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Abstract This paper proposes a new two-step stochastic

frontier approach to estimate technical efficiency (TE)

scores for firms in different groups adopting distinct tech-

nologies. Analogous to Battese et al. (J Prod Anal

21:91–103, 2004), the metafrontier production function

allows for calculating comparable TE measures, which can

be decomposed into group specific TE measures and

technology gap ratios. The proposed approach differs from

Battese et al. (J Prod Anal 21:91–103, 2004) and O’Don-

nell et al. (Empir Econ 34:231–255, 2008) mainly in the

second step, where a stochastic frontier analysis model is

formulated and applied to obtain the estimates of the

metafrontier, instead of relying on programming tech-

niques. The so-derived estimators have the desirable sta-

tistical properties and enable the statistical inferences to be

drawn. While the within-group variation in firms’ technical

efficiencies is frequently assumed to be associated with

firm-specific exogenous variables, the between-group var-

iation in technology gaps can be specified as a function of

some exogenous variables to take account of group-specific

environmental differences. Two empirical applications are

illustrated and the results appear to support the use of our

model.

Keywords Metafrontier � Technical efficiency �
Technology gap � Environmental variables

JEL Classification C51 � D24

1 Introduction

As first introduced by Hayami (1969) and Hayami and

Ruttan (1970, 1971), the metaproduction function is based

on the idea that all producers in the various production

groups have potential access to an array of production

technologies, but each may choose a particular technology,

depending on specific circumstances, such as regulation,

the environments, production resources, and relative input

prices. These conditions inhibit firms in some groups from

choosing the best technology from the array of the potential

technology set. A production technology gap is the dif-

ference between the best technology and the chosen sub-

technology, i.e., the group-specific frontier.

To estimate a metafrontier by simply pooling all the data

of the various groups is not justifiable, as the so-derived

metafrontier would not necessarily envelop the group-spe-

cific frontiers. It would also lack justification if one first

estimated the individual group frontiers and then compared

the technical efficiencies (TEs) among groups, because these

TE scores are evaluated relative to different production

frontiers, not relative to the metafrontier. A metafrontier

production function model, developed by Battese et al.

(2004) and O’Donnell et al. (2008), is able to disentangle the

above difficulties. They proposed a mixed approach with a

two-step procedure for estimating the metafrontier. They

combined the stochastic frontier (SF) regression used in the

first step to estimate the group-specific frontier with the

mathematical programming techniques in the second-step to
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estimate the metafrontier. However, the potential difficulty

with the two-step mixed approach comes from its second step

estimation in that no statistical properties of the metafrontier

estimators result, because it is a linear (or quadratic) pro-

gramming algebraic calculation. Furthermore, no account-

ing for potentially different production environments facing

firms can be incorporated into the estimation, not mentioning

its incapability of isolating idiosyncratic shocks.

In this paper we propose a new two-step SF approach to

estimate the group-specific frontiers and the metafrontier,

respectively, and to decompose the efficiency scores of

various groups into TE and technology gaps. It can easily be

shown that the mixed approach is a special case of our pro-

posed approach. The main difference between the two-step

SF approach and that of Battese et al. (2004) and O’Donnell

et al. (2008) is that the former’s second-step estimation of the

metafrontier is still based on the SF framework, rather than

on a mathematical programming technique. Hence, our

metafrontier estimation is a stochastic metafrontier (SMF)

regression method, while the mixed approach is a deter-

ministic metafrontier programming method. The new SMF

method has the following merits. First, as we apply the

conventional maximum likelihood method to estimating the

parameters of the SMF regression, the usual statistical

inferences can be performed without relying on simulations

or bootstrapping, as opposed to mathematical programming

techniques. Second, the SMF method can directly estimate

the technology gaps by treating them as a conventional one-

sided error term. This strategy allows us to separate the

random shocks from the technology gaps, a well-known

advantage of the SF technique over the programming tech-

nique. Conversely, the technology gaps obtained from the

programming technique may be contaminated by random

shocks. Lastly, since the second-step estimation of SMF is

still based on a SF regression, the technology gaps repre-

sented by the one-sided term can be further specified as a

function of environmental variables beyond the control of

firms, such as the one considered by Huang and Liu (1994)

and Battese and Coelli (1995). Such a specification is

simultaneously built into the heteroscedastic inefficiency

term, as pointed out by Kumbhakar and Lovell (2000). The

foregoing merits are at the heart of the new approach in

estimating the metafrontier function.

The rest of the paper is organized as follows. Section 2

formulates the proposed SMF method to estimate the

metafrontier production function. Section 3 highlights the

characteristics of the SMF method by conducting two

empirical studies. In the first study, we use the same cross-

country agricultural sector data used in O’Donnell et al.

(2008) to make the empirical comparison on the estimates

of the metafrontier based on the deterministic metafrontier

programming method and the SMF method. In the second

study, we present an empirical application of the SMF

modeling using data from the hotel industry in Taiwan to

measure the technical efficiency and the technology gaps of

the chain- and the independently-operated hotels. In Sect.

4, we summarize and conclude the paper.

2 Formulation and estimation of the metafrontier

production function

Suppose that, for the jth production group, for example, of

a country or an industry, the SF of the ith decision making

unit (DMU) or a firm in the tth period is modeled as

Yjit ¼ f j
t Xjit

� �
eVjit�Ujit ; j ¼ 1; 2; . . .; J; i ¼ 1; 2; . . .;Nj;

t ¼ 1; 2; . . .; T ð1Þ

where Yjit and Xjit respectively denote the scalar output and

input vector of the ith firm in the jth group at the tth period. We

note that the function ft
j(.) of the production frontier is both

subscripted by t and superscripted by j, that is, the individual

group-specific production technology may vary across groups

and across time. For example, f
j

t Xjit

� �
¼ eXjitb

j
t , where bt

j

denotes the parameters associated with the group-j frontier at

the tth period. Following the standard SF modeling, the ran-

dom errors Vjit represent statistical noise, and the non-negative

random errors Ujit represent technical inefficiency. It is

assumed that Vjits are distributed independently and identi-

cally as N(0, rv
j2) and are independent of Ujits, which follow

the truncated-normal distribution as N?(lj(Zjit), ru
j2(Zjit)), i.e.,

truncated from below at zero and with the mode at lj(Zjit),

where Zjits are some exogenous variables.1 A firm’s technical

efficiency (TE) in production is then defined as

TE
j
it ¼

Yjit

f
j

t Xjit

� �
eVjit

¼ e�Ujit ð2Þ

The technical efficiency can be associated with a set of

within-group firm-specific exogenous variables Zjit.

The common underlying metafrontier production func-

tion for all groups in the tth period is defined as ft
M(Xjit),

where the function is the same for all groups j = 1, 2,…, J.

