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Abstract

The problems of non-normality or functional relationships between variables may often be sim-
plified by an appropriate transformation. However, the evidence for transformations may sometimes
depend crucially on one or a few observations. Therefore, the purpose of the paper is to develop a
method that will not be influenced by potential outliers during the process of data transformations.
The concepts of the least trimmed squares estimator and the trimmed likelihood estimator are used
to obtain the robust transformation parameters. Furthermore, the proposed procedure unifies robust
statistics and a diagnostic approach to deal with the outlier problem in the regression transformation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The assumption of normality customarily provides a powerful and convenient way to
analyze a linear regression problem. The problem of non-normality may often be simplified
by an appropriate transformation, such as the parametric family of power transformations
in Box and Cox (1964). In addition, relationships between variables can be explored or
simplified by means of data transformation. However, the evidence for transformations
may sometimes depend crucially on one or a few observations. Several authors have pointed
out that data transformations are very sensitive to outliers. (For more information on data
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transformations, seeSakia, 1992.) The purpose of this paper is to develop a method of data
transformation that will not be influenced by potential outliers.
There are two ways to deal with outlier problems in regression analysis, diagnostic

approachesand robust estimators (RousseeuwandLeroy, 1987, p. 8).Diagnostic approaches
for assessing the contribution of individuals to the evidence for a transformation have been
suggested byAtkinson (1985), Cook andWang (1983), andLawrance (1988). Tsai andWu
(1990)first take into account the deletion effect of a single observation on the Jacobian
of data transformation.Kim et al. (1996)extend the Jacobian effect to multiple deletion
diagnostics on Box–Cox transformations. Some disadvantages do limit the use of multiple
deletion diagnostics, which include combinatorial problems, the size of the deleted subsets
in practice, and lack of devices to present the results for a large sample size.
In an effort to robustify the analysis of the regression transformation,Carroll and Ruppert

(1985, 1988)adapt a bounded influence estimator ofKrasker andWelsch (1982), in which
an estimating equation is used to allow for the effect on the estimate of the transformation
parameter by the leverage points.Parker (1988)considers theL1 estimator for the regression
transformation. However, one of the shortcomings of these estimators is that they can have
a low breakdown point. The (finite) sample breakdown point of an estimator is the smallest
proportion of observations which when altered can cause the value of the estimator to be
arbitrarily large or small. One of the desirable properties for a robust estimator is one with
a high breakdown point, which is capable of handling multiple outliers. In this article, we
are particular interested in developing a robust transformation in the use of high breakdown
estimators.
The first high breakdown estimator, the least median of squares (LMS), was proposed by

Rousseeuw (1984). Since then, robust diagnostics has been developed to solve the problem
of outliers in a systematic way (Rousseeuw and Van Zomeren, 1990). Atkinson (1986a)
first employs the concept of the “constructed variable” (seeAtkinson (1985)for details)
and shows the effect of the deletion of observations on the score statistic for power trans-
formation. He therefore suggests a two-stage procedure to avoid the masking effect on data
transformation. The first stage is an exploratory method for the identification of outliers,
in which a robust analysis using LMS is performed on a series of values of transformation
parameters. The second stage uses multiple-deletion diagnostic methods to serve as a con-
firmatory method.Fung (1993)also proposes a stepwise procedure using robust methods to
confirm the outliers and leverage points without considering transformation. A similar idea
is suggested inHadi and Simonoff (1993)for the identification and test of multiple outliers
for linear models.
Atkinson and Riani (2000)adapt the forward search algorithm (Atkinson, 1994) by in-

cluding the score tests for the Box–Cox transformation. By giving a fixed value of the trans-
formation parameter, they show that the forward search algorithm provides high breakdown
estimates of regression parameters and monitors the effect of individual observations on
the transformed data. LMS is used again as the criterion to assess the performance of the
search. In terms of the “forward” search, the deletion diagnostics ofTsai and Wu (1990)
andKim et al. (1996)can be viewed as a “backward” approach.
An alternative to LMS is the least trimmed squares (LTS) estimator, which has better

theoretical properties than theLMS.Thedetails of LTSwill begiven in the later section.Hadi
and Luceño (1997)propose the trimmed likelihood estimator, which is based on trimming



