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a b s t r a c t

A software package, rBeta2009, developed to generate beta random numbers and Dirichlet
random vectors in R is presented. The package incorporates state-of-the-art algorithms so
as tominimize the computer generation time. In addition, it is designed in away that (i) the
generation efficiency is robust to changes of computer architecture; (ii) memory allocation
is flexible; and (iii) the exported objects can be easily integrated with other software. The
usage of this package is then illustrated and evaluated in terms of various performance
metrics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The beta variates andDirichlet randomvectors are extensively used in the areas of Bayesian statistics, stochasticmodeling
and simulation, program evaluation and review techniques (PERT), critical path method (CPM), and project management
and control systems (Lange, 1995; Gupta and Nadarajah, 2004; Tian et al., 2010; da-Silva et al., 2011). Over the years, many
algorithms have been introduced in the literature for the computer generation of beta variates and Dirichlet random vectors.
For example, the beta generating function rbeta() in the R default package stats R Development Core Team (2008) is based
on the algorithms by Cheng (1978); the beta generating function rand() in SAS utilizes the algorithms by Atkinson and
Whittaker (1976), Cheng (1978) and Atkinson (1979); the beta generating function betarnd() in MATLAB Statistics Toolbox
uses both the order statistics method and Jöhnk’s method (Jöhnk, 1964; Rubinstein and Kroese, 1981); and the Dirichlet
generating functions rdirichlet() and rDirichlet() in the R packagesMCMCpack and compositions utilize the method based
on the transformation of gamma variates (Hogg and Craig, 1978; Aitchison, 1986). The shortcoming for the existing software
packages is that most algorithms used to develop the beta and Dirichlet generating functions are dated (the readers can
refer to Hung et al. (2009, 2011) for a review of recent developments on beta and Dirichlet generating functions). Besides,
their efficiency (i.e., computer generation time) is usually not robust to changes in hardware/software platform. From the
viewpoint of implementation, it is better to use state-of-the-art algorithms so that maximum efficiency can be achieved on
different computer platforms (e.g., 32 or 64-bit processors, Windows or Mac OS X operating systems, etc.).

In this study, we present a new R package rBeta2009, which contains functions rbeta() and rdirichlet() for generating
beta variates and Dirichlet random vectors, respectively. The package mainly utilizes the recent guidelines provided by
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Hung et al. (2009, 2011) for choosing the most efficient generating algorithms in accordance with the values of the shape
parameters. In addition to providing high-speed generation, the package is also designed in a way that (i) it has good
statistical properties; (ii) it is robust to changes in computer platform; and (iii) it is easily integrated with other software.
These are criteria commonly used for evaluating a random number generator (Wichmann and Hill, 2006). The rest of this
work is organized as follows. Section 2 introduces the guidelines based on which the generating functions are developed.
Section 3 illustrates the usage of package rBeta2009 and explains how the package is designed so as to achieve its portability
and adaptability. Section 4 evaluates the proposed package in terms of efficiency, robustness, accuracy, and randomness. For
efficiency and robustness, the proposed package is comparedwith the existing R package(s) in terms of computer generation
time on various hardware and software platforms. For accuracy, both the univariate and multivariate goodness-of-fit tests
are performed by means of the Kolmogorov–Smirnov statistic based on the generated random numbers/vectors. For testing
randomness, the Ljung–Box (or Portmanteau) statistic is applied. Section 5 summarizes the results. The developed R package
is available from Comprehensive R Archive Network (CRAN) at http://CRAN.R-Project.org/package=rBeta2009.

2. Guidelines for the generating functions

A standard beta variate Beta(α, β) has the probability density function

f (x) =
Γ (α + β)

Γ (α)Γ (β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, (1)

with α, β > 0 being shape parameters. As a multidimensional generalization of beta variate, a k-variate random vector
(Y1, . . . , Yk) is said to have a Dirichlet(α1, . . . , αk+1) distribution if the joint density function is given by

f (y1, . . . , yk) =
Γ (α1 + · · · + αk+1)

Γ (α1) · · · Γ (αk+1)
yα1−1
1 yα2−1

2 · · · yαk−1
k


1 −

k
i=1

yi

αk+1−1

, (2)

where yi ≥ 0 for all i = 1, . . . , k,
k

i=1 yi ≤ 1, and α1, . . . , αk+1 > 0 are shape parameters. In this section, we introduce
the guidelines utilized by package rBeta2009 for generating beta random numbers and Dirichlet random vectors.

2.1. Guideline for generating beta random numbers

Hung et al. (2009) proposed a useful guideline for choosing a state-of-the-art algorithm for generating the Beta(α, β)
random number and evaluated the guideline through various performance metrics. Our package mainly utilizes this
guideline but removes one algorithm (called Kennedy’s MK) that was usedwhen the shape parameters α and β are both less
than one and α + β > 1.2. This was done since the Kennedy’s MK algorithm is in fact a stochastic search method (i.e., an
approximate method) that generates ‘‘asymptotically’’ the desired beta distribution, which may increase uncertainty in the
generated random numbers. Based on the empirical study carried out by Hung et al. (2009), in our package, the Kennedy’s
MK algorithm is replaced by another algorithm called B00 (Sakasegawa, 1983). In summary, the beta generating function in
rBeta2009 utilizes the following guideline for choosing the most efficient algorithm:

• for α, β < 1, choose the B00 algorithm (Sakasegawa, 1983);
• for α < 1 < β or α > 1 > β , choose the B01 algorithm (Sakasegawa, 1983);
• for α, β > 1, choose the B4PE algorithm (Schmeiser and Babu, 1980) if one parameter is less than 1.2 and the other is

larger than 4; otherwise, choose the BPRS algorithm (Zechner and Stadlober, 1993).

2.2. Guideline for generating Dirichlet random vectors

It is known that the Dirichlet random vector can be generated by considering the transformation based on beta variates.
To see how this works, suppose X1, . . . , Xk are independent beta random variables with Xi ∼ Beta(αi, αi+1+· · ·+αk+1), i =

1, . . . , k, then by letting Y1 = X1, Yi = Xi
i−1

j=1(1 − Xj) for i = 2, . . . , k, the random vector (Y1, . . . , Yk) has a
Dirichlet(α1, . . . , αk+1) distribution (Narayanan, 1990). In order to accelerate the generation speed based on this approach,
Hung et al. (2011) introduced three useful guidelines. These three guidelines are stated below,whereGuideline 1 for choosing
the beta algorithm has been modified according to the description above in Section 2.1.

Guideline 1: choosing the fastest beta generation algorithm. Use the guideline stated in Section 2.1 for selecting the best
algorithm for generating the beta variates.

Guideline 2: re-ordering the shape parameters. Denote the ordered values ofα1, . . . , αk+1 byα(1), . . . , α(k+1), and letm (≤
k + 1) be the number of shape parameters less than one.
• If α(k+1) < 1 and (k + 1) is odd, generate the random vector from

Dirichlet(α(1), α(3), . . . , α(k−1), α(k+1), α(k), α(k−2), α(k−4), . . . , α(4), α(2));

http://CRAN.R-Project.org/package%3DrBeta2009
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• if α(k+1) < 1 and (k + 1) is even, generate the random vector from

Dirichlet(α(1), α(2), α(4), . . . , α(k−1), α(k+1), α(k−2), α(k−4), . . . , α(5), α(3));

• if 1 ≤ α(k+1) ≤ 3 and α(1) ≥ 1, generate the random vector from

Dirichlet(α(k+1), α(k−1), α(k−2), . . . , α(1), α(k));

• if α(k+1) > 3 and α(1) ≥ 1, generate the random vector from

Dirichlet(α(k+1), α(k), α(k−2), α(k−3), . . . , α(1), α(k−1));

• if α(k+1) ≥ 1, α(1) < 1,m > k+2
2 , and α(m) ≤ 0.5, generate the random vector from

Dirichlet(α(1), α(2), . . . , α(m−1), α(m+1), α(m+2), . . . , α(k+1), α(m));

• otherwise, generate the random vector from

Dirichlet(α(k+1), α(k−1), α(k−2), . . . , α(1), α(k)).

Guideline 3: reducing the amount of arithmetic operations. Replace the formula Yi = Xi
i−1

j=1(1 − Xj) in the beta

transformation method by Yi = Xi


1 −

i−1
j=1 Yj


.

The package rBeta2009 basically utilizes the above three guidelines to generate the Dirichlet random vectors. For
implementation purpose, the beta transformation method along with these guidelines is summarized in the following
algorithm:
Step 1: Re-order the shape parameters α1, . . . , αk+1 based on Guideline2 and denote the new ordering by αs1 , . . . , αsk+1 .

Step 2: For i = 1, . . . , k, generate independent beta random variables Xi ∼ Beta

αsi ,

k+1
j=i+1 αsj


by using Guideline1.

Step 3: Set Y1 = X1 and Yi = Xi


1 −

i−1
j=1 Yj


for i = 2, . . . , k (Guideline3).

Step 4: Re-arrange the order of Y1, . . . , Yk suitably and return the desired vector.

3. Software design and implementation

In this section, we describe the design feature of package rBeta2009 from the perspective of memory allocation,
portability, and adaptability. We also illustrate the usage of this package. All numerical results presented in this section
were executed on 3.0 GHz AMD

R⃝

AthlonTM II X4 640 processorswith 8 GB of cache under the operating system ofMicrosoft
R⃝

Windows 7 64-bit Service Pack 1 (SP1).

3.1. Memory allocation and portability

Since the source code of package rBeta2009 was primarily written in C, to pass the R objects to C, we can simply use
the application program interfaces (APIs). There are two ways to call C functions using the R API: .C() and .Call(). The .C()
interface returns the arguments of the function (i.e., void or primitive values/pointers such as double/double *), and so it can
be simplywrappedwith other software (e.g., Mathematicawraps value/pointer-type functions via theMathLink API; Python
wraps value/pointer-type functions via the ctype module; MATLAB wraps void-type subroutines through creating C source
MEX-files, etc.). The main shortcoming of using the .C() interface is that arguments such as as.double() or as.integer() need
to be claimed so as to ensure that objects are passed with a correct type. This means that memory pre-allocation for the
desired objects is necessary. To avoid the memory allocation problem induced by objects of large sizes, we utilize the .Call()
interface in package rBeta2009.

The .Call() interface allows us to pass the R objects into the C environment and return the R data structure (such asmatrix
and list) withoutmatching up the arguments. In addition, it uses functions such as allocMatrix to efficiently allocate/manage
memory. It is noted that when .Call() is used, R objects are represented as a data structure in C, called an S-expression or SEXP
(Symbolic EXPression). To convert the returned SEXP data structure into standard data types that can be incorporated with
other software, we can simply remove the headers Rdefines.h, R.h, Rmath.h, the calls PROTECT(), UNPROTECT(), and replace
SEXP by appropriate typedef (such as int or double). In addition, the following associated changes need to be made:

• Remove the calls GetRNGstate() and PutRNGstate(), substitute, for example, the SIMD-oriented Fast Mersenne Twister
pseudo-random number generator (Saito and Matsumoto, 2008) for the uniform random number generator unif_rand().

• Include the header algorithm and substitute functions fmin() and fmax() for functions min() and max(), respectively.
• Substitute pow() for the power function R_pow().
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Table 1
The computer generation time (in seconds) of 3 × 106 Beta(α, β) random numbers
based on different choices of power functions under the 32 and 64-bit processors.
Here, pow, R_pow, and exp–log represent the functions pow(a, b), R_pow(a, b), and
exp(b ∗ log(a)) for computing ab in package rBeta2009, respectively.

Beta(α, β) 32-bit processor 64-bit processor
α β pow R_pow exp–log pow R_pow exp–log

0.05 0.05 1.028 0.879 1.388 4.626 4.719 0.862
0.5 0.660 0.521 0.919 3.205 2.846 0.542
1.3 0.473 0.419 0.679 2.410 2.450 0.392
7.3 0.516 0.462 0.731 2.544 2.617 0.435

0.5 0.5 0.675 0.345 0.934 3.159 0.345 0.552
1.3 0.528 0.332 0.777 2.621 0.674 0.440
7.3 0.684 0.522 0.976 3.445 1.525 0.572

1.3 1.3 0.450 0.410 0.505 1.334 1.355 0.330
7.3 0.486 0.453 0.536 1.165 1.186 0.330

7.3 7.3 0.324 0.306 0.350 0.682 0.698 0.243

As for rendering the functions from returning double array pointer into returning void, we should make the claim for
the object to be returned as an input argument, say, replace the command ‘‘return out’’ by ‘‘return’’, or simply remove the
command ‘‘return out’’ in SEXP.

Remark. The readers can refer to the documents of Eddelbuettel and François (2011) and R Development Core Team (2012)
for integrating other software packages with R.

3.2. Adaptability

It is worth noting that the algorithms used in package rBeta2009mainly involve the calculation of power functions, say,
ab. In the primary source code C, this computation can be done by using either pow(a, b), R_pow(a, b) (by including the
header Rmath.h), or exp(b ∗ log(a)). However, computational efficiency based on these three functions seems to be quite
different under 32 and 64-bit architectures. To illustrate this, computer times for generating various beta random numbers
based on these three different functions are shown in Table 1.

As can be seen from Table 1, R_pow(a, b) performs best (i.e., has the smallest execution time) under the 32-bit
architecture, while exp(b ∗ log(a)) performs best under the 64-bit architecture for generating the beta random numbers
under consideration. Based on these numerical results, package rBeta2009 can be designed in a way that the most efficient
power function is chosen in accordance with a 32 or 64-bit platform. This is done simply by adding the following subroutine
in the package:
double power(double a, double b) {

#if __x86_64__ ∥ __ppc64__
return(exp(b ∗ log(a)));
#else
return(R_pow(a, b));
#endif

}.

3.3. Implementation of the beta generating function

The function rbeta(n, shape1, shape2) in package rBeta2009 realizes the beta generating algorithm introduced in
Section 2.1. It simulates n Beta(shape1, shape2) variates. Examples for illustrating the usage of the rbeta() function are shown
below. First, the package needs to be loaded into R and a random number seed is arbitrarily set:
R > library(‘‘rBeta2009’’)
Attaching package: ‘rBeta2009’.
The following object(s) are masked from ‘package:stats’:

rbeta
R > set.seed(41352).
Now, we generate ten Beta(4.3, 1.1) random variates as follows:
R > rbeta(10, 4.3, 1.1)
[1] 0.8551216 0.7952882 0.8843819 0.8751342 0.5245602 0.9142886 0.8428009
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Table 2
The computer platforms considered for evaluating the efficiency of package rBeta2009.

Operating system CPU Cache

Windows 7 SP1 Intel
R⃝

i7-3520M @ 2.90 GHz 8 GB DDR3-1600
Ubuntu Linux 12.10 Intel

R⃝

i7-3520M @ 2.90 GHz 8 GB DDR3-1600
Mac OS X 10.8.2 Intel

R⃝

CoreTM 2 Duo @ 2.4 GHz 4 GB DDR3-1067

[8] 0.9901657 0.9044049 0.5308266.
Now, we generate ten Beta(0.6, 7.2) random variates as follows:
R > rbeta(10, 0.6, 7.2)
[1] 5.476593e−02 2.516238e−01 4.813845e−02 2.643006e−02 7.112204e−02
[6] 3.909095e−01 1.727862e−05 2.018599e−01 6.598838e−05 2.456395e−02.

3.4. Implementation of the Dirichlet generating function

The function rdirichlet(n, shape) in package rBeta2009 generates nk-variate Dirichlet random vectors with the shape
parameters collected in the (k + 1)-dimensional vector ‘‘shape’’. Instead of returning a k-component vector (y1, . . . , yk),
rdirichlet() returns a vector (y1, . . . , yk, 1 −

k
i=1 yi) with (k + 1) components so as to make the dimensionality of the

output consistent with other existing packages such as MCMCpack and gtools. The usage of the function rdirichlet() is
illustrated in the following example, which simulates seven 3-variate random vectors from the Dirichlet(1.5, 0.7, 5.2, 3.4)
distribution:
R > set.seed(41352)
R > rdirichlet(7, c(1.5, 0.7, 5.2, 3.4)).

[, 1] [, 2] [, 3] [, 4]
[1, ] 0.126182368 0.016922990 0.7430068 0.1138878
[2, ] 0.340030480 0.003867118 0.5466362 0.1094662
[3, ] 0.103226485 0.118618688 0.6603255 0.1178294
[4, ] 0.117983104 0.004902538 0.3256576 0.5514568
[5, ] 0.004467648 0.019712145 0.3093933 0.6664269
[6, ] 0.066052490 0.102936431 0.6683340 0.1626771
[7, ] 0.152099005 0.080641869 0.3782559 0.3890032

When the input parameters are not valid (e.g., the shape parameters are negative), an error message is issued:
R > rdirichlet(7, c(−1.5, 0.7, 5.2, 3.4)).
Error in rdirichlet(7, c(−1.5, 0.7, 5.2, 3.4)):

Shape parameters should be all positive.

4. Performance evaluation

In this section, an empirical study is carried out to evaluate package rBeta2009 in terms of efficiency, robustness,
accuracy, and randomness.

4.1. Efficiency and robustness

We first demonstrate the efficiency and robustness of package rBeta2009 by comparing it with the existing R packages
in terms of computer generation time. Table 2 provides a list of computer platforms used to carry out these numerical
comparisons, which mainly includes three types of operating systems (Windows 7, Ubuntu Linux, and Mac OS X). It should
be mentioned here that both the 32 and 64-bit R binaries can be executed on Windows 7 and Mac OS X 10.8.2, while only
the 64-bit binary can be executed on Ubuntu Linux 12.10.

Table 3 presents the computer times of the beta generating function in both package rBeta2009 (in boldface) and the R
default package stats executed on various computer platforms. Note that each computer time is recorded based on 3× 106

generated beta variates with awide range of selected shape parameters. As can be seen from Table 3, the package rBeta2009
significantly outperforms the default package stats in generating all beta variates considered in this study throughout
all platforms. In some cases such as Beta(0.1, 1.1), the improvement of computer generation time is, surprisingly, up to
71%–81%.

Tables 4 and 5 present the computer times of the Dirichlet generating functions in package rBeta2009 (in boldface)
and two competing packages MCMCpack and compositions executed on various computer platforms. Here again, each
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Table 3
The computer times (in seconds) of packages rBeta2009 (in boldface) and
stats on various computer platforms. Each computer time is recorded
based on 3 × 106 generated Beta(α, β) variates.

α β Windows7SP1 MacOSX10.8.2 Ubuntu12.10

(32-bit binary)

0.1 0.1 0.360 0.780 0.921 0.971
0.8 0.225 0.870 0.472 1.099
1.1 0.169 0.893 0.328 1.137
2.5 0.211 0.847 0.384 1.133
100 0.208 0.814 0.397 1.086

0.8 0.8 0.402 0.664 0.675 0.741
1.1 0.368 0.665 0.623 0.790
2.5 0.447 0.721 0.739 0.840
100 0.553 0.800 0.901 0.916

1.1 1.1 0.304 0.534 0.449 0.611
2.5 0.241 0.617 0.357 0.704
100 0.267 0.734 0.586 0.820

2.5 2.5 0.280 0.579 0.444 0.656
100 0.258 0.629 0.417 0.695

100 100 0.200 0.634 0.330 0.684

(64-bit binary)

0.1 0.1 0.645 0.704 0.760 0.863 0.509 0.658
0.8 0.386 0.712 0.489 0.900 0.288 0.650
1.1 0.315 0.700 0.315 0.858 0.224 0.628
2.5 0.338 0.690 0.377 0.900 0.261 0.619
100 0.394 0.691 0.364 0.832 0.260 0.589

0.8 0.8 0.397 0.604 0.481 0.589 0.275 0.539
1.1 0.373 0.611 0.350 0.616 0.254 0.556
2.5 0.435 0.657 0.420 0.673 0.300 0.610
100 0.550 0.703 0.509 0.738 0.382 0.649

1.1 1.1 0.258 0.522 0.268 0.484 0.180 0.451
2.5 0.175 0.578 0.245 0.558 0.140 0.493
100 0.209 0.679 0.291 0.638 0.203 0.566

2.5 2.5 0.225 0.545 0.288 0.516 0.170 0.464
100 0.244 0.617 0.296 0.544 0.185 0.477

100 100 0.193 0.612 0.251 0.535 0.145 0.486

computer time is recorded based on 3 × 106 generated Dirichlet random vectors with a wide range of selected shape
parameters. As can be seen from Tables 4 and 5, the package rBeta2009 significantly outperforms both packages
MCMCpack and compositions in generating all Dirichlet random vectors considered in this study. In some cases such as
Dirichlet(1.1, 1.1, 1.1), Dirichlet(1.1, 1.1, 1.1, 0.5, 0.5), and Dirichlet(0.5, 0.5, 0.5, 1.1, 1.1), the improvement of computer
generation time is up to 74% (compared to packageMCMCpack) and 87% (compared to package compositions), respectively.
In summary, all these numerical results demonstrate that package rBeta2009 is very efficientwhen compared to the existing
R packages for generating beta variates and Dirichlet random vectors. In addition, its performance is quite robust to changes
in computer platform.

Remark. The R packages MCMCpack, gtools, gregmisc, BGSIMD, phybase, MSBVAR, mc2d, and compositions all utilize
the method based on the transformation of gamma variates (Hogg and Craig, 1978; Aitchison, 1986) to generate Dirichlet
random vectors.

4.2. Accuracy

Next, we evaluate the accuracy of package rBeta2009 by performing goodness-of-fit test with the well-known
Kolmogorov–Smirnov (KS) statistic for the generated random numbers/vectors. Briefly, it can be described as follows. Let
x1, . . . , xn be n observations drawn from a univariate distribution F and define the corresponding empirical distribution by
F̂(x) =

1
n

n
i=1 I{xi≤x}, where I represents an indicator function. Let x(1) ≤ · · · ≤ x(n) be the order statistics of x1, . . . , xn. The

KS statistic is then defined asDn = max
x

F̂(x) − F(x)


= max

0, max

1≤j≤n


j
n

− Dj


, max
1≤j≤n


Dj −

j − 1
n


, (3)
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Table 4
The computer times (in seconds) of packages rBeta2009 (in boldface), MCMCpack (in italic), and
compositions on various computer platforms. Each computer time is recorded based on 3 × 106

generated Dirichlet(α1, α2, α3) random vectors.

α1 = α2 α3 Windows 7 SP1 Mac OS X 10.8.2 Ubuntu 12.10

(32-bit binary)

0.1 0.1 1.082 1.862 4.380 2.014 2.480 7.348
0.75 0.689 1.934 4.255 1.360 2.550 7.242
1.1 0.910 1.842 4.091 1.616 2.466 6.987
25 0.993 1.622 3.978 1.740 2.249 6.755

0.75 0.1 0.645 2.123 4.402 1.185 2.734 7.331
0.75 0.872 2.276 4.629 1.487 2.920 7.406
1.1 0.768 2.199 4.645 1.241 2.787 7.362
25 0.723 1.940 4.635 1.201 2.673 7.134

1.1 0.1 0.545 1.849 4.184 0.971 2.479 7.032
0.75 0.704 1.903 4.201 1.195 2.748 7.210
1.1 0.559 1.842 4.733 0.966 2.536 7.085
25 0.648 1.758 4.176 1.047 2.376 6.898

25 0.1 0.490 1.495 3.851 0.912 2.093 6.631
0.75 0.962 1.758 4.384 1.406 2.276 6.886
1.1 0.564 1.590 4.199 0.917 2.188 6.684
25 0.487 1.365 3.992 0.819 1.956 6.632

(64-bit binary)

0.1 0.1 1.386 1.671 4.138 1.613 1.959 6.006 1.059 1.339 3.768
0.75 0.899 1.663 4.038 1.020 1.893 5.429 0.629 1.426 3.569
1.1 1.041 1.513 3.779 1.059 1.860 5.217 0.780 1.322 3.378
25 1.184 1.335 3.613 1.195 1.692 5.093 0.843 1.197 3.339

0.75 0.1 0.839 1.782 4.155 0.927 2.031 5.555 0.565 1.534 3.610
0.75 0.848 1.935 4.177 0.853 2.214 5.624 0.616 1.632 3.801
1.1 0.704 1.782 3.981 0.780 2.139 5.589 0.522 1.574 3.549
25 0.788 1.602 3.797 0.784 1.995 5.306 0.549 1.425 3.432

1.1 0.1 0.696 1.416 3.725 0.842 1.870 5.434 0.459 1.327 3.314
0.75 0.639 1.559 3.812 0.697 2.058 5.296 0.465 1.409 3.484
1.1 0.485 1.347 3.625 0.605 2.097 5.246 0.371 1.244 3.411
25 0.555 1.242 3.498 0.682 1.881 5.249 0.434 1.170 3.239

25 0.1 0.592 1.138 3.401 0.762 1.591 5.014 0.462 1.041 3.157
0.75 0.778 1.274 3.535 0.991 1.705 5.229 0.581 1.165 3.264
1.1 0.437 1.097 3.356 0.634 1.726 5.001 0.426 1.050 3.123
25 0.406 0.930 3.213 0.590 1.636 4.770 0.348 0.895 2.961

where Dj = F(x(j)), j = 1, . . . , n. Clearly, the null hypothesis that observations x1, . . . , xn are from the distribution F is
rejected for large values ofDn. To perform the test, the following asymptotic result given by Serfling (1980) is quite useful:

lim
n→∞

P(
√
nDn ≤ d) = 1 − 2

∞
j=1

(−1)j+1e−2j2d2 , d > 0. (4)

For multivariate distributions, the following procedure based on statistically equivalent blocks (SEBs) can be utilized to
perform the goodness-of-fit test (Tukey, 1947; Foutz, 1980; Alam et al., 1993). Let x1, . . . , xn be n observations of a random
vector X obtained from a k-dimensional distribution F [k] having support S. First, we choose n cutting functions φ1, . . . , φn
such that φi(X) is a continuous distribution for i = 1, . . . , n. Let x(1) = argminx∈{x1,...,xn} φ1(x) such that the support S is
cut into two blocks

B1 = {x ∈ S : φ1(x) ≤ φ1(x(1))} and B2···n = S \ B1.

Next, let x(2) = argminx∈{x1,...,xn}\{x(1)} φ2(x) so that B2···n is cut into two subblocks

B2 = {x ∈ B2···n : φ2(x) ≤ φ2(x(2))} and B3···n = B2···n \ B2.

Continuing in this manner, we see that there exist x(1), . . . , x(n) and (n + 1) exclusive blocks B1, B2, . . . , Bn+1 such thatn+1
i=1 Bi = S. Let Dj = PF


X ∈

j
i=1 Bi


=
j

i=1 PF (X ∈ Bi), j = 1, . . . , n. The corresponding KS statistic in (3) can
then be obtained. Note that to perform the test for the generated Dirichlet random vectors, we choose the cutting functions
suggested by Tukey (1947), namely, φi+rk(x) = xi, i = 1, . . . , k, r = 0, 1, . . . , where xi denotes the i-th coordinate of the
vector x. The SEBs constructed in this fashion are simply rectangular blocks.

Table 6 gives the results of the KS test for both beta and Dirichlet generating functions, wherein the empirical frequency
(i.e., the probability of rejecting the null hypothesis) is computed based on 1000 Monte Carlo simulations with the sample
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Table 5
The computer times (in seconds) of packages rBeta2009 (in boldface), MCMCpack (in italic), and
compositions on various computer platforms. Each computer time is recorded based on 3 × 106 generated
Dirichlet(α1, α2, α3, α4, α5) random vectors.

α1 = α2 = α3 α4 = α5 Windows 7 SP1 Mac OS X 10.8.2 Ubuntu 12.10

(32-bit binary)

0.05 0.05 1.980 3.048 7.449 3.622 3.890 12.166
0.9 1.288 3.412 7.513 2.199 4.217 11.813
1.1 1.008 3.074 7.303 1.741 4.090 11.508
8.5 0.949 2.778 6.908 1.744 3.691 11.223

0.9 0.05 1.540 3.582 7.599 2.536 4.484 12.053
0.9 1.892 3.802 8.116 2.965 4.850 12.530
1.1 1.767 3.661 7.811 2.865 4.642 13.028
8.5 1.839 3.272 7.455 2.887 4.297 12.056

1.1 0.05 1.025 3.121 7.198 1.712 4.170 11.810
0.9 1.560 3.509 7.460 2.251 4.546 12.125
1.1 1.255 3.156 7.184 1.920 4.187 11.916
8.5 1.123 2.724 6.853 1.850 4.110 11.563

8.5 0.05 1.020 2.578 6.684 1.861 3.766 11.327
0.9 1.518 2.785 6.927 2.529 4.002 11.712
1.1 1.234 2.441 6.254 1.793 3.861 11.644
8.5 1.135 2.129 5.938 1.782 3.263 10.967

(64-bit binary)

0.05 0.05 2.522 2.628 6.474 2.912 3.036 9.064 1.963 2.076 5.777
0.9 1.500 2.873 6.727 1.577 3.256 9.082 1.073 2.342 5.839
1.1 1.369 2.644 6.284 1.420 3.353 9.016 0.954 2.125 5.548
8.5 1.298 3.437 6.970 1.464 2.822 8.636 0.947 1.902 5.350

0.9 0.05 1.706 3.259 7.052 1.621 3.380 8.961 1.115 2.475 5.974
0.9 1.788 3.574 7.451 1.974 3.592 9.684 1.190 2.732 6.211
1.1 1.642 2.916 6.830 1.692 3.637 9.265 1.172 2.508 5.938
8.5 1.791 2.564 6.416 2.003 3.244 9.350 1.164 2.299 5.750

1.1 0.05 1.243 2.499 6.680 1.304 3.186 8.853 0.851 2.172 5.523
0.9 1.414 2.656 6.733 1.562 3.424 9.115 1.023 2.400 5.885
1.1 1.142 2.445 6.463 1.254 3.336 9.039 0.834 2.057 5.562
8.5 0.937 2.228 6.048 1.238 3.273 8.767 0.707 1.918 5.337

8.5 0.05 1.166 1.992 5.805 1.385 2.807 8.398 0.853 1.872 5.234
0.9 1.464 2.556 6.036 1.821 3.065 9.194 0.999 2.088 5.506
1.1 0.895 1.907 5.868 1.219 3.049 8.418 0.791 1.855 5.240
8.5 0.936 1.714 5.714 1.195 2.616 8.283 0.665 1.536 5.031

Table 6
The empirical frequencies (probabilities of rejecting the null hypothesis) for the KS test at the 0.05
level of significance based on the generated beta variates and Dirichlet random vectors. Note that each
empirical frequency is computed based on 1000 Monte Carlo simulations with the sample size 200.

Beta(α, β) Dirichlet(α1, . . . , αk+1)

Parameters Empirical frequency Parameters Empirical frequency

(0.1, 0.1) 0.052 (0.1, 0.5, 0.9) 0.065
(0.1, 0.75) 0.052 (0.3, 0.8, 7.5) 0.047
(0.1, 1.2) 0.040 (0.5, 2.2, 3.4) 0.036
(0.1, 13.5) 0.052 (0.5, 1.5, 10) 0.050
(0.75, 0.75) 0.054 (1.5, 5, 10) 0.037
(0.75, 1.2) 0.049 (1.7, 5.0, 15.2) 0.051
(0.75, 13.5) 0.041 (2, 3, 5) 0.054
(1.2, 1.2) 0.042 (0.1, 0.3, 0.5, 0.7, 0.9) 0.042
(1.2, 13.5) 0.052 (0.7, 0.7, 2.7, 2.7, 5.3) 0.048
(13.5, 13.5) 0.054 (1.1, 3.3, 6.6, 11.1, 18.7) 0.059

size 200. As can be seen from Table 6, all the estimated empirical frequencies are quite close to 0.05, which support the
accuracy of package rBeta2009 in terms of goodness-of-fit.

Remark. In addition to the KS statistic introduced in this section, one can refer to Chiu and Liu (2009) for other statistics
that can be used to test the goodness-of-fit for multivariate continuous distributions.
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Table 7
The empirical frequencies (probabilities of rejecting the null hypothesis) for the Ljung–Box test with
H = 1, 2, 3 based on the generated beta variates and Dirichlet random vectors. Note that each empirical
frequency is computed based on 3000 Monte Carlo simulations with the sample size 3000, while the level
of significance is chosen to be 0.05.

Beta(α, β) Dirichlet(α1, . . . , αk+1)

Parameter H = 1 H = 2 H = 3 Parameter H = 1 H = 2 H = 3

(0.1, 0.1) 0.050 0.050 0.052 (0.2, 0.2, 0.4) 0.046 0.042 0.046
(0.1, 0.7) 0.044 0.049 0.048 (0.2, 0.2, 0.9) 0.050 0.047 0.048
(0.1, 1.1) 0.048 0.050 0.059 (0.2, 0.2, 13) 0.050 0.049 0.052
(0.1, 12.5) 0.040 0.042 0.047 (1.2, 1.2, 0.4) 0.052 0.048 0.053
(0.1, 100) 0.047 0.050 0.052 (1.2, 1.2, 0.9) 0.054 0.047 0.049
(0.7, 0.7) 0.053 0.056 0.058 (1.2, 1.2, 13) 0.054 0.053 0.057
(0.7, 1.1) 0.053 0.056 0.047 (7.5, 7.5, 0.4) 0.051 0.049 0.056
(0.7, 12.5) 0.051 0.055 0.047 (7.5, 7.5, 0.9) 0.054 0.054 0.049
(0.7, 100) 0.053 0.053 0.050 (7.5, 7.5, 13) 0.058 0.054 0.056
(1.1, 1.1) 0.050 0.043 0.047 (0.3, 0.3, 0.5, 0.5, 0.5) 0.046 0.051 0.052
(1.1, 12.5) 0.053 0.051 0.048 (0.3, 0.3, 9.8, 9.8, 9.8) 0.055 0.054 0.058
(1.1, 100) 0.057 0.057 0.055 (0.6, 0.6, 0.5, 0.5, 0.5) 0.056 0.051 0.053
(12.5, 12.5) 0.047 0.048 0.054 (0.6, 0.6, 9.8, 9.8, 9.8) 0.058 0.053 0.050
(12.5, 100) 0.048 0.042 0.046 (1.1, 1.1, 0.5, 0.5, 0.5) 0.049 0.048 0.050
(100, 100) 0.044 0.050 0.047 (1.1, 1.1, 9.8, 9.8, 9.8) 0.050 0.043 0.048

4.3. Randomness

Next, we evaluate the randomness of the two generating functions in package rBeta2009 by utilizing the Ljung–Box test
(Ljung and Box, 1978). It can be briefly described as follows. Let x1, . . . , xn be a sequence of observations and denote the
autocorrelation of lag h by ρh. Then, testing the randomness of the sequence can be equivalently formulated as testing the
null hypothesis H0 : ρ1 = · · · = ρH = 0 for some selected value H . Ljung and Box (1978) introduced the following test
statistic (called the Portmanteau statistic):

QH = n(n + 2)
H

h=1

ρ̂2
h

n − h
, (5)

where ρ̂h is the sample autocorrelation of lag h. Note that given the level of significance α, the null hypothesis is rejected if
QH > χ2

H,1−α .
The multivariate version of the Portmanteau statistic, which were discussed by Hosking (1980, 1981) and Li and McLeod

(1981), is described as follows. Let x1, . . . , xn be a sequence of k-variate observations anddenote the cross-correlationmatrix
of lag h by ρh. To test the null hypothesis H0 : ρ1 = · · · = ρH = 0, where 0 is a zero matrix of order k × k, we can consider
the following statistic:

Q [k]
H = n2

H
h=1

1
n − h

trace

Γ ′

hΓ
−1
0 Γ hΓ

−1
0


, (6)

where Γ h is the estimated cross-covariance matrix of lag h. Note that given the level of significance α, the null hypothesis
is rejected if Q [k]

H > χ2
k2H,1−α

.
To evaluate the randomness of the variates/vectors generated by package rBeta2009, we performed the Ljung–Box test

by choosing H = 1, 2, 3. Table 7 summarizes the empirical frequencies of the test at the 0.05 level of significance based on
3000 Monte Carlo simulations with the sample size 3000. As can be seen, all the estimated empirical frequencies are very
close to 0.05, which support the randomness of generating functions in package rBeta2009.

5. Summary

We have presented a new R package rBeta2009 for generating beta variates and Dirichlet random vectors. The package
incorporates state-of-the-art generating algorithms so as to minimize the computer generation time. From the design
viewpoint, it also hasmany advantages such as flexiblememory allocation, portability, and adaptability. Numerical evidence
shows that it significantly outperforms the existing R packages on various hardware and software platforms in terms
of computer generation time, while properties such as accuracy (or goodness-of-fit) and randomness of the generated
quantities are very good. Finally, it is important to mention that this package can be efficiently used for generating random
variates/vectors from some other distributions closely related to the beta distribution, such as the inverted Dirichlet
distribution, the Liouville distribution, and the uniform distribution over convex polyhedrons.
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