The metafrontier ft
M(Xjit) by definition envelops all indi-

vidual groups’ frontiers ft
j(Xjit), which is expressed with the

following relation,

f j
t Xjit

� �
¼ f M

t Xjit

� �
e�UM

jit ; 8 j; i; t ð3Þ

where Ujit
M C 0. Hence, ft

M(.) C ft
j(.) and the ratio of the jth

group’s production frontier to the metafrontier is defined as

the technology gap ratio (TGR),

1 See Huang and Liu (1994), Battese and Coelli (1995), Wang

(2002), Huang (2005), and Lai and Huang (2010) for the specifica-

tion, interpretation, and testing of various efficiency models related to

the truncated-normal specification Nþ l jðZjitÞ; rj2
u ðZjitÞ

� �
.
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TGR
j
it ¼

f
j

t Xjit

� �

f M
t Xjit

� � ¼ e�UM
jit � 1: ð4Þ

The existence of the technology gap is interpreted to be

due to the choice of a particular technology that depends on

the production environments, both economic and non-

economic. The technology gap component Ujit
M in (4) is thus

group, firm, and time specific. The TGR thus depends on

the accessibility and extent of adoption of the available

metafrontier production technology. Figure 1 illustrates the

metafrontier production model. At a given input level Xjit, a

firm’s observed output Yjit relative to the metafrontier ft-
M(Xjit) consists of three components: the TGR,

TGR
j
it ¼

f
j

t Xjitð Þ
f M
t Xjitð Þ; the firm’s technical efficiency,

TE
j
it ¼

f
j

t ðXjitÞe�Ujit

f
j

t ðXjitÞ
¼ e�Ujit ; and the random noise compo-

nent,
Yjit

f
j

t ðXjitÞe�Ujit
¼ eVjit , i.e.,

Yjit

f M
t Xjit

� � ¼ TGR
j
it � TE

j
it � eVjit : ð5Þ

It should be emphasized that, although both the tech-

nology gap ratio TGRit
j B 1 and the firm’s technical effi-

ciency TEit
j B 1 are bounded, the metafrontier ft

M(Xjit) does

not necessary envelop all firms’ observed outputs Yjit. The

unrestricted ratio in (5) distinguishes the metafrontier

modeling using the stochastic frontier analysis (SFA) from

the data envelopment analysis (DEA). By accounting for

the random noise component, the decomposition in (5) can

be expressed alternatively as

MTEjit �
Yjit

f M
t Xjit

� �
eVjit
¼ TGR

j
it � TE

j
it ð6Þ

where MTEjit is defined as the firm’s technical efficiency

with respect to the metafrontier production technology

ft
M(.) as opposed to the firm’s technical efficiency TEit

j with

respect to the group-j production technology ft
j(.).

Empirical measurement of the above metafrontier model

generally consists of two steps. Battese et al. (2004) and

O’Donnell et al. (2008) propose a mixed approach of

combining the maximum likelihood estimates of the group-

specific SF regression in (1) with a mathematical optimi-

zation programming estimation of the metafrontier func-

tion in (3). More specifically, in the first step, the standard

maximum likelihood (ML) estimation is applied to each

group-specific frontier in (1) using the panel data of Nj

firms in T periods, i.e.,

lnYjit ¼ lnf j
t Xjit

� �
þ Vjit � Ujit; i ¼ 1; 2; . . .;Nj;

t ¼ 1; 2; . . .; T
ð7Þ

with the composite error ejit = Vjit - Ujit and the distribution

assumptions that Vjit * N(0, rv
j2) and Ujit * N?(lj(Zjit),

ru
j2(Zjit)). Let f̂ j

t Xjit

� �
be the maximum likelihood estimate of

the group-j’s specific frontier and the group-jth technical

efficiency is estimated as the conditional expectation

TE
j
it

^
¼ E
^

e�Ujit jêjit

� �
ð8Þ

where êjit ¼ ln Yjit � ln f̂ j
t Xjit

� �
are the estimated composite

residuals.

In the second step of the Battese et al. (2004) and O’Don-

nell et al. (2008) mixed approach, the metafrontier function

ft
M(.) is obtained by solving the following linear programming

problem using the estimated group-specific frontiers,

min
XJ

j¼1

XNj

i¼1

XT

t¼1

ln f M
t Xjit

� �
� ln f̂ j

t Xjit

� ��� ��

subject to ln f M
t Xjit

� �
� ln f̂ j

t Xjit

� �
:

ð9Þ

Alternatively, the metafrontier function can be obtained by

minimizing the sum of squares of the deviations of the meta-

frontier function from the estimated group-specific frontiers,

min
XJ

j¼1

XNj

i¼1

XT

t¼1

ln f M
t Xjit

� �
� ln f̂ j

t Xjit

� �� �2

subject to ln f M
t Xjit

� �
� ln f̂ j

t Xjit

� �
:

ð10Þ

A major drawback of the above two-step mixed approach

of Battese et al. (2004) and O’Donnell et al. (2008) is that, in

the second-step, the metafrontier function ft
M(.)is calculated

using the mathematical programming techniques rather than

estimated using regression techniques. It is difficult, unfor-

tunately, to give a meaningful statistical interpretation to the

computed metafrontier function, even though the group-

specific frontiers are estimated by maximum likelihood. A

more serious problem in the mixed approach is that, in the

second-step, the estimated group-specific frontiers are used

in the optimization programming to obtain the metafrontier

( )j
t jitf X

Yjit

( )M
t jitf X

( ) jitUj
t jitf X e−

X

Xjit

Y

Fig. 1 Metafrontier production model
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function. More specifically, consider the relation between

the group-specific frontier and the metafrontier functions in

(3),

ln f j
t Xjit

� �
¼ ln f M

t Xjit

� �
� UM

jit : ð11Þ

Had the group-specific frontiers been known, the

mathematical programming method would have been

equivalent to the least-absolute deviations of Ujit
M,

min
XJ

j¼1

XNj

i¼1

XT

t¼1

UM
jit

���
���

¼
XJ

j¼1

XNj

i¼1

XT

t¼1

ln f M
t Xjit

� �
� ln f j

t Xjit

� ��� ��;

ð12Þ

or the least-squares deviations of Ujit
M,

min
XJ

j¼1

XNj

i¼1

XT

t¼1

UM
jit

� �2

¼
XJ

j¼1

XNj

i¼1

XT

t¼1

ln f M
t Xjit

� �
� ln f j

t Xjit

� �� �2

ð13Þ

subject to the constraints, Ujit
M C 0.2 However, since ft

j(Xjit)

are unknown a priori and the maximum likelihood esti-

mates are not perfect, i.e., f̂ j
t Xjit

� �
6¼ f

j
t Xjit

� �
, the degree of

bias in applying (9) and (10) rather than (12) and (13) in the

second step of the mixed approach is unknown.

The problems associated with the mixed approach of Bat-

tese et al. (2004) and O’Donnell et al. (2008) arise from using

the mathematical programming technique and from omitting

the error of f̂ j
t Xjit

� �
in the estimation of ft

j(Xjit). Consequently,

the statistical properties of the metafrontier estimates in the

second step are unknown. We propose an alternative method

using the SF regression rather than the mathematical pro-

gramming technique in the second-step estimation of the

Table 1 Comparison of the

agricultural metafrontier

estimates

The QML sandwich estimated

standard errors are calculated

for the stochastic metafrontier

model. The standard errors of

the LP method are obtained

from bootstrapping

Following O’Donnell et al.

(2008), we use a dummy

variable to deal with the zero

observations for the fertilizer

input in the data set

***, **, and * denote significant

at the 1, 5, and 10 % levels,

respectively

Variables Stochastic metafrontier model (15) LP metafrontier model (9)

Parameter

estimates

Standard

errors

Parameter

estimates

Bootstrapped

standard errors

Constant 12.2549*** 2.3395 16.6959*** 3.8117

ln x1 0.2603 0.2065 0.2464 0.3970

ln x2 0.0799 0.2278 0.9359*** 0.3397

ln x3 2.0387*** 0.1595 2.0474*** 0.2619

ln x4 0.3547* 0.1686 0.1372 0.2154

ln x5 -1.5026*** 0.4028 -2.3383*** 0.7345

ln x1 9 ln x1 -0.0704*** 0.0178 -0.0443* 0.0233

ln x2 9 ln x2 0.0298** 0.0105 0.0548*** 0.0159

ln x3 9 ln x3 0.0989*** 0.0120 0.0731*** 0.0160

ln x4 9 ln x4 0.0686*** 0.0066 0.0466*** 0.0096

ln x5 9 ln x5 0.1518*** 0.0441 0.2287*** 0.0777

ln x1 9 ln x2 0.1315*** 0.0194 0.1680*** 0.0517

ln x1 9 ln x3 0.1087*** 0.0167 0.0970*** 0.0210

ln x1 9 ln x4 -0.1333*** 0.0146 -0.1255*** 0.0341

ln x1 9 ln x5 0.0219 0.0410 -0.0341 0.0747

ln x2 9 ln x3 -0.1157*** 0.0171 -0.2060*** 0.0483

ln x2 9 ln x4 -0.0395* 0.0196 -0.0189 0.0236

ln x2 9 ln x5 -0.0196 0.0362 -0.1364** 0.0632

ln x3 9 ln x4 -0.0128 0.0159 0.0195 0.0320

ln x3 9 ln x5 -0.2608*** 0.0318 -0.1989*** 0.0500

ln x4 9 ln x5 -0.0094 0.0226 0.0118 0.0266

dummy -1.4173*** 0.2532 -0.9397* 0.5102

rM2 = rv
M2 ? ru

M2 0.1043*** 0.0162

�cM ¼ rM2
v = rM2

v þrM2
uð Þ 0.2904*** 0.0967

Log-Likelihood 13.2786

2 In the case that the group-specific frontiers are known, Schmidt

(1976) has shown that the optimization programming problems in

(12) and (13) correspond to the maximum likelihood estimates if the

UM
jit follows an exponential distribution and a half-normal distribution,

respectively. Even in this case, however, the statistical properties of

the maximum likelihood estimators cannot be obtained since the

regularity condition for the maximum likelihood method is violated.
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metafrontier that specifically takes into consideration the

estimation error of f̂ j
t Xjit

� �
in estimating ft

j(Xjit).

Given the SFA estimates of the group-specific frontiers

f̂ j
t Xjit

� �
for all j = 1,…, J groups in (7) from the first step,

the estimation error of the group-specific frontier is then,

ln f̂ j
t Xjit

� �
� ln f j

t Xjit

� �
¼ ejit � êjit ð14Þ

Defining the estimation error as VM
jit ¼ ejit � êjit, the

metafrontier relation in (11) can be rewritten by replacing

the unobserved group-specific frontiers ft
j(Xjit) on the left-

hand side with the estimates f̂ j
t Xjit

� �
, i.e.,

ln f̂ j
t Xjit

� �
¼ ln f M

t Xjit

� �
� UM

jit þ VM
jit ; 8 i; t; j ¼ 1; 2; ::; J

ð15Þ

Equation (15) resembles the conventional SF regression,

and is therefore called the SMF regression.

The non-negative technology gap component Ujit
M C 0 is

assumed to be distributed as truncated-normal,3 i.e.,

Ujit
M * N?(lM(Zjit), ru

M2(Zjit)), and independent of Vjit
M. The

mode lM(Zjit) of the truncated-normal is assumed to be a

function of variables Zjit that reflects the production envi-

ronment of the ith firm encountered in the jth group at tth

period, and the heteroscedastic variance ru
M2(Zjit) reflects

the production uncertainty.

The presence of Vjit
M is pivotal in formulating (15) as a

stochastic, rather than a deterministic, setting. However,

this stochastic setting may result in a potential problem in

this second-stage estimation. Since ln f̂ j
t Xjit

� �
is the maxi-

mum likelihood estimator of the group-specific frontier in

(7), it is reasonable to assume that the estimation error

VM
jit ¼ ejit � êjit is to be asymptotically normally distributed

with zero mean, but may not be independently, identically

distributed (iid), since it contains the residuals from

estimating the group frontiers, i.e., êjit ¼ ln Yjit � ln f̂ j
t

Xjit

� �
.4 Thus, the usual SF likelihood function associated

with (15), assuming iid in Vjit
M, is referred to as the quasi-

likelihood function. Nevertheless, the derived quasi-maxi-

mum likelihood (QML) estimator is still consistent and

asymptotically normal, but has invalid standard errors that

have to be modified to account for the heteroscedasticity.

Following White (1982), it requires computing the sand-

wich-form for the covariance matrix of the estimators in

order to obtain the correct standard errors.5

The above proposed two-step SF approach allows for

the estimated group-specific frontier to be larger than or

equal to the metafrontier, i.e., f̂ j
t Xjit

� �
� f M

t Xjit

� �
, due to the

error of estimating ft
j(Xjit). However, the metafrontier

should be larger than or equal to the group-specific frontier,

ft
j(Xjit) B ft

M(Xjit). The estimated TGR must always be less

than or equal to unity,

TGR
j
it

^
¼ Ê e�UM

jit jêM
jit

� �
� 1 ð16Þ

where êM
jit ¼ ln f̂ j

t ðXjitÞ � lnbf M
t ðXjitÞ are the estimated

composite residuals of (15). Furthermore, the estimated

technology gap is a function of the production environ-

ments Zij via the mode lM(Zjit) and the heteroscedastic

variance ru
M2(Zjit).

In sum, the proposed new two-step approach of esti-

mating the meta frontier consists of two SF regressions, (7)

and (15),

lnYjit ¼ lnf j
t Xjit

� �
þ Vjit � Ujit; i ¼ 1; 2; . . .;Nj;

t ¼ 1; 2; . . .; T
ð7Þ

ln f̂ j
t Xjit

� �
¼ ln f M

t Xjit

� �
þ VM

jit � UM
jit ;

8 i; t; j ¼ 1; 2; . . .; J
ð15Þ

where ln f̂ j
t ðXjitÞ is the estimates of the group-specific

frontier from the first step in (7). Since the estimates

ln f̂ j
t ðXjitÞ are group-specific, the regression (7) is estimated

J times, one for each group (j = 1,2,…,J). These estimates

from all J groups are then pooled to estimate (15). The

corresponding estimated meta technical efficiency (MTE)

is equal to the product of the estimated TGR, (16), and the

estimated individual firm’s technical efficiency, (8), i.e.,

3 The randomness of the technology gap component UM
jit � 0 is

justified on the assumption of the existence of a population

distribution of an array of (possibly continuous) group frontiers

f
j

t Xjit

� �
. Given Xjit, the metafrontier is defined as the upper boundary

of the support of the distribution of f
j

t Xjit

� �
, i.e., f M

t Xjit

� �
¼

sup f
j

t Xjit

� � j
j G f

j
t Xjit

� �� �
\1

� �
where G f

j
t Xjit

� �� �
is the distribution

function of f
j

t Xjit

� �
. Thus, in a random sample of J groups, the

metafrontier f M
t Xjit

� �
is the Jth order statistic. The non-negative

technology gap component UM
jit ¼ ln f M

t Xjit

� �
� ln f

j
t Xjit

� �
� 0 is

random and is assumed to be distributed as a truncated-normal. This

definition of the metafrontier differs from the standard metafrontier

literature where the group frontiers f
j

t Xjit

� �
, j = 1, 2,…, J are

nonstochastic with f M
t Xjit

� �
¼ max f

j
t Xjit

� � j
j Xjit; j ¼ 1; 2; . . .; J

� �
.

We gratefully appreciate a referee for the constructive critiques on the

stochastic nature of the randomness of the technology gap that has

clarified and greatly improved the argument and exposition from the

early version.

4 We thank an anonymous referee for making this observation.
5 Let ln hð Þbe the log-likelihood function of the parameter h. The

standard ML estimator has the inverse of the Fisher information

matrix I hð Þ ¼ �E
o2 ln hð Þ
oh ohT

� �
as the covariance matrix of the estimator ĥ.

However, the QML’s covariance matrix has the so-called sandwich

form: I�1 hð Þ S hð ÞST hð Þ½ �I�1 hð Þwhere S hð Þ ¼ E
o ln hð Þ

oh

� �
is the score

function. Johnston and DiNardo (1992), pages 428-430, has a brief

discussion of the quasi-maximum likelihood estimation of misspec-

ified models and the derivation of the covariance matrix.
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MTE
j
it

^
¼ TGR

j
it

^
� TE

j
it

^
ð17Þ

In conclusion, the key difference between our proposed

new two-step SF approach and the two-step mixed

approach is in the formulation of the SMF regression in

(15) as opposed to the mathematical programming opti-

mizations in (9) and (10). In the next section, we provide

two empirical examples to illustrate and to compare the

estimates of various technical efficiencies and the TGR

obtained from the SMF method and the deterministic

programming method.

A few remarks are worth mentioning on the comparison

of the SMF model proposed in this paper with the SMF

model of Battese and Rao (2002). In addition to the

specification of the group-specific frontier in (7), the SMF

model of Battese and Rao (2002) pools the data of all

groups in formulating the metafrontier and the MTE, i.e.:

lnYjit ¼ lnf M
t Xjit

� �
þ V	jit � U	jit 8 j; i; t ð18Þ

where Vjit
* is the individual DMU’s random noise error and

the non-negative Ujit
* C 0 represents the DMU’s meta

technical inefficiency. These errors are distinguished from

the errors in the group-specific frontiers. The model of

Battese and Rao (2002) has often been criticized as

being inconsistent in the data generating process (DGP),

i.e., ln Yjit are generated from both the distributions of

(Vjit - Ujit) in (7) and (Vjit
* - Ujit

* ) in (18).6 Furthermore,

using (18), the MTE of the model of Battese and Rao

(2002) is defined as MTEjit ¼ e�U	jit ¼ Yjit

f M
t Xjitð ÞeV	

jit
. Using (7),

the decomposition MTEjit becomes:

MTEjit ¼
f

j
t Xjit

� �

f M
t Xjit

� �� e�Ujit � eVjit

eV	
jit

¼ TGR
j
it � TE

j
it �

eVjit

eV	
jit

ð19Þ

Thus, the MTE decomposition of the model in Battese and

Rao (2002) is not exact, which is in contrast to the exact

decomposition shown in (6) derived from the SMF model

proposed in this paper.7 We conclude, therefore, that to

estimate a metafrontier by simply pooling all the data of

the various groups is not justifiable due to the lack of a

coherent data generating process and a lack of unique

decomposition of the MTE so that the so-derived meta-

frontier would not necessarily envelop the group-specific

frontiers.

3 Empirical examples

We conduct two empirical studies to exemplify the

advantages of the new two-step SF approach over the two-

step mixed approach of Battese et al. (2004) and O’Donnell

et al. (2008). In the first example, we employ the country-

level agricultural data, provided by the Food and Agri-

culture Organization (FAO) of the United Nations to make

inter-country and inter-regional comparisons of agricultural

efficiency. The data have been used by O’Donnell et al.

(2008). In the second example, data from the hotel industry

in Taiwan are employed to compare the operational effi-

ciency between the chain- and independently-operated

hotels. In both examples, we estimate and compare the

TGR and the MTE with respect to the metafrontier tech-

nology derived from the two approaches.

3.1 Agricultural metafrontier production function

In the first example, using the FAO data, we re-estimate the

model for a sample of 97 countries over the period of

1986–1990, and compare the results with those yielded by

O’Donnell et al. (2008). These countries are divided into

four groups (regions): African countries, American coun-

tries, Asian countries, and European countries. There is a

single output (yjit) defined as an aggregate of 185 agricul-

tural commodities and five inputs, i.e., land (x1jit),

machinery (x2jit), labor (x3jit), fertilizer (x4jit), and livestock

(x5jit).
8 The SFA estimates of the group-specific frontier in

(7), ln ft
j(Xjit), and the metafrontier in (15), ln ft

M(Xjit), are

obtained by assuming a translog functional form with the

above specified five inputs. To compare these results with

those in O’Donnell et al. (2008), we follow the standard

SFA normal-half normal specifications on the random

variables: Vjit * N(0, rv
j2) and Ujit * N?(0, ru

j2) for the

6 For example, the conditional expectations of (7) is E ln YjitjXjit

� �
¼

ln f
j

t Xjit

� �
� E Ujit

� �
, while from (18) is E ln YjitjXjit

� �
¼ ln f M

t Xjit

� �
�

E U	jit

� �
. These dual conditional expectations are inconsistent unless

ln f
j

t Xjit

� �
¼ ln f M

t Xjit

� �
� E Ujit

� �
� E U	jit

� �
, which is unlikely from

the DGP of Battese and Rao (2002) specification. On the other hand,

the current proposed SMF model has a unique DGP derived either

from (7) or from ln Yjit ¼ ln f M
t Xjit

� �
þ Vjit � Ujit � UM

jit after substi-

tuting (11) into (7). This latter expression has the conditional

expectation E ln YjitjXjit

� �
¼ ln f M

t Xjit

� �
� E Ujit

� �
� E UM

jit

� �
, which is

identical to the one obtained from (7) because of (11), ln f
j

t Xjit

� �
¼

ln f M
t Xjit

� �
� E UM

jit

� �
.

7 To see the decomposition from the proposed two-step regressions in

(7) and (15), we observe that, from (6), MTEjit � Yjite
�Vjit

f M
t
¼ f

j
t

f M
t
� e�Ujit .

Since, from (14), f̂ j
t ¼ f

j
t � eVM

jit , we have MTEjit ¼ f̂
j

t

f M
t e

VM
jit

� e�Ujit .

Thus, from (15), we have the exact decomposition:

MTEjit ¼ e�UM
jit � e�Ujit ¼ TGRjit � TEjit.

8 We are grateful to Professor C.J. O’Donnell for providing the raw

data. For a more detailed description of the input/output variables in

our empirical application, please see O’Donnell et al. (2008).
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Table 2 Summary statistics for

various agricultural efficiency

measures

Since the two-step mixed

approach and the two-step

stochastic frontier approaches

specify an identical group-

specific frontier, the top panel

shows identical group-specific

technical efficiency (TE)

estimates

Two-step mixed approach Two-step stochastic frontier approach

Mean SD Min Max Mean SD Min Max

Group-specific technical efficiency (TE)

Argentina 0.959 0 0.959 0.959 0.959 0 0.959 0.959

Australia 0.950 0 0.950 0.950 0.950 0 0.950 0.950

Brazil 0.895 0 0.895 0.895 0.895 0 0.895 0.895

China 0.936 0 0.936 0.936 0.936 0 0.936 0.936

India 0.944 0 0.944 0.944 0.944 0 0.944 0.944

Indonesia 0.563 0 0.563 0.563 0.563 0 0.563 0.563

Netherlands 0.972 0 0.972 0.972 0.972 0 0.972 0.972

South Africa 0.935 0 0.935 0.935 0.935 0 0.935 0.935

UK 0.968 0 0.968 0.968 0.968 0 0.968 0.968

USA 0.917 0 0.917 0.917 0.917 0 0.917 0.917

(1) Africa 0.505 0.249 0.190 0.972 0.505 0.249 0.190 0.972

(2) The Americas 0.824 0.137 0.519 0.981 0.824 0.137 0.519 0.981

(3) Asia 0.719 0.195 0.362 0.981 0.719 0.195 0.362 0.981

(4) Europe 0.823 0.151 0.514 0.982 0.823 0.151 0.514 0.982

All countries 0.707 0.233 0.190 0.982 0.707 0.233 0.190 0.982

Technology gap ratio (TGR)

Argentina 0.982 0.011 0.969 1.000 0.889 0.002 0.886 0.893

Australia 0.969 0.034 0.924 1.000 0.873 0.010 0.860 0.882

Brazil 0.799 0.020 0.772 0.823 0.828 0.010 0.813 0.839

China 0.997 0.004 0.991 1.000 0.827 0.010 0.812 0.838

India 0.740 0.041 0.696 0.788 0.814 0.007 0.806 0.822

Indonesia 0.830 0.039 0.777 0.869 0.896 0.003 0.893 0.899

Netherlands 0.959 0.030 0.918 1.000 0.927 0.005 0.921 0.934

South Africa 0.607 0.006 0.601 0.615 0.694 0.005 0.689 0.702

UK 0.559 0.007 0.552 0.568 0.713 0.008 0.705 0.722

USA 0.987 0.007 0.982 1.000 0.905 0.001 0.904 0.907

(1) Africa 0.752 0.206 0.308 1.000 0.824 0.099 0.565 0.934

(2) The Americas 0.751 0.161 0.435 1.000 0.797 0.086 0.588 0.919

(3) Asia 0.738 0.197 0.328 1.000 0.829 0.060 0.709 0.949

(4) Europe 0.664 0.210 0.250 1.000 0.802 0.100 0.537 0.934

All countries 0.727 0.198 0.250 1.000 0.814 0.088 0.537 0.949

Metafrontier technical efficiency (MTE)

Argentina 0.942 0.011 0.929 0.959 0.853 0.002 0.850 0.857

Australia 0.921 0.032 0.878 0.950 0.831 0.010 0.818 0.839

Brazil 0.715 0.018 0.691 0.736 0.740 0.009 0.727 0.750

China 0.933 0.004 0.928 0.936 0.776 0.009 0.763 0.787

India 0.698 0.038 0.657 0.744 0.765 0.007 0.758 0.773

Indonesia 0.468 0.022 0.438 0.490 0.514 0.002 0.512 0.515

Netherlands 0.932 0.029 0.892 0.972 0.901 0.005 0.895 0.908

South Africa 0.568 0.005 0.562 0.575 0.649 0.005 0.644 0.656

UK 0.541 0.007 0.535 0.550 0.690 0.008 0.683 0.699

USA 0.906 0.006 0.901 0.917 0.830 0.001 0.829 0.832

(1) Africa 0.362 0.185 0.122 0.972 0.407 0.190 0.140 0.870

(2) The Americas 0.615 0.157 0.381 0.959 0.654 0.122 0.429 0.857

(3) Asia 0.537 0.212 0.119 0.950 0.593 0.168 0.292 0.872

(4) Europe 0.541 0.194 0.213 0.975 0.656 0.136 0.457 0.908

All countries 0.506 0.211 0.119 0.975 0.570 0.189 0.140 0.908
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group-specific frontier in (7), and Vjit
M * N(0, rv

M2) and

Ujit
M * N?(0, ru

M2) for the metafrontier in (15).

Since the group-specific frontier is specified exactly the

same as in O’Donnell et al. (2008), the parameter estimates

are omitted here. The second-step parameter estimates of

the metafrontier are presented in Table 1.9 For comparison

with the estimates obtained from the SMF regression in

(15), we also provide the bootstrapped standard errors for

the LP estimates obtained from (9). The results do not show

a significant difference in either the magnitude or the sign

of the metafrontier estimates between the two methods.

However, with the SMF estimate of the variance ratio,

�cM ¼ rM2
v

rM2
v þrM2

u
¼ 0:2794, the empirical evidence confirms

the bias in the LP estimates caused by replacing the group-

specific frontiers ln ft
j(Xjit)with the estimate ln f̂ j

t Xjit

� �
in

(12) without taking into account the error of estimation. If

the group-specific frontier estimates were perfect, the

sampling error in (14) would be zero, i.e., Vjit
M = 0, or,

equivalently, the SMF specification in (15) would have a

zero variance ratio,10 i.e., �cM ¼ 0: The statistically signif-

icant estimate of �cMshown in Table 1 confirms the bias in

the LP estimates of the metafrontier.

Table 2 reports the sample estimates of various effi-

ciency scores, including TGR, TE, and MTE for selected

countries and all groups. For the purpose of comparison,

estimates obtained from the mixed approach of O’Donnell,

et al. (2008) are listed side-by-side with the estimates

obtained from the SF approach. Since both approaches

adopt the SF regression in the first step to estimate the

group-specific technical efficiency, the top panel in Table 2

shows the identical technical efficiency estimates from

both approaches. However, it is the estimates of TGR and

MTE obtained from the second step that deserve a close

comparison.

Based on the SMF regression estimates, the average

TGRs range narrowly between 0.797 for the American

group and 0.829 for the Asian group, with a higher overall

mean value of 0.814 than the LP metafrontier programming

estimate of 0.727. This outcome reveals that the agricul-

tural production technology adopted in the Asian group

countries is in general slightly closer to the best available

production technology than is the American group coun-

terpart. Although variant, the technologies taken by the

sample countries in different regions seem close to one

another.

The mean overall technical efficiency scores against the

metafrontier (MTE) vary from 0.407 for Africa to 0.656 for

Europe. The ranking seems to be dominated by the com-

ponent of the TE score due to its larger variation among

regions. For instance, the average TGR for the African

countries is as high as 0.824 (the second highest), but its

average TE score is merely 0.505 (the lowest), a result that

pulls the mean MTE of Africa down to the bottom (0.407).

The results from the two-step mixed approach of

O’Donnell et al. (2008) are reproduced on the left half of

Table 2. It is clear that the mean values of TGR in the four

groups are smaller than those achieved by the SMF

method, together with larger variations (standard devia-

tions), leading to lower average values of MTE. These

results may be attributed to the fact that the TGRs obtained

from the programming technique are likely to be contam-

inated by random shocks because the technique is deter-

ministic and unable to isolate the influence of the shocks.

Conversely, the SMF method allows for the separation of

random shocks from the inefficiency, a well-known

advantage of the SFA over the programming technique. In

view of the empirical evidence, the SMF method that uses

the SF regression framework in the second step seems to be

preferable.

3.2 The hotel industry metafrontier production function

In the second example, we collect unbalanced panel data of

the hotel industry in Taiwan over the period 1998–2008.

The data are taken from the annual report of Taiwan’s

Tourism Bureau, the Ministry of Transportation and

Communications, Taiwan. A hotel with four or five stars is

classified as an international tourist hotel. This type of

hotel is further categorized into either a chain- or an

independently-operated hotel, based on the patterns of its

operational structure. A hotel is said to be chain-operated if

it participates in a domestic parent consortium by passing a

strict qualification assessment and by joining a cooperative

management contract that clearly specifies their respective

rights and responsibilities. This type of hotel usually

belongs to a company that owns more than one subsidiary

hotel, located in different regions around Taiwan. A hotel

is said to be independently operated otherwise. These are

not related to any domestic chain organization and are

responsible for their own management decisions. The

9 Note that the QML sandwich estimated standard errors are

calculated and presented in Tables 1 (for FAO data) and 5 (for hotel

data). The unadjusted estimated standard errors without taking into

account heteroscedasticity are not shown to save space. For FAO

data, most of the unadjusted standard errors are slightly greater than

those of QML sandwich estimates and the number of significant

parameter estimates, at least at the 10 % level, are the same.

However, for hotel data, the reverse is true, i.e., most of the

unadjusted standard errors are somewhat less than those of the QML

sandwich estimates. Consequently, there are fewer coefficients

reaching statistical significance in Table 5.
10 In standard stochastic frontier analysis, it is the variance ratio

cM ¼ rM2
u

	
rM2

v þ rM2
u

� �
that tests the hypothesis of UM

jit ¼ 0, i.e., the

average verse frontier model. On the other hand, the complement of

the variance ratio, �cM ¼ 1� cM ¼ rM2
v

	
rM2

v þ rM2
u

� �
, allows us to

test the hypothesis of VM
jit ¼ 0, i.e., which is the deterministic verse

the stochastic frontier model.
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chain-operated hotels may enjoy some advantages, such as

a branding effect, better access to knowledge and new

innovations, resources and information sharing, and econ-

omies of scale and scope. However, the independently

operated hotels may also have some advantages, such as

high managerial autonomy and operational flexibility.

The data set comprises observations on one output

variable and four inputs. The output variable (yjit) is

defined as the overall operational revenue of a hotel,

including guest room revenues, food and beverage reve-

nues, and other operating revenues. The four inputs include

the total number of full-time employees (x1jit), the total

number of guest rooms (x2jit), the total floor area of the

catering division (x3jit), and other operating expenses (x4jit),

including utilities, materials, maintenance fees, and other

operating costs. The items of revenues and expenses are all

measured in millions of New Taiwan dollars (NT$) and are

deflated by the GDP deflator of Taiwan with the base year

2006.

Several environmental variables (Zjit) are considered in

the formulation of group-specific and industry-specific

frontiers. The firm-specific environmental variables in the

first-step estimation of the group-specific frontier in (7) are

identified as the possible impact on firm-specific techni-

cal efficiency, while the industry-specific environmental

variables in the second-step estimation of the metafrontier

in (15) are identified as the possible impact on the group-

specific technology gap ratio. The firm-specific environ-

mental variables are:

1. F-age and F-age2: the age of a hotel and square of the

hotel’s age.

2. F-DI: the degree of internationalization of a hotel. It is

a dummy variable with a value of unity if the hotel

cooperates with an international hotel organization,

and zero otherwise. An international hotel may enjoy

the advantage of the international management sys-

tems to improve its managerial efficiency by joining,

e.g., franchise-chains, outsourcing, and membership in

an international hotel association (Hwang and Chang,

2003). We thus expect that variable F-DI is negatively

associated with inefficiency.

3. F-DC: the proportion of domestic customers to total

customers. Past empirical evidence has shown that

foreign customers have higher brand loyalty and require

higher quality of services. It is anticipated that there is a

positive association between F-DC and inefficiency.

Four other industry-specific environmental variables are

also identified to be included in the second-step estimation

of the metafrontier:

Table 3 Summary statistics of

the hotel data

Total number of observations of

the hotel data is 622

All the dollar-valued variables

are measured in millions of New

Taiwan dollars (NT$) and are

deflated by the GDP deflator of

Taiwan with the base year 2006

Variables Chain-operated (number of

observations = 237)

Independently operated (number of

observations = 385)

Mean SD Min Max Mean SD Min Max

Output variable

Total revenue (y) 65.96 56.57 4.50 271.77 55.05 59.32 1.60 316.54

Input variable

Number of guest

rooms (x1)

300.98 154.35 50 606 312.72 159.28 96 873

Floor space of the

catering division

(x2)

1683.05 2103.94 80 17477 1354.89 2964.50 48 5296

Number of full-time

employees (x3)

360.79 232.42 53 1196 313.62 231.50 25 1230

Other operating

expenses (x4)

25.87 19.00 2.35 101.24 23.88 24.61 0.65 135.73

First-step environment variable

F-age 18.18 12.67 1.00 56.00 20.13 11.88 1.00 53.00

F-DI 0.11 0.31 0.00 1.00 0.20 0.40 0.00 1.00

F-DC (%) 51.52 31.33 2.62 99.44 40.63 29.44 3.70 100.00

Second-step environment variable

I-HHI 237.80 11.43 223.05 259.72 237.80 11.43 223.05 259.72

I-Center 0.10 0.30 0.00 1.00 0.13 0.33 0.00 1.00

I-South 0.30 0.45 0.00 1.00 0.18 0.39 0.00 1.00

I-East 0.14 0.34 0.00 1.00 0.12 0.32 0.00 1.00
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1. I-HHI: the Herfindahl–Hirschman index. This is a

commonly used measure of market concentration in an

industry, indicating the degree of competitive pressure.

It is calculated by taking a square of the market share

of total annual tourists per hotel competing in the

market, and then summing over all of the hotels under

consideration.

2. I-Center: a regional dummy variable, with a value of

unity if the hotel is located in central Taiwan, and zero

otherwise.

3. I-South: a regional dummy variable, with a value of

unity if the hotel is located in southern Taiwan, and

zero otherwise.

4. I-East: a regional dummy variable, with a value of

unity if the hotel is located in eastern Taiwan, and zero

otherwise. Hotels operating in northern Taiwan are

arbitrarily chosen as the normalization.

Table 3 summarizes the sample statistics of the hotel

data, including the output, inputs, and environmental

variables for each group. The table shows that in general

the chain-operated hotels are bigger than the independently

operated hotels as measured in revenue, floor space,

employees, and operating expenses, except in the number

of guest rooms. Independently operated hotels are older

with higher degree of internationalization and less depen-

dent on domestic travelers. Finally, independently operated

hotels tend to be clustered in northern and central Taiwan,

while chain-operated hotels are more likely to be located in

the east and south.

Table 4 The hotel group-

specific stochastic frontier

estimates

***, **, and * denote significant

at the 1, 5, and 10 % levels,

respectively

Variables Chain-operated Independently operated

Parameter

estimates

Standard

errors

Parameter

estimates

Standard

errors

Constant -24.2576*** 3.1214 29.4490*** 2.5897

ln x1 -9.0851*** 1.0219 -0.8630 0.9872

ln x2 0.5986 0.8607 -0.5883 0.4579

ln x3 6.5017*** 0.7172 -2.3445*** 0.4910

ln x4 -1.7428 1.2077 3.8944*** 1.0219

ln x1 9 ln x1 -0.9807*** 0.1982 0.4584*** 0.1206

ln x2 9 ln x2 -0.0258 0.0251 0.0527 0.0355

ln x3 9 ln x3 -0.5255*** 0.0888 0.1518** 0.0610

ln x4 9 ln x4 -0.3396 0.2099 0.3618** 0.1611

ln x1 9 ln x2 0.2029** 0.1003 0.1621* 0.0905

ln x1 9 ln x3 1.4813*** 0.1743 -0.0151 0.1595

ln x1 9 ln x4 -0.1619 0.2578 -0.8618*** 0.2531

ln x2 9 ln x3 -0.1385 0.1366 0.0788 0.0816

ln x2 9 ln x4 0.1519 0.1512 -0.3904*** 0.1230

ln x3 9 ln x4 0.3594* 0.2176 -0.1091 0.1932

t 0.3784** 0.1699 0.1249 0.1164

t2 -0.0012 0.0023 -0.0002 0.0027

t 9 ln x1 -0.0033 0.0146 -0.0020 0.0127

t 9 ln x2 -0.0013 0.0049 -0.0096 0.0064

t 9 ln x3 -0.0231* 0.0133 -0.0086 0.0104

t 9 ln x4 0.0193 0.0174 0.0268* 0.0159

Group-specific environmental variables

Constant -3.8011*** 0.4100 -0.9155*** 0.2611

F-age 0.0357** 0.0168 0.0416*** 0.0102

F-age2 -0.0013* 0.0006 -0.0011*** 0.0003

F-DI -0.1929** 0.0978 -0.9314*** 0.1056

F-DC 2.7232*** 0.2237 0.8039*** 0.1864

rj2 = ru
j2 ? rv

j2 0.1751*** 0.0290 0.0566*** 0.0077

cj = ru
j2/(ru

j2 ? rv
j2) 0.9292*** 0.0199 0.6714*** 0.0241

Log-Likelihood 132.4695 122.7812
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The group-specific production frontier (7) is also spec-

ified as a standard translog form, incorporating the time

trend as an independent variable to capture the techno-

logical change. The technical inefficient term Ujit is

assumed to be a function of a set of environmental vari-

ables as proposed by Huang and Liu (1994), and Battese

and Coelli (1995). More specifically, it is assumed that

Ujit * N?(lj(Zjit), ru
j2) where lj(Zjit) is a linear function of

the firm-specific variables (Zjit) defined above. Table 4

reports the estimates of the hotel group-specific SFs for

both chain-operated and independently operated hotels. In

general, the overall group-specific translog production

frontiers fit both types reasonably well. Most coefficient

estimates are statistically significant. The estimates of the

environmental variables at the bottom of the panel present

an interesting interpretation. In particular, there exists a

U-shaped relationship between a hotel’s age and technical

efficiency for each group, as the coefficient estimates of the

square of a hotel’s age are negative.11 Evidence appears to

support the presence of learning-by-doing that prompts

Table 5 The estimates of the hotel industry’s metafrontier

Variables SMF approach LP approach QP approach

Parameter

estimates

Standard

errors

Parameter

estimates

Bootstrapped

standard errors

Parameter

estimates

Bootstrapped

standard errors

Constant 21.5271*** 0.8105 44.9219*** 7.6791 34.5604*** 6.5627

ln x1 -0.2575 0.7409 -2.6209*** 0.8546 -2.1401** 0.8597

ln x2 -0.3298 0.3228 -0.1366 0.4432 0.0631 0.3723

ln x3 -1.3979*** 0.2425 -4.5161*** 1.1713 -3.1862*** 1.0280

ln x4 2.3157*** 0.3950 6.3931*** 1.1867 4.8265*** 1.0900

ln x1 9 ln x1 0.1913*** 0.0554 0.1505 0.1141 0.1830** 0.0872

ln x2 9 ln x2 0.0185 0.0174 0.0085 0.0174 0.0176 0.0164

ln x3 9 ln x3 0.1390*** 0.0333 0.3500*** 0.0948 0.2696*** 0.0832

ln x4 9 ln x4 0.2690*** 0.0696 0.6753*** 0.1103 0.5244*** 0.1090

ln x1 9 ln x2 0.2781*** 0.0401 0.2681*** 0.0678 0.2566*** 0.0562

ln x1 9 ln x3 -0.1099 0.1177 0.3143*** 0.1210 0.2219* 0.1284

ln x1 9 ln x4 -0.3867*** 0.1377 -0.8539*** 0.1918 -0.7523*** 0.1613

ln x2 9 ln x3 0.0088 0.0604 -0.0462 0.0654 -0.0811 0.0603

ln x2 9 ln x4 -0.2486*** 0.0701 -0.0950 0.0845 -0.0670 0.0683

ln x3 9 ln x4 -0.1183 0.0879 -0.7381** 0.1958 -0.5260*** 0.1784

t 0.1729*** 0.0615 0.0809 0.0679 0.0855 0.0679

t2 -0.0015 0.0011 -0.0014* 0.0008 -0.0015* 0.0009

t 9 ln x1 -0.0140*** 0.0054 -0.0211*** 0.0056 -0.0191*** 0.0048

t 9 ln x2 -0.0045 0.0031 -0.0016 0.0029 -0.0028 0.0030

t 9 ln x3 -0.0114** 0.0051 -0.0009 0.0055 -0.0014 0.0056

t 9 ln x4 0.0327*** 0.0073 0.0156** 0.0064 0.0166** 0.0065

Second-step environment variables

Constant -1.7309*** 0.4717

I-HHI -4.1817 3.4712

I-Center 0.9904*** 0.3754

I-South 0.1485 0.1957

I-East 0.0149 0.5224

rM2 = rv
M2 ? ru

M2 0.0539*** 0.0057

�cM ¼ rM2
v = rM2

v þrM2
uð Þ 0.0705*** 0.0189

Log-likelihood 801.0357

The QML sandwich estimated standard errors are calculated for the SMF model. The standard errors of LP and QP models are obtained using the

bootstrapping method

***, **, and * denote significant at the 1, 5, and 10 % levels, respectively

11 An environmental variable that has a positive (negative) coeffi-

cient implies that the variable exerts a negative (positive) impact on

technical efficiency.
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hotels to be more productively efficient due to the accu-

mulation of knowledge and working experience. Moreover,

the degree of internationalization (F-DI) stimulates tech-

nical efficiency for each group, showing that cooperation

with an international organization is conducive for the

sample hotels to improve their managerial capacities and

quality of service. One is led to conclude that a hotel with

higher proportion of domestic customers tends to have a

lower technical efficiency, since the coefficient estimate of

F-DC is significantly positive. This result is consistent with

Hwang and Chang (2003), who find that the managerial

efficiency of a hotel that caters mostly to domestic cus-

tomers is lower than for hotels catering mainly to foreign

tourists.

It is crucial to verify whether chain-operated hotels and

independently operated hotels share the same technology.

If the hotel data are truly generated from a single produc-

tion frontier, implying that they adopt the same underlying

technology, then it is not necessary to estimate the meta-

frontier production function. We apply the likelihood ratio

test for the null hypothesis that the production frontiers are

the same for the two groups of hotels in Taiwan. The value

of the restricted log-likelihood function under the null

hypothesis is 176.9694, while the unrestricted value is

255.2507, which is the sum of the two log-likelihood

function values shown in Table 4. This leads to the like-

lihood ratio statistic of 156.5626, which is the twice of the

difference between the unrestricted and the restricted log-

likelihood function values. Thus the null hypothesis is

decisively rejected. Evidence is found to support the fact

that the sample hotels are operating under heterogeneous

technologies. The existence of potential production tech-

nology gap further justices the estimation of the meta-

frontier production function in hotel operation.

Table 5 summarizes the estimates of the SMF Eq. (15),

together with the estimates obtained from the linear and

quadratic programming (LP and QP). The SMF inefficient

term Ujit
M is assumed to be a function of a set of environ-

mental variables, i.e., Ujit
M * N?(lM(Zjit), ru

M2) where

lM(Zjit) is a linear function of the industry-specific vari-

ables Zjit : the Herfindahl–Hirschman index and the

regional dummies defined above. The two sets of parameter

estimates from the LP and QP models are quite close to

each other with the same signs, while they deviate signif-

icantly from those of the SMF estimates. Furthermore, the

SMF estimates show some significant industry-wide envi-

ronmental impact on the metafrontier production function.

The negative coefficient estimate of I-HHI implies that the

higher concentration of the hotel industry, the closer its

production frontier is to the metafrontier. However, this

coefficient estimate is not significant. Although the coef-

ficient estimates of the three regional dummies are all

positive, only that of I-Center is significant, implying that

hotels located in the central region are operating under

inferior technology. Hotels in northern Taiwan appear to

adopt the best technology in providing services to domestic

and foreign tourists. We further note that the SMF estimate

of the variance ratio,�cM ¼ rM2
v

rM2
v þrM2

u
¼ 0:0705, is statistically

significant. Thus, as in the previous example on the agri-

cultural metafrontier production function, the empirical

evidence confirms the bias in the LP and QP estimates of

the metafrontier.

Table 6 reports the sample statistics of various effi-

ciency scores for the two groups of hotels.12 The average

Table 6 Summary statistics of various hotel industry efficiency measures

SMF estimates QP estimates

Mean SD Min Max Mean SD Min Max

Chain-operated hotels

TGR 0.9730 0.0248 0.7970 0.9904 0.9259 0.0616 0.5719 1.0000

TE 0.9218 0.0562 0.6525 0.9790 0.9218 0.0562 0.6525 0.9790

MTE 0.8970 0.0593 0.6310 0.9623 0.8535 0.0758 0.3965 0.9685

Independently operated hotels

TGR 0.9698 0.0085 0.9277 0.9882 0.8630 0.0657 0.6137 1.0000

TE 0.8699 0.1046 0.4584 0.9811 0.8699 0.1045 0.4584 0.9811

MTE 0.8436 0.1013 0.4483 0.9599 0.7506 0.1059 0.3700 0.9659

Overall

TGR 0.9710 0.0168 0.7970 0.9904 0.8870 0.0710 0.5719 1.0000

TE 0.8897 0.0927 0.4584 0.9811 0.8897 0.0927 0.4584 0.9811

MTE 0.8639 0.0914 0.4483 0.9623 0.7898 0.1078 0.3700 0.9685

12 Because the results from the LP model are almost identical to

those from the QP model, we report only the results from the QP

model to save space.
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group-specific TE scores show a TE = 0.9218 for the

chain-operated hotels and a TE = 0.8699 for the inde-

pendently operated hotels. The chain-operated hotels seem

to be more technically efficient with respect to their own

peer group than the independently operated hotels. Fur-

thermore, the SMF estimates show that the chain-operated

hotels seem to be slightly more efficient in adopting the

best available hotel-operating technology as measured in

the technology gap ratio (TGR). The chain-operated has

TGR of 0.9730 versus TGR of 0.9698 for the indepen-

dently operated hotels.13 In all, the chain-operated hotels

are more technically efficient in operation with respect to

the hotel industry in Taiwan as measured by the meta-

frontier technical efficiency (MTE). While the chain-

operated hotels are found to outperform independently

operated hotels in terms of both TGR and TE measures, the

TE scores play a more important role in the determination

of the ranking in MTE, suggesting that the primary source

of inefficiency comes from managerial inefficiency, rather

than the technology undertaken.

These results obtained from the SMF method are in

contrast to the estimates based on the quadratic program-

ming method of estimating the metafrontier. While the QP

estimates show, as in the SMF, consistent evidence of

better operational performance of the chain-operated hotels

in terms of the group-specific TE, TGR, and MTE, they

show a much wider variation than the SMF estimates as is

evident in the standard deviation of TGR and MTE. As we

recall, the LP and QP models are essentially deterministic

and are likely to be confounded by random shocks. Table 6

confirms that the TGR and MTE measures obtained under

QP are inclined to be less than those of SMP.14

The SMF results shown in Table 5 and the technology

gap ratio given in Table 6 are obtained with the assumption

that industry competitiveness pressure (I-HHI) and location

(regional dummies) have a significant impact on the tech-

nology gap term Ujit
M of the metafrontier regression in (15).

To highlight the importance of incorporating these indus-

try-specific environment variables in the estimation of the

technology gap ratio (TGR), we re-estimate the SMF

without the inclusion of these variables and present the

results in Table 7. Table 7 reports the results from two

specifications: a time-invariant and a time-varying tech-

nology gap term Ujit
M. As in the work of Battese and Coelli

(1992), the time-invariant Ujit
M has the half-normal distri-

bution as Ujit
M * N?(0, ru

M2), while the time-varying model

has the specification that Ujit
M = -gM(t - T)Uji

M, i.e., a

linear time-trend with a half-normal distribution, Uji
M *

N?(0, ru
M2), on the time-invariant part.15 Regardless of

which model on Ujit
M is specified, the statistically significant

estimates of the variance ratio �cM consistently indicate the

preference of the SMF method over the mathematical

programming method in estimating the metafrontier pro-

duction function.16 Table 7 shows descriptive statistics of

Table 7 Summary statistics of

various hotel industry efficiency

measures without industry-

specific environmental variables

Half-Normal with time-invariant Half-Normal with time-varying

Mean SD Min Max Mean SD Min Max

Chain-operated

TGR 0.9448 0.0469 0.7917 0.9934 0.9423 0.0459 0.7758 0.9928

TE 0.9218 0.0562 0.6525 0.9790 0.9218 0.0562 0.6525 0.9790

MTE 0.8709 0.0675 0.5799 0.9686 0.8685 0.0656 0.6054 0.9673

Independently operated

TGR 0.8862 0.0478 0.7285 0.9921 0.8813 0.0442 0.7282 0.9920

TE 0.8699 0.1046 0.4584 0.9811 0.8699 0.1046 0.4584 0.9811

MTE 0.7709 0.1017 0.3989 0.9623 0.7667 0.1002 0.3976 0.9634

Overall

TGR 0.9085 0.0553 0.7285 0.9934 0.9046 0.0537 0.7282 0.9928

TE 0.8897 0.0927 0.4584 0.9811 0.8897 0.0927 0.4584 0.9811

MTE 0.8090 0.1024 0.3989 0.9686 0.8055 0.1014 0.3976 0.9673

13 We perform a t test for the hypothesis that the average value of the

TGR of the chain-operated hotels is the same as that of the

independently operated hotels. The p value of the test statistic is equal

to 0.0564, which is significant at the 10 % level. Empirically this

might indicate that the average TGR of the former type of hotels is

greater than that of the latter type of hotels.

14 By construction, the LP and QP estimates always result in a few

TGR scores to be 1 as shown in the Table 6. However, as argued, the

LP and QP estimates are likely on average to be smaller than the MTE

estimates.
15 We also estimate models with the TGR set as a truncated-normal

random variable with and without the time-varying structure of

Battese and Coelli (1992). Since the results are similar to those of

Table 7, we do not show them here.
16 We do not show the estimation results from the models without

considering industry-wide environment variables to save space. The

results are available upon request from the authors.
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the TGRs obtained from the model without considering the

industry-wide environment variables. The average TGRs

lie between 0.88 (for the independently operated hotels)

and 0.94 (for the chain-operated hotels). These results are

small than those reported in Table 6, in which industry-

wide environmental differences are included. The exclu-

sion of the industry-wide environment variables from the

metafrontier function leads on average to something of an

underestimation of the TGR and MTR. Environmental

heterogeneity indeed plays some role for a hotel in the

determination of its technology. One is urged to consider

those variables in order to correctly evaluate the TGR and

obtain comparable technical efficiencies for firms running

under different technologies.

4 Concluding remarks

This paper proposes a new approach in estimating meta-

frontier production function. It is based on a two-step SFA

procedure that estimates the group-specific frontiers and

the firm’s technical efficiency in the first step followed by

the metafrontier and group-specific technology gap ratio in

the second step, both under the framework of the SFA. The

novelty of the new approach is in the treatment of meta-

frontier estimation under the framework of standard sto-

chastic frontier analysis, which is contrary to the popular

mathematical programming approach of Battese et al.

(2004) and O’Donnell et al. (2008). The proposed SMF

method in the second step has several advantages over the

deterministic metafrontier programming method: It allows

for making relevant statistical inferences on the meta-

frontier estimates; it purges the so-derived TGR measures

from the influence of random shocks and errors of group-

specific frontier estimation; and it allows for identifying the

sources of variation in group-specific TGR with environ-

mental variables beyond the control of firms.

We provide two empirical examples to illustrate the new

modeling and compare the results from our two-step SF

approach with those of the two-step mixed approach. Both

empirical results show that the use of the deterministic

metafrontier programming method tends to underestimate

the TGR and MTE, possibly due to the fact that the mea-

sure of TGR from the programming method is confounded

with random shocks and its inability to linking with envi-

ronmental differences. Conversely, the proposed SMF

method is able to purge the random shocks from ineffi-

ciency, as well as to take into account of the environmental

impacts.

As for the hotel data in Taiwan, we verify that the

omission of environmental variables from the second-step

estimation causes an underestimation of the TGRs and

results in an erroneous conclusion about what is the pri-

marily source of the overall technical inefficiency. Fur-

thermore, evidence is found that the industry-wide

environmental variables are the crucial determinants of the

TGRs for the two groups of hotels. It is essential then to

encompass them particularly in a metafrontier model to

obtain reliable measures of TGRs. In turn, the comparisons

of TGR and MTE among the firms in different groups

make sense and offer meaningful implications. An exten-

sion to productivity changes in the context of the proposed

SMF approach for firms belonging to dissimilar groups is

certainly worthy of further examination.
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