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We construct a Fourier flexible functional form which can globally
approximate the unknown true function, taking into account both tech-
nical inefficiency and allocative inefficiency components to avoid possi-
ble specification error. Empirical results suggest that technical inefficiency
alone raises a bank’s cost about 12 per cent on average, that allocative
inefficiency alone raises an average bank’s cost 15.8 per cent, and that the
cost rises due to allocative inefficiency decrease over time. Translog evi-
dence on economic efficiency suggests a much higher cost savings when
achieving both technical and allocative efficiency than does the Fourier
flexible function.

1 I

Financial institutions in Taiwan before 1991 were tightly regulated by the
government. However, ever since 1991 the structure of the island’s financial
service industry has been experiencing a rapid change due to financial de-
regulation. New commercial banks have been allowed to enter and existing
banks can now open up branches. Foreign commercial banks and insurance
companies have been allowed to set up operations on the island, as well. This
deregulation has intensified the competition in banking and appears to have
successively enhanced the efficiency of financial institutions. This is evidenced
by the fact that in the wake of the Asian financial crisis, which began in mid-
1997 in Thailand, and later extended to Malaysia, Indonesia, the Philippines,
South Korea, Japan and Hong Kong, Taiwan has weathered the storm
remarkably well. Both the stock and exchange markets have been relatively
stable, while the rate of economic growth has been maintained at above 4.5
per cent.

For this reason, the current paper examines economic efficiency in
Taiwan’s banking industry with panel data from 22 domestic banks, span-
ning the period 1981–97.1 A subset of the data has been used by Huang (1999,
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2000) and Huang and Wang (2001, 2002). Efficiency studies of the banking
sector have attracted much attention in applied work for the past two decades.
However, many earlier studies were aimed at scale and scope efficiencies and
mainly utilized data from the US banking industry, where lack of efficiencies
was found to account for less than 5 per cent of costs, as pointed out by
Berger et al. (1993b). Some studies on similar issues using data outside the
USA have emerged, e.g. Murray and White (1983), Kim (1986), Kolari and
Zardkoohi (1990), Berg and Kim (1994, 1998), Lang and Welzel (1996) and
Resti (1997), to name a few. Measured economic inefficiency, often referred
to as X-inefficiency, consists of technical and allocative inefficiencies and 
consumes 20 per cent or more of costs in banking, as suggested by research
to date. In other words, differences in managerial ability to reduce costs or
increase revenues are likely to be more important than the cost-saving effects
resulting from the choice of scale and scope of production.

The translog cost function has been widely applied to studies of the
economies of scale and product mix, merger, and X-efficiency, especially for
the past decade. However, the commonly used translog function form can
only locally approximate the underlying unknown cost function, because it
is derived from a second-order Taylor expansion of an arbitrary function
around a point. McAllister and McManus (1993) showed that the translog
cost function specification gives a poor approximation when applied to banks
of all sizes, because it forces large and small banks to lie on a symmetric U-
shaped average cost curve. Therefore, it may perform poorly for observations
far from the sample means (Berger and DeYoung, 1997). Even worse, White
(1980) proved that the ordinary least squares estimates of the translog cost
function are biased.

Gallant (1981, 1982) developed the Fourier flexible functional form
(henceforth, the FF function), which can be used to approximate any
unknown cost function.2 The FF function is composed of two parts. The first
is the usual translog function, while the second is the non-parametric Fourier
series, which includes trigonometric transformations of the variables.3 This
function can globally approximate the unknown true function over the entire
range of data, because the sine and cosine terms are mutually orthogonal
over the interval [0, 2p], and so each additional term will lead to a better
approximation of the data’s true path. For this reason, it has been shown to
dominate the translog approximation. Elbadawi et al. (1983) and Chalfant
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2Another approach that has been attempted to address the issue of a better-fitting functional
form is the Box–Cox transformation, which has been applied by Pulley and Braunstein
(1992), Pulley and Humphrey (1993), Noulas et al. (1993) and Humphrey and Pulley
(1997). The authors are indebted to one of the referees for pointing this out.

3It is noteworthy that coefficients of the second-order terms in the translog component are
derived from the Fourier series (to be discussed in Section 2.1). Therefore, the two parts of
the FF function are not independent from each other, which may have been overlooked by
Berger and DeYoung (1997), Berger et al. (1997), Berger and Mester (1997), DeYoung
et al. (1998) and Altunbas et al. (2000).



and Gallant (1985) found that the estimates of elasticity of substitution using
the parameters of an FF function have negligible bias when the sample size
is large.

Despite its superior properties, it was not until recently that the FF func-
tion began drawing much attention; for example, McAllister and McManus
(1993), Mitchell and Onvural (1996), Ivaldi et al. (1996), Berger and DeYoung
(1997), Berger et al. (1997), Berger and Mester (1997), DeYoung et al. (1998)
and Altunbas et al. (2000) have exploited it to examine the efficiency as well
as scale and scope economies of banks. A potential difficulty inherent to an
FF function is that its construction involves a complicated and tedious
process, and some restrictions implied by economic theory must be imposed.
Recently, Wheelock and Wilson (2001) pointed out that the FF function form
presents a few open statistical problems.

Although Berger and DeYoung (1997), Berger et al. (1997), Berger and
Mester (1997) and DeYoung et al. (1998) considered technical inefficiency
(TI), they failed to model allocative inefficiency (AI) explicitly. This may actu-
ally lead to misspecification. Consequently, their parameter estimates are
likely to be biased substantially.4 In addition, these works included the scaled
variables of output quantities and input prices only in the Fourier series. For
the translog part of the function, they used original (unscaled) variables,
inconsistent with Gallant’s (1981, 1982) idea in constructing an FF function,
which implicitly assumes that the translog and the Fourier series parts are
independent. It has been shown by Gallant (1982) that the coefficients of the
second-order terms in the translog portion are associated with the chosen
Fourier series. Thus, their FF functions may not be able to achieve a close
approximation in Sobolev norm. This invalid assumption may also lead to
biased and inconsistent parameter estimates.

This paper is devoted to uncovering new evidence on the X-efficiency 
of Taiwan’s commercial banks, where an FF shadow cost function is utilized
to escape the recognized problems in applying the translog specification.
More importantly, this FF function accounts for both TI and AI in order to
avoid specification errors. The parameter estimates from the more complete
and appropriate function are then used to compute the potential percentage
cost reductions, representing the degree of inefficiency due to TI or AI or
both.

It is a useful exercise to decompose the overall economic inefficiency 
into AI and TI and then to compute the costs incurred by them. Higher
potential cost savings from achieving allocative efficiency indicate that a
greater reduction in cost would be possible by optimizing the input mix. The
allocative distortions may be attributed to government regulation of the
industry under consideration and/or a slow adjustment to past changes in
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input prices. Higher cost savings due to a greater technical efficiency imply
that managers should direct their attention to enhancing the productivity of
all inputs such that firms can always be operating on their efficient produc-
tion frontiers.

Section 2 of the paper outlines the construction of an FF cost function
and introduces TI and AI parameters into the cost function, which permits
the identification and consistent estimation of firm-specific AI and TI with
panel data. Section 3 describes the data set, while in Section 4 we discuss the
empirical findings. Section 5 concludes the paper.

2 T M

This section briefly introduces the construction of an FF cost function in
Section 2.1, and readers are suggested to refer to Gallant (1981, 1982) for
details. Section 2.2 derives the TI and AI parameters in the FF cost function
and depicts the estimation procedures.

2.1 FF Cost Function

The FF function represents a semi-nonparametric approach, combining a
standard translog form with the non-parametric Fourier form; hence, it is
more flexible than the translog form alone and nests the translog form as a
special case. The FF form has additional terms that are linear combinations
of sine and cosine functions (called a Fourier series), which can represent
exactly any well-behaved multivariate function, such as the cost function,
due to the fact that sine and cosine functions are mutually orthogonal and
function space spanning. The procedure for constructing an FF function is
outlined here and readers are suggested to refer to Gallant (1981, 1982),
Elbadawi et al. (1983), Chalfant and Gallant (1985), Eastwood and Gallant
(1991) and Gallant and Souza (1991) for detailed discussions.

Let ln C*(p, y) be the true logarithmic cost function of a cost-
minimizing firm, where p = (p1, . . . , pN)¢ denotes an N ¥ 1 vector of input
prices and y = (y1, . . . , yM)¢ is an M ¥ 1 vector of output quantities. Let p
and y be rescaled by

(1)

(2)

where the li and qj are scaled input prices and output quantities, respectively.
Location parameters lnai and lnaj are commonly specified as lnai =
-min(1npi) + 10-5, i = 1, . . . , N, and lnaj = -min(lnyi) + 10-5, j = 1, . . . , M.
This guarantees that the minimum values of the scaled log-input prices 
and log-output quantities will be slightly greater than zero. Notation mj ( j =
1, . . . , M) is the scaling factor of output j to be determined shortly.

q y a j Mj j j j= +( ) > =m ln ln , , . . . ,0 1 2

l p a i Ni i i= + > =ln ln , , . . . ,0 1 2
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Let l = (l1, . . . , lN)¢ and q = (q1, . . . , qM)¢ be N ¥ 1 and M ¥ 1 vectors of
scaled input prices and output quantities, respectively. A logarithmic version
of the FF function, gK(x|q), can approximate the true (log) cost function 
g(x¢) = g(l¢,q¢) = lnC* as closely as desired in Sobolev norm. Function gK(x|q)
may be expressed as5

(3)

with y = -SA
a=1bal2kak¢a, and the elementary multi-index ka, which is an 

N + M vector with integer components, has length |ka| = Si=1
N+M|kia| £ K (a 

constant). The criteria for selecting ka and the chosen vectors of ka by this
exercise are shown in Appendix A.

The common scaling factor l is computed as

for some e between 0 and 2p. Gallant (1982) suggested 2p - e = 6. The purpose
of l is to make the largest of the scaled log-input prices slightly less than 2p.
While l is required to be common to all the input prices, output quantities
can be measured by using a distinct scale of measurement without any impact
on the analysis. The mj, j = 1, . . . , M, are the scaling factors for outputs and
are used to make each of the largest scaled log-output variables the same.
They are defined as6

where yj
max is the maximum value of output j in the sample. Vectors ka and b

can be partitioned into ka = (r¢a, r¢b)¢ and b = (c¢, d¢)¢, where ra and c are both
N ¥ 1 vectors, and rb and d are M ¥ 1 vectors. Therefore,

(4)

The optimal input share equation (4) together with equation (3) form a
system of simultaneous equations with 1 + N + M + A (1 + 2J ) unknown
parameters, which should be estimated simultaneously after appending
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random disturbances to each equation. A simultaneous estimation will not
only improve the efficiency of the estimators, but also make the joint esti-
mation of technical and allocative efficiencies possible.

Microeconomic theory imposes several restrictions on the parameters of
a cost function.7 Some of them, e.g. homogeneity and symmetry, have to be
imposed directly on the cost function during estimation. Others, such as con-
cavity and the characteristics of a firm’s production function, can be tested.

2.2 X-efficiency

A firm’s production plan may exhibit TI and/or AI. The most extensively used
definition of TI has been proposed by Farrell (1957). This definition leads to
two distinct measures, namely output TI and input TI, which are equal if and
only if a firm’s technology exhibits constant returns to scale. An output tech-
nically inefficient firm is characterized by its failure to produce maximal
output given a set of inputs. An input technically inefficient firm is described
as having an over-utilization of inputs given output and the input mix. A firm
is said to be allocatively inefficient if it fails to equate the marginal rate of
technical substitution between any two of its inputs to the ratio of corre-
sponding input prices.

As the widely used standard econometric stochastic frontier approach,
sometimes referred to as the error component approach, often imposes
restrictive assumptions on the distributions of the random disturbances, such
as normality and independence, in order to estimate TI and AI we adopt the
parametric approach, first proposed by Lau and Yotopoulos (1971) and later
generalized by Toda (1976), Atkinson and Halvorsen (1980, 1984), Lovell and
Sickles (1983), Atkinson and Cornwell (1993, 1994a, 1994b) and Kumbhakar
(1996a, 1996b, 1997). This approach refers to output TI as a factor that scales
output up from the production frontier and to input TI as a factor that scales
down input usage. The utilization of the parametric approach allows us to
model AI explicitly, and further to derive the exact relationship between AI
and cost (see, for example, Kumbhakar, 1996b, 1997; Kumbhakar and Lovell,
2000). By contrast, only an approximate relationship can be specified by the
error component approach, as has been suggested by Bauer (1985, 1990),
Ferrier and Lovell (1990) and Kumbhakar (1991).

In the context of a parametric approach, all firms’ decisions are assumed
to be based on shadow input prices, which differ from the observed input
prices due to regulation or sluggish adjustment to past changes in input
prices. The shadow scaled input prices are defined as l i* = li + ln hi, i = 1,
. . . , N, where the hi are positive but unknown parameters to be estimated
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and are used to measure the extent to which the shadow and actual input
prices differ.8 Clearly, when hi = 1, for all inputs, there will be no AI.

Kumbhakar (1997) suggested that the appropriate measure of TI is input
savings, which gives the maximum rate at which the use of all the factors can
be decreased leaving the output quantities intact, because outputs are treated
as exogenous in a cost-minimizing framework. Thus, the (log) observed cost
function and the corresponding cost shares are expressed as (see Atkinson
and Cornwell (1994a) for a detailed derivation)

(5)

(6)

where ln C is the actual (observed) logarithmic cost for a representative firm,
x*¢ = (l*¢, q¢), gK(x*|q) is the FF shadow cost function approximated by 
the FF form, Si* = ∂gk(x*|q)/∂li* is the shadow cost share of the ith input and
Si its observed counterpart, and B (0 < B £ 1) is a scaling parameter rep-
resenting the extent to which the actual input mix diverges from its optimal
counterpart.

Translated into cost, term B in equation (5) captures the addition to 
efficient cost gK(x*|q) due to TI. The higher the value of input-saving TI B
is, the more technically efficient the firm is. When B = 1, the firm is said to
be fully technically efficient. The terms of -lnB + gK(x*|q) can also be referred
to as the FF efficiency-adjusted shadow cost function. It is noteworthy that
TI B only appears in equation (5). In other words, the presence of TI has no
effect on a firm’s cost shares; this does not imply that the presence of TI is
incapable of affecting a firm’s demand for inputs, but rather that the pres-
ence of B raises all of a firm’s input demands equi-proportionately, leaving
these input shares unchanged.

Equations (5) and (6) form a system of simultaneous equations, com-
posed of a cost function and N - 1 cost shares, which can be estimated after
classical random disturbances are added to each of these equations.9 Some
additional structures need to be put on the behaviour of TI and AI over time
and across firms so as to make the model estimable and reasonable. Specifi-
cally, TI B is assumed to vary both across firms (n) and over time (t), and is
parsimoniously formulated as

- = - + + = =ln ln , . . . , , , . . . ,B K K t K t n F t Tnt n0 1 2
2 1 1

S S h S h i Ni i i i
i
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has been exploited in the estimation of the shadow profit function by, for example, Berger
et al. (1993a), Kumbhakar (1996a) and Huang (1999, 2000).

9Since the N cost shares must sum to unity, one of these share equations must be deleted in the
estimation to avoid the problem of singularity in the variance–covariance matrix of the
random disturbances.



where K0n is firm-specific parameters, and K1 and K2 are both invariant over
time and across firms.10

The formulation above reduces to a standard fixed-effect model when K1

= K2 = 0. In fact, terms K1t and K2t2 capture the pure effect of technical
change, keeping constant the input mix and output quantities. In practice, it
is possible that no firm is fully technically efficient. Thus, for the purpose of
estimation, we have to normalize K0n to unity for the most efficient firm (say
firm e) in the sample, so that the relative input technical efficiency of firm n
(π e) is defined as K0n/K0e = K0n. Namely, TI enters the cost equation through
a firm-specific intercept, -lnK0n, n = 1, . . . , F and n π e, together with the
linear and quadratic time trends.

As far as AI is concerned, the AI terms (hi) are restricted similarly to the
specification of TI as follows:

where only the intercept H0in is allowed to change across firms, while the other
two coefficients are invariant across firms and over time, capturing the linear
and quadratic time effects. Since equations (5) and (6) are homogeneous of
degree zero in the hi, one of the N inputs (say the Nth) has to be elected as
the numéraire and the corresponding H0Nn is normalized to unity in addition
to H1N = H2N = 0 for each firm in the sample under consideration. The 
remaining N - 1 relative H0in and 2(N - 1) coefficients of time effects in turn
can be estimated for each firm. If H0in < 1 (H0in > 1), then firm n mistakenly
employs more (less) of input i relative to the numéraire. The presence of
allocative distortion would thus raise the firm’s actual cost above its cost fron-
tier. The foregoing specifications for -lnBnt and hint are the same as those of
Huang (2000) using similar data.

A non-linear iterative seemingly unrelated regression technique is uti-
lized to estimate these equations simultaneously, using panel data on Taiwan’s
banking industry as described in Section 3. No further distributional assump-
tions on the error vector are needed. This technique is equivalent to the
maximum likelihood when convergence is achieved.

3 D D

Following the financial intermediation approach, we identify three output
categories including investments y1, which consist of government and cor-
porate securities, short-term loans y2 and long-term loans y3. Deposits and
borrowed money X1, labour X2 and physical capital X3 are defined as inputs.
We collect panel data from 1981 to 1997 on 22 of Taiwan’s domestic banks,

h H H t H t i N n F t Tin i iint = + + = = =0 1 2
2 1 1 1, . . . , , , . . . , , , . . . ,
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of which 11 are substantially large public banks when compared in terms of
total assets with the remaining 11 private banks. The main source of data
comes from publications of the Central Bank and the Ministry of Finance,
Taiwan. However, the number of workers and labour costs of each bank are
not available prior to 1991, and hence they are collected by a survey con-
ducted in 1992. After 1992, the public has access to the two variables. One of
the sample banks entered the industry in 1982. Thus, there are 373 observa-
tions in the sample. Sample statistics for each of the original and transformed
variables are summarized in Table 1.

4 E R

To produce bias-minimizing and asymptotically normal estimators, we take
the number of parameters approximately equal to the number of effective
sample observations raised to the two-thirds power, as suggested by Chalfant
and Gallant (1985) and Eastwood and Gallant (1991), and later adopted by
Mitchell and Onvural (1996). For the purpose of comparison, parameters of
both the FF and translog efficiency-adjusted shadow cost functions are esti-
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T 1
S S

Variables Mean Standard deviation Minimum Maximum

COSTa 15068.38 16740.28 138.33 78873.50
y1

a 34542.18 48647.70 4.68 504106.28
y2

a 59165.81 66790.06 208.60 273550.94
y3

a 104853.40 143540.67 271.08 746363.69
p1 0.0624 0.0234 0.0238 0.2108
p2 0.6124 0.2386 0.1756 1.3691
p3 0.5107 0.5736 0.0522 7.6172
S1 0.7163 0.0793 0.4396 0.9012
S2 0.1427 0.0545 0.0370 0.3931
S3 0.1410 0.0473 0.0350 0.3850
lnCOSTb 8.8548 1.4716 4.9296 11.2756
lny1

b 9.4066 1.7960 1.5430 13.1305
lny2

b 10.1023 1.6196 5.3404 12.5192
lny3

b 10.5622 1.6764 5.6024 13.5230
lnp1

b -2.8323 0.3331 -3.7401 -1.5570
lnp2

b -0.5699 0.4085 -1.7394 0.3142
lnp3

b -0.8653 0.5443 -2.9531 2.0304
l1 0.9077 0.3331 0.00001 2.1831
l2 1.1695 0.4085 0.00001 2.0536
l3 2.0878 0.5443 0.00001 4.9835
q1 3.3819 0.7724 3.49509D-06 4.9835
q2 3.3056 1.1243 6.43187D-06 4.9835
q3 3.1206 1.0548 6.20799D-06 4.9835

Notes: l1, l2 and l3 are scaled log-input prices, while q1, q2 and q3 are scaled log-output quantities. Number of
observations 373.
aMeasured in millions of New Taiwan dollars.
bNotation ln denotes the natural logarithm.



mated using TSP 4.5 software; they are reported in Table 2. All the coeffi-
cient estimates of the Fourier series are shown in Appendix B since these
terms are used to allow the FF function to approximate the true function
more closely and have no economic implications to the question at hand.
Because size effects on TI and AI are an interesting issue and in order to
make convergence easier, the full sample is further divided into five groups
according to their total assets. Each group is then treated as if it were a single
firm, leaving only four firm-specific intercepts (one is normalized to unity)
plus ten shadow parameters, together with the original parameters in the cost
function, to be estimated.

As argued by Gallant (1982), the imposition of monotonicity (a cost
function is non-decreasing in all input prices and output quantities) or con-
cavity (a cost function is concave in input prices), or both, will not affect the
ability of the FF cost function to approximate the true function. These two
conditions are only checked for the translog function and are found to be sat-
isfied by most observations, and thus hold on average.11 One is led to con-
clude that the coefficient estimates in Table 2 can properly describe the
representative bank’s technology. However, the joint test of the hypothesis
that all the Fourier series have zero coefficients is decisively rejected using the
Wald test even at the 1 per cent level of significance, indicating that the FF
cost function is more relevant than the translog counterpart in describing
firms’ cost-minimizing behaviours. Given the above test results, inferences on
scale and scope economies and X-efficiency using the FF function will be
more reliable and may lead to sharply different policy implications from those
using the translog specification. Because the test for homotheticity of a pro-
duction function is decisively rejected even at the 1 per cent significance level
by both the FF and translog functions, it is not necessary to test for the homo-
geneity condition.

The coefficient estimates of the linear and quadratic trends for the AI
parameters (Hji, j = 1, 2) are ignored by the FF specification, because they
are insignificantly estimated, while they are considered only for the AI param-
eter corresponding to the labour input in the translog specification for the
same reason. Similar to Altunbas et al. (2000), both specifications find the
presence of technical progress in the banking sector, though the rate of tech-
nical advancement declines over time due to positive estimates of the quad-
ratic trend. On the other hand, the allocative distortion of the labour input
in the translog function deteriorating over time is due to positive estimates
of both linear and quadratic trends. It is expected that the cost incurred by

350 The Manchester School

© Blackwell Publishing Ltd and The Victoria University of Manchester, 2003.

11It is a common difficulty faced by most empirical studies, e.g. Gropper (1995), Glass et al.
(1995) and Röller (1990), that the regularity conditions can only be passed by most, but
not all, of the sample. This is potentially due to large adverse random disturbances. In
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a misallocation of labour input increases through time. Such expectation is
indeed confirmed by referring to Table 4 (later).

The estimated firm-specific TI measures of B and the AI measures of h
are reported in Table 3. Evidence from the FF function shows no clear pattern
of technical efficiency as bank size grows, consistent with the finding of
Ferrier and Lovell (1990). Conversely, translog evidence shows that technical
efficiency improves with bank size except for the last (the largest) group, and
its variation is larger than the FF function estimates. In addition, TI terms
in the FF function are larger than those in the translog function (except for
group III), indicating that the latter tends to overestimate banks’ TI.

Since allocative efficiency parameter estimates of labour are all greater
than unity and those of physical capital are all less than unity for all five
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T 2
E   F C F   T C F

Fourier cost function Translog cost function

Parameter Estimate Standard errors Parameter Estimate Standard errors

Intercept -12.9953** 4.2863 Intercept 1.2619*** 0.2905
l1 0.5466*** 0.0490 lnp1 0.3897*** 0.0328
l2 0.4410*** 0.0490 lnp2 0.5833*** 0.0365
q1 5.8258*** 1.4844 lny1 -0.1097 0.0883
q2 3.3763*** 1.0506 lny2 -0.0479 0.0801
q3 -3.2747** 1.3690 lny3 0.8934*** 0.0817
q2

1 5.2036** 1.6079 lny2
1 0.0175 0.0202

q2
2 4.3638*** 1.4662 lny2

2 0.2183*** 0.0194
q2

3 5.3173*** 1.5691 lny2
3 0.1382*** 0.0219

l1 * l2 -0.1793*** 0.0212 lnp1 * ln p2 -0.1108*** 0.0123
l1 * l3 -0.0089* 0.0047 lnp1 * ln p3 0.0007 0.0006
l1 *q1 0.0016 0.0088 lnp1 * ln y1 0.0011 0.0029
l1 *q2 0.0216*** 0.0045 lnp1 * ln y2 0.0065** 0.0027
l1 *q3 0.0547*** 0.0052 lnp1 * ln y3 0.0310*** 0.0042
l2 * l3 0.0031* 0.0018 lnp2 * ln p3 -0.0052* 0.0032
l2 *q1 0.0016 0.0088 lnp2 * ln y1 -0.0005 0.0031
l2 *q2 0.0216*** 0.0045 lnp2 * ln y2 -0.0070** 0.0029
l2 *q3 0.0547*** 0.0052 lnp2 * ln y3 -0.0321*** 0.0043
q1 *q2 -1.4466* 0.7628 lny1 * ln y2 0.0101 0.0170
q1 *q3 -3.0502** 0.9503 lny1 * ln y3 -0.0068 0.0182
q2 *q3 -2.3526*** 0.8116 lny2 * ln y3 -0.1743*** 0.0143
Time -0.0146*** 0.0034 LabT 0.5475* 0.2842
Time2 0.0005*** 0.0002 LabT2 0.0651*** 0.0229

Time -0.0668*** 0.0092
Time2 0.0019*** 0.0004

Log-likelihood 1858.98 Log-likelihood 1739.57

Notes: Notations Time and Time2 are linear and quadratic trends, respectively, and LabT and LabT2 repre-
sent the same trends for AI of labour input.
***Significant at the 1 per cent level.
**Significant at the 5 per cent level.
*Significant at the 10 per cent level.



groups, both functions reveal that our sample banks are inclined to have an
under-utilization of labour and an over-utilization of capital, relative to
deposits and borrowed money (the numéraire). To eliminate allocative dis-
tortion and to lower total costs, banking firms should increase their employ-
ment of labour and decrease employment of physical capital. Viewed in a
different way, banks should decrease the use of inputs X1 as well as X3 so as
to improve their allocative efficiency. The reduction of X1 implies that banks
should increase their own capital and/or decrease loans, which in turn would
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T 3
E  E P

Technical
Allocative efficiency

Number of firms
Groups Total assetsa efficiency Labour (X2) Capital (X3) (sample size)

Fourier cost function
I 12,000–50,000 0.8433*** 5.0591*** 0.2347* 4 (68)

(0.0454) (0.7217) (0.1339)
II 50,001–90,000 0.7946*** 3.8725*** 0.2121* 5 (84)

(0.0293) (0.5238) (0.1203)
III 90,001–220,000 0.8782*** 5.6472*** 0.2656* 4 (68)

(0.0247) (0.7465) (0.1502)
IV 220,001–460,000 1 6.6792*** 0.2945* 4 (68)

(0.9816) (0.1671)
V 460,001–800,000 0.8908*** 3.2412*** 0.2756* 5 (85)

(0.0246) (0.5808) (0.1558)
Input-specific (with TI) 5.2994*** 0.3483** 22 (373)

(0.6429) (0.1781)
Input-specific (without TI) 5.6278*** 0.1478 22 (373)

(0.6752) (0.1754)

Translog cost function
I 12,000–50,000 0.6863*** 5.6476*** 0.3144 4 (68)

(0.0395) (1.5371) (0.2004)
II 50,001–90,000 0.7574*** 9.2296*** 0.3663 5 (84)

(0.0317) (2.2485) (0.2320)
III 90,001–220,000 0.8943*** 16.625*** 0.4148 4 (68)

(0.0290) (3.2864) (0.2643)
IV 220,001–460,000 1 15.281*** 0.4082 4 (68)

(3.9918) (0.2553)
V 460,001–800,000 0.8661*** 16.121*** 0.5111 5 (85)

(0.0307) (4.0075) (0.3197)
Input-specific (with TI) 7.2153*** 0.4848** 22 (373)

(1.4299) (0.2301)
Input-specific (without TI) 6.9501*** 0.1593 22 (373)

(1.3998) (0.2301)

Notes: Numbers in parentheses are standard errors.
aMeasured in millions of New Taiwan dollars.
***Significant at the 1 per cent level.
**Significant at the 5 per cent level.
*Significant at the 10 per cent level.



increase the capital adequacy ratio and lessen the possibility of bank insol-
vency. As a side note, in 1989 the Banking Law of Taiwan was modified to
require banks to maintain a capital adequacy ratio of at least 8 per cent.

Assuming that allocative efficiency parameters are equal among banks
for each input, these industry-level input-specific allocative efficiency param-
eters can be estimated with and without imposing technical efficiency and are
also shown in Table 3. Although the two allocative efficiency parameter esti-
mates for the labour input from the FF and from the translog cost functions
are different, they are nevertheless quite close to each other. By contrast, the
same two estimates for the capital input obtained from the respective cost
functions are not only substantially distinct from each other, but also one of
them is turning insignificant. This result suggests that TI and AI are corre-
lated in the banking sector, and hence any model neglecting such association
may suffer biased estimates due to specification error—Atkinson and
Halvorsen (1980, 1984), Atkinson and Cornwell (1994b), Mitchell and
Onvural (1996) and Altunbas et al. (2000) completely ignored TI and AI,
and Berger (1993), Mester (1993), Lang and Welzel (1996), Berger et al.
(1997), Berger and DeYoung (1997), Bauer et al. (1998) and Cummins and
Zi (1998) did not separate TI from AI.

Technical and Allocative Inefficiency 353

© Blackwell Publishing Ltd and The Victoria University of Manchester, 2003.

T 4
C  I (%)

Number
Technical

Allocative inefficiency
Economic of firms

inefficiency
(%)

inefficiency (sample
Groups Total assetsa (%) X2 X3 X2 + X3 (%) size)

Fourier cost function
I 12,000–50,000 15.67 18.87 3.05 21.32 33.65 4 (68)
II 50,001–90,000 20.54 14.96 3.99 18.37 35.14 5 (84)
III 90,001–220,000 12.19 14.01 2.78 16.43 26.61 4 (68)
IV 220,001–460,000 0 12.78 1.86 14.43 14.43 4 (68)
V 460,001–800,000 10.92 6.77 2.91 9.50 19.38 5 (85)
Full sample 12.19 13.24 2.97 15.81 25.95 22 (373)
1981–91 12.18 14.28 2.50 16.42 26.50 22 (241)
1992–97 12.21 11.33 3.81 14.71 24.94 22 (132)

Translog cost function
I 12,000–50,000 31.37 32.74 2.44 34.38 54.97 4 (68)
II 50,001–90,000 24.26 36.28 1.86 37.47 52.64 5 (84)
III 90,001–220,000 10.57 39.23 1.38 40.05 46.39 4 (68)
IV 220,001–460,000 0 41.19 1.55 42.11 42.11 4 (68)
V 460,001–800,000 13.39 41.93 0.78 42.38 50.10 5 (85)
Full sample 16.10 38.36 1.57 39.34 49.43 22 (373)
1981–91 16.15 35.77 1.61 36.82 47.40 22 (241)
1992–97 16.18 43.08 1.51 43.95 53.12 22 (132)

Note: aMeasured in millions of New Taiwan dollars.



If a bank is either technically inefficient or allocatively inefficient, or
both, then its cost must be higher than an efficient cost facing the same input
prices and producing equal amounts of output quantities. Table 4 shows 
the percentage increases in costs due to TI alone, to AI alone, and to both
inefficiencies. Following Atkinson and Cornwell (1994a), numbers in the 
table are calculated as one minus the ratio of restricted fitted costs and by
imposing either B = 1 or h = 1, or both, to unrestricted fitted costs without
these impositions. Not surprisingly, the two cost functions bring forth con-
siderably different inefficiency measures. Translog evidence on cost efficiency
suggests that the overall potential cost savings are nearly twice as large as
those of the FF function, which is consistent with Berger and DeYoung
(1997) and can be attributed to the fact that the FF function does not impose
as much structure as does the translog function, so that it is able to fit the
data more closely.

Based on the FF cost function, the presence of economic inefficiency
raises a bank’s cost by about 25.95 per cent on average. This figure is 
nearly three times as large as found by Berge and DeYoung (1997) and Berger
et al. (1997), and about twice as large as that of Berger and Mester (1997),
in which each utilized the FF function but failed to model AI and to 
estimate cost share equations simultaneously. As can be seen, economic 
inefficiency comes primarily from factor misallocation rather than TI,
implying that an inappropriate input mix gives rise to a larger cost increase
than does over-utilization of inputs. The finding that TI plays a relatively
small role here is inconsistent with, for instance, Berger and Humphrey
(1991), Kumbhakar (1991), Berger et al. (1993a) and Huang (1999, 2000), all
of whom did not apply the FF function. However, this finding is in accor-
dance with Atkinson and Cornwell (1994a), who used a parametric shadow
translog cost function to examine the TI and AI of US airlines with panel
data.

The cost of misallocated labour alone uniformly decreases as bank size
grows and constitutes more than 80 per cent of total AI, indicating that the
greatest reduction in cost could be achieved by optimizing the input mix,
especially labour usage. Such serious allocative distortions may reflect the
government’s heavy regulation of the banking sector through the first 11
years of the sample period. One may expect that financial deregulation in
Taiwan, starting in 1991, is likely to have improved banks’ economic effi-
ciency. Evidence shown in Table 4 appears to support, though weakly, this
expectation. Although deregulation had an insignificant effect on TI, it
indeed decreased the potential cost percentage due to AI from 16.42 to 14.71
per cent, with the main source of the reduction coming from labour input,
while the AI of capital input worsened a little.

The picture that emerges from the estimated FF shadow cost function
is as follows: (1) the lack of production efficiency raises a bank’s average cost
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around 12.19 per cent, relatively small but nevertheless pervasive; (2) banks
operate at observed costs approximately 25.95 per cent greater than efficient
frontier costs, due primarily to deficient labour utilization; (3) financial lib-
eralization helped to enhance our sample banks’ allocative efficiency, espe-
cially for labour input. The gradual improvement in efficiency may be one of
the reasons that these banks were capable of withstanding the severe impacts
from the aforementioned Asian financial crisis.

Berger and Humphrey (1997) have surveyed the results of 130 financial
institution efficiency studies and found an annual average efficiency ranging
from 0.31 to 0.97 of actual costs, with a mean of 0.79. The figure of 0.79
means that potential cost savings of the industry as a whole are 21 per cent
on average, keeping the level of output intact. Our FF evidence falls into this
range in the literature. Although a similar translog estimate is much larger, it
is still within the same range.

5 S  C

We constructed a theoretically more flexible cost function, the FF cost func-
tion, which has been proved to be able to globally approximate an unknown
true cost function over the entire range of data, along with the correspond-
ing cost shares. Within the parametric shadow cost framework and a panel
data setting, input- and firm-specific AI with possible time trends, as well as
firm-specific TI, can be identified and estimated. In this context the current
paper differs significantly from previous work using a translog function,
which can only locally approximate the true cost function, and from a few
recent papers mentioned earlier that apply the FF function but fail to dis-
tinguish TI from AI. The failure of separating TI from AI may lead to spec-
ification error, and in turn to biased parameter estimates, as well as a bias in
the various inefficiency measures based on these estimates.

Evidence is found that a greater reduction in cost could come from 
optimizing the input mix rather than from improving banks’ production
technology and managerial performance. The improvement in allocative 
distortions over time depicted in Table 4 may be attributed to financial lib-
eralization in Taiwan. It is most likely that newly entered private banks have
intensified the degree of competition in the industry and have attracted some
customers away from the original banks. Consequently, the levels of output
for these original banks were compelled to shrink, while their input usage did
not adjust swiftly enough at the same time. Such a sluggish adjustment in
factors of production to output changes not only causes allocative distor-
tions, but also tends to force banks off their efficient frontiers, which results
in input TI. As far as government policy is concerned, the conventional
wisdom which argues that liberalization will enhance efficiency and produc-
tivity is likely to be correct.
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A A: E M-

Vectors of ka shown below are elected according to the following criteria: (i) ka cannot
be a zero vector and its first non-zero element must be positive; (ii) its elements cannot
have a common integer divisor; (iii) these qualified ka have to be further arranged into
a sequence such that k1, . . . , kA are the elementary vectors and that their lengths are
non-decreasing in a.

a 1 2 3 4 5 6 7 8 9 10 11 12
l1 0 0 0 0 0 0 0 0 0 1 1 0
l2 0 0 0 0 0 0 0 0 0 -1 0 1
l3 0 0 0 0 0 0 0 0 0 0 -1 -1
q1 1 0 0 1 1 0 1 1 0 0 0 0
q2 0 1 0 1 0 1 -1 0 1 0 0 0
q3 0 0 1 0 1 1 0 -1 -1 0 0 0
|ka|* 1 1 1 2 2 2 2 2 2 2 2 2

a 13 14 15 16 17 18 19 20 21 22 23 24
l1 1 1 1 1 1 1 0 0 0 0 0 0
l2 -1 -1 -1 0 0 0 0 0 0 0 0 0
l3 0 0 0 -1 -1 -1 0 0 0 0 0 0
q1 -1 0 0 -1 0 0 1 1 1 1 4 0
q2 0 -1 0 0 -1 0 1 1 -1 -1 0 4
q3 0 0 -1 0 0 -1 1 -1 1 -1 0 0
|ka|* 3 3 3 3 3 3 3 3 3 3 4 4

a 25 26 27 28 29 30 31 32 33 34 35 36 37
l1 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0 0 0 0 0 0 0
q1 0 2 1 1 2 2 1 1 1 1 1 3 1
q2 0 1 2 1 -1 1 -2 2 -1 1 3 1 0
q3 4 1 1 2 1 -1 1 -1 2 -2 0 0 3
|ka|* 4 4 4 4 4 4 4 4 4 4 4 4 4

ka a{ } =1

37
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A B: E  F S

Parameter Estimate Standard errors Parameter Estimate Standard errors

b1 9.6981*** 3.1079 V16 -0.0008 0.0008
b2 8.1407*** 2.8938 U17 0.0008* 0.0004
b3 10.6645*** 3.1938 V17 0.0004 0.0009
b4 -1.4465* 0.7628 U18 -0.0012 0.0015
b5 -3.0502*** 0.9503 V18 0.0011* 0.0005
b6 -2.3523*** 0.8116 U19 0.0318 0.0321
b10 -0.2572*** 0.0229 V19 0.0699* 0.0398
b11 -0.0089* 0.0047 U20 -0.0067 0.0918
b12 0.0031* 0.0018 V20 -0.0661 0.0713
b13 0.0016 0.0088 U21 -0.2671*** 0.0926
b14 0.0216*** 0.0045 V21 0.1606** 0.0663
b15 0.0547*** 0.0051 U22 -0.4761*** 0.1002
U1 0.5934*** 0.2118 V22 0.0858 0.0884
V1 -0.0445 0.0869 U23 -0.0331* 0.0179
U2 0.7057*** 0.1978 V23 -0.0049 0.0156
V2 0.0627 0.1483 U24 0.0264* 0.0147
U3 0.5935** 0.2335 V24 0.0434*** 0.0162
V3 -0.0680 0.1213 U25 -0.0151 0.0139
U4 0.1129 0.0878 V25 -0.0093 0.0157
V4 -0.0646 0.0802 U26 0.0238 0.0524
U5 0.2508*** 0.0957 V26 0.0264 0.0438
V5 -0.2218** 0.0872 U27 0.0312 0.0323
U6 -0.2148*** 0.0803 V27 -0.0014 0.0332
V6 0.1995*** 0.0661 U28 -0.0322 0.0295
U7 -1.3899*** 0.4994 V28 -0.0155 0.0310
V7 0.1691 0.2249 U29 -0.0958** 0.0398
U8 -1.4739** 0.5902 V29 0.1278*** 0.0395
V8 1.5000*** 0.3283 U30 0.0561 0.0523
U9 -2.3266*** 0.7791 V30 -0.0085 0.0442
V9 0.6592*** 0.2475 U31 0.3175*** 0.0988
U10 0.0145 0.0110 V31 -0.0144 0.0523
V10 0.0570*** 0.0126 U32 0.0002 0.0301
U11 0.0040 0.0026 V32 0.0149 0.0219
V11 -0.0007 0.0025 U33 0.0252 0.0241
U12 0.0034 0.0021 V33 0.0189* 0.0230
V12 -0.0004 0.0021 U34 0.1356 0.1027
U13 0.0038 0.0052 V34 -0.3127*** 0.0835
V13 0.0043 0.0057 U35 -0.0561** 0.0258
U14 -0.0101** 0.0041 V35 -0.0642* 0.0329
V14 -0.0178*** 0.0036 U36 0.0569 0.0361
U15 0.0128*** 0.0040 V36 0.0112 0.0305
V15 0.0105*** 0.0041 U37 0.0268 0.0242
U16 0.0013* 0.0014 V37 0.0074 0.0244

Notes: ***Significant at the 1 per cent level.
**Significant at the 5 per cent level.
*Significant at the 10 per cent level.
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