T.-C. Cheng / Computational Statistics & Data Analysis 49 (2005) 875–891 877

the likelihood function rather than directly trimming the data. In this article, we first connect
LTS and the idea of the trimmed likelihood approach for the problemof data transformation.
The robust framework is then proposed to provide a unified approach, together with the
concepts of exploratory and confirmatorymethods.A resampling procedure is implemented
for this purpose and in order to obtain a high breakdown estimate of the transformation
parameters.
The outline of this article is as follows. Section 2 shows the diagnostic approach on

Box–Cox transformation for the linear regression model. Section 3 first gives a brief de-
scription of high breakdown estimators. A robust transformation is then proposed and a
computing algorithm is also provided to obtain the result in Section 4. Section 5 carries
out a simulation study to show the performance of the resulting approach. Some real data
analyses are illustrated in Section 6. Section 7 draws some conclusions and comments.

2. Diagnostics on regression transformation

Consider the linear regression model

y = X� + ε, (1)

where y = (y1, . . . , yn), � = (�0, . . . ,�p−1) denotesp × 1 regression coefficients,
X = (xT1 , . . . , x

T
n) is ann × p design matrix, andε = (�1, . . . , �n) represents the error

term. Let�̂ = (�̂0, . . . , �̂p−1) be any estimate of parameter�. The residuals from this es-

timate areei(�̂) = yi − xTi �̂, i = 1, . . . , n. The most popular regression estimator is the
least-squares estimate (LSE), which corresponds to

min
�̂

n∑
i=1

e2i , (2)

whereei=ei(�̂).Weoftenmakeacertain idealizedassumptionabout theerror term,where�i
is usually assumed to be independent and identically distributed with a normal distribution,
N(0,�2), for the purpose of statistical inferences. Under the assumption of normality, the
LSE is the same as the maximum likelihood estimator (MLE).
When the assumption of normality for model (1) does not exist,Box and Cox (1964)

consider the following transformation:

y(�)=
{
(y� − 1)/� � �= 0,
log y � = 0.

(3)

If the transformed observationsy(�) are normally distributed with meanX�(�) and
common variance�2(�), for the ith observation, then the log-likelihood function based
on the above transformation is

i = (�; yi)=̇ − 1

2
log�2(�)− (yi(�)− xTi �(�))

2

2�2(�)
+ (� − 1) logyi, (4)

where� = (�,�2, �). The ordinary MLE of�, �̂, hence maximizes
∑n
i=1(�, yi).
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Although MLE has good statistical properties, the estimate�̂ is very sensitive to outliers.
To identify those cases that influence�̂, the deletion diagnostic approach compares�̂ and
�̂(M), where�̂(M) is theMLEof�basedonn−mobservations after deletingmobservations.
Theset of thosedeletedmcases is indicatedbyM.This process is computationally intensive,
because the Jacobian differs for each setM. Kim et al. (1996)extend the case-deletion
model approach ofTsai and Wu (1990)to multiple deletion diagnostics on a Box–Cox
transformation. IfJ denotes the Jacobian of the transformation fromy to y(�), thenKim et
al. (1996)show that an approximation tô�(M) of Tsai andWu (1990), based on then−m

from n cases, minimizes

Q(M)(�)= z̃(�)T(I − HE)z̃(�)

(∏
i∈M

yi

)2(�−1)/(n−m)
, (5)

wherez̃(�)= y(�)/J 1/(n−m) andHE = XE(XT
EXE)−1XT

E . Here,XE = (X,EM), andEM

is ann×mmatrix containing a 1 in theposition of the row and column which correspond
to the setM and 0’s elsewhere.

Kim et al. (1996)derive the one-step estimator to approximate�̂(M) as follows. They
first define

wT(�)=�z(�)
��

,

uT(�)=�w(�)
��

,

wherez(�)=y(�)/J 1/n. Now letHM be them×m submatrix ofH=X(XTX)−1XT indexed
byM. In addition,rz,M, rw,M, andru,M indicatem× 1 subvectors of

rz=(I − H)z(�̂),

rw=(I − H)w(�̂),

ru=(I − H)u(�̂),

respectively, and let

Spq,M = rTp,M(I − HM)
−1rq,M,

wherep = z,w andq = z,w,u. Finally, define

GM = log

( ∏
i∈M

yi

/
ẏm

)/
(n−m),

whereẏ is the geