322 3.378
25 1184 1335 3613 1195 1692 5.093 0.843 1.197 3.339

0.75 0.1 0.839 1.782 4.155 0927 2031 5555 0.565 1534 3.610
075 0848 1935 4.177 0.853 2214 5624 0.616 1632 3.801
1.1 0.704 1782 3981 0.780 2139 5589 0.522 1574 3.549
25 0.788 1602 3797 0.784 1995 5306 0.549 1425 3432

1.1 0.1 0696 1416 3725 0.842 1870 5434 0459 1327 3314
075 0639 1559 3812 0.697 2.058 5296 0.465 1409 3.484
11 0485 1.347 3.625 0.605 2097 5246 0371 1244 3411
25 0.555 1.242 3498 0.682 1881 5249 0434 1.170 3.239

25 0.1 0.592 1.138 3401 0.762 1591 5.014 0462 1041 3.157
075 0778 1274 3535 0991 1705 5229 0.581 1.165 3.264
1.1 0437 1.097 3356 0.634 1726 5001 0426 1050 3.123
25 0406 0930 3213 0590 1636 4770 0.348 0.895 2.961

where D; = F(x;),j = 1, ..., n. Clearly, the null hypothesis that observations x4, ..., X, are from the distribution F is
rejected for large values of D,,. To perform the test, the following asymptotic result given by Serfling (1980) is quite useful:
o]
lim P(J/nDy <d) =1-2) (="l ¥® a0 (4)
n—oo j:]

For multivariate distributions, the following procedure based on statistically equivalent blocks (SEBs) can be utilized to
perform the goodness-of-fit test (Tukey, 1947; Foutz, 1980; Alam et al., 1993). Let X1, .. ., X, be n observations of a random
vector X obtained from a k-dimensional distribution F'¥! having support 4. First, we choose n cutting functions ¢, . . . , ¢n
such that ¢;(X) is a continuous distribution fori = 1, ..., n. Let X1y = arg Mingex,,... x,) ¢1(X) such that the support § is

cut into two blocks
Bi={xed8:¢1(X) <1(X1))} and By., =48\ B;.

Next, let Xp) = arg minye(x, X\ X)) ¢>(X) so that B,..., is cut into two subblocks

B, = {X €By.pn: ¢2(X) < ¢2(X(2))} and Bs., =By.p \Bz

Continuing in this manner, we see that there exist Xy, ..., X and (n + 1) exclusive blocks By, By, ..., Byy1 such that
U B = 8. LetDj = Pe(X € J_,B) = >0_,Pr(X € By),j = 1,...,n. The corresponding KS statistic in (3) can
then be obtained. Note that to perform the test for the generated Dirichlet random vectors, we choose the cutting functions
suggested by Tukey (1947), namely, ¢ (X) = x;,i = 1,...,k,r = 0,1, ..., where x; denotes the i-th coordinate of the
vector X. The SEBs constructed in this fashion are simply rectangular blocks.

Table 6 gives the results of the KS test for both beta and Dirichlet generating functions, wherein the empirical frequency
(i.e., the probability of rejecting the null hypothesis) is computed based on 1000 Monte Carlo simulations with the sample
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Table 5

The computer times (in seconds) of packages rBeta2009 (in boldface)) MCMCpack (in italic), and
compositions on various computer platforms. Each computer time is recorded based on 3 x 10° generated
Dirichlet (ay, o2, a3, a4, as) random vectors.

o=y = a3 o4 = a5 Windows 7 SP1 Mac 0S X 10.8.2 Ubuntu 12.10
(32-bit binary)
0.05 0.05 1980 3.048 7.449 3.622 3890 12.166
0.9 1.288 3412 7513 2199 4217 11813
1.1 1.008 3.074 7.303 1741 4.090 11508
8.5 0949 2778 6908 1.744 3691 11.223
0.9 0.05 1.540 3582 7.599 2536 4484 12.053
0.9 1.892 3802 8.116 2965 4850 12.530
1.1 1.767 3661 7.811 2.865 4642 13.028
8.5 1.839 3272 7455 2887 4297 12.056
1.1 0.05 1.025 3121 7.198 1712 4170 11.810
0.9 1.560 3509 7.460 2251 4546 12.125
1.1 1.255 3156 7.184 1.920 4.187 11916
8.5 1123 2724 6.853 1.850 4.110 11.563
8.5 0.05 1.020 2578 6.684 1.861 3766 11.327
0.9 1.518 2785 6.927 2529 4.002 11712
1.1 1234 2441 6254 1.793 3861 11.644
8.5 1.135 2129 5.938 1.782 3263 10.967
(64-bit binary)
0.05 0.05 2522 2628 6474 2912 3036 9.064 1963 2076 5.777
0.9 1.500 2873 6.727 1.577 3256 9.082 1.073 2342 5.839
1.1 1369 2644 6.284 1.420 3353 9.016 0.954 2125 5.548
8.5 1.298 3437 6970 1.464 2822 8636 0.947 1.902 5.350
0.9 0.05 1.706 3.259 7.052 1.621 3.380 8961 1.115 2475 5974
0.9 1.788 3574 7.451 1974 3592 9684 1.190 2732 6.211
1.1 1.642 2916 6.830 1.692 3637 9265 1.172 2508 5.938
8.5 1.791 2564 6.416 2.003 3244 9350 1.164 2299 5.750
1.1 0.05 1243 2499 6.680 1304 3.18 8.853 0.851 2172 5.523
0.9 1414 2656 6.733 1.562 3424 9.115 1.023 2400 5.885
1.1 1.142 2445 6.463 1254 3336 9.039 0.834 2.057 5.562
8.5 0937 2228 6.048 1.238 3273 8767 0.707 1918 5.337
8.5 0.05 1.166 1.992 5.805 1.385 2807 8.398 0.853 1.872 5234
0.9 1464 2556 6.036 1.821 3.065 9.194 0.999 2.088 5.506
1.1 0.895 1907 5.868 1.219 3.049 8418 0.791 1.855 5.240
8.5 0936 1714 5714 1.195 2616 8283 0.665 1536 5.031
Table 6

The empirical frequencies (probabilities of rejecting the null hypothesis) for the KS test at the 0.05
level of significance based on the generated beta variates and Dirichlet random vectors. Note that each
empirical frequency is computed based on 1000 Monte Carlo simulations with the sample size 200.

Beta(x, B) Dirichlet ey, . .., Qk41)

Parameters Empirical frequency Parameters Empirical frequency
(0.1,0.1) 0.052 (0.1,0.5,0.9) 0.065
(0.1,0.75) 0.052 (0.3,08,7.5) 0.047
(0.1,1.2) 0.040 (0.5,2.2,3.4) 0.036
(0.1,13.5) 0.052 (0.5,1.5,10) 0.050
(0.75,0.75) 0.054 (1.5,5,10) 0.037
(0.75,1.2) 0.049 (1.7,5.0,15.2) 0.051
(0.75,13.5) 0.041 (2,3,5) 0.054
(1.2,1.2) 0.042 (0.1,0.3,0.5,0.7,0.9) 0.042
(1.2,13.5) 0.052 (0.7,0.7,2.7,2.7,5.3) 0.048
(135,135) 0.054 (1.1,3.3,6.6,11.1, 18.7) 0.059

size 200. As can be seen from Table 6, all the estimated empirical frequencies are quite close to 0.05, which support the
accuracy of package rBeta2009 in terms of goodness-of-fit.

Remark. In addition to the KS statistic introduced in this section, one can refer to Chiu and Liu (2009) for other statistics
that can be used to test the goodness-of-fit for multivariate continuous distributions.
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Table 7

The empirical frequencies (probabilities of rejecting the null hypothesis) for the Ljung-Box test with
H = 1, 2, 3 based on the generated beta variates and Dirichlet random vectors. Note that each empirical
frequency is computed based on 3000 Monte Carlo simulations with the sample size 3000, while the level
of significance is chosen to be 0.05.

Beta(e, B) Dirichlet(ay, . .., 0tk+1)

Parameter H=1 H=2 H= Parameter H= H= H=
(0.1,0.1) 0.050 0.050 0.052 (0.2,0.2,0.4) 0.046 0.042 0.046
(0.1,0.7) 0.044 0.049 0.048 (0.2,0.2,0.9) 0.050 0.047 0.048
(0.1,1.1) 0.048 0.050 0.059 (0.2,0.2,13) 0.050 0.049 0.052
(0.1,12.5) 0.040 0.042 0.047 (1.2,1.2,04) 0.052 0.048 0.053
(0.1, 100) 0.047 0.050 0.052 (1.2,1.2,0.9) 0.054 0.047 0.049
(0.7,0.7) 0.053 0.056 0.058 (1.2,1.2,13) 0.054 0.053 0.057
(0.7,1.1) 0.053 0.056 0.047 (7.5,7.5,04) 0.051 0.049 0.056
(0.7,12.5) 0.051 0.055 0.047 (7.5,7.5,0.9) 0.054 0.054 0.049
(0.7, 100) 0.053 0.053 0.050 (7.5,7.5,13) 0.058 0.054 0.056
(1.1,1.1) 0.050 0.043 0.047 (0.3,0.3,05,0.5,0.5) 0.046 0.051 0.052
(1.1, 12.5) 0.053 0.051 0.048 (0.3,0.3,9.8,9.8,9.8) 0.055 0.054 0.058
(1.1, 100) 0.057 0.057 0.055 (0.6,0.6,0.5,0.5,0.5) 0.056 0.051 0.053
(12.5,12.5) 0.047 0.048 0.054 (0.6,0.6,9.8,9.8,9.8) 0.058 0.053 0.050
(12.5,100) 0.048 0.042 0.046 (1.1,1.1,05,0.5,0.5) 0.049 0.048 0.050
(100, 100) 0.044 0.050 0.047 (1.1,1.1,9.8,9.8,9.8)  0.050 0.043 0.048

4.3. Randomness

Next, we evaluate the randomness of the two generating functions in package rBeta2009 by utilizing the Ljung-Box test
(Ljung and Box, 1978). It can be briefly described as follows. Let x1, ..., X, be a sequence of observations and denote the
autocorrelation of lag h by pp,. Then, testing the randomness of the sequence can be equivalently formulated as testing the
null hypothesis Hy : p; = --- = py = 0 for some selected value H. Ljung and Box (1978) introduced the following test
statistic (called the Portmanteau statistic):

Pn
n—nh’

H
QG =nn+2)) (5)
h=1

where py, is the sample autocorrelation of lag h. Note that given the level of significance «, the null hypothesis is rejected if

QH > XI~21.17a’

The multivariate version of the Portmanteau statistic, which were discussed by Hosking (1980, 1981) and Li and McLeod
(1981),is described as follows. Let x4, . . . , X, be a sequence of k-variate observations and denote the cross-correlation matrix
of lag h by p,,. To test the null hypothesis Hy : p; = --- = py = 0, where 0 is a zero matrix of order k x k, we can consider
the following statistic:

k S
[k] 2 -1 -1
Qi =n)" —— trace (ryry'ryry’'), (6)

h=1
where I'y, is the estimated cross-covariance matrix of lag h. Note that given the level of significance «, the null hypothesis
is rejected if Q) > x2, .

To evaluate the randomness of the variates/vectors generated by package rBeta2009, we performed the Ljung-Box test
by choosing H = 1, 2, 3. Table 7 summarizes the empirical frequencies of the test at the 0.05 level of significance based on
3000 Monte Carlo simulations with the sample size 3000. As can be seen, all the estimated empirical frequencies are very
close to 0.05, which support the randomness of generating functions in package rBeta2009.

5. Summary

We have presented a new R package rBeta2009 for generating beta variates and Dirichlet random vectors. The package
incorporates state-of-the-art generating algorithms so as to minimize the computer generation time. From the design
viewpoint, it also has many advantages such as flexible memory allocation, portability, and adaptability. Numerical evidence
shows that it significantly outperforms the existing R packages on various hardware and software platforms in terms
of computer generation time, while properties such as accuracy (or goodness-of-fit) and randomness of the generated
quantities are very good. Finally, it is important to mention that this package can be efficiently used for generating random
variates/vectors from some other distributions closely related to the beta distribution, such as the inverted Dirichlet
distribution, the Liouville distribution, and the uniform distribution over convex polyhedrons.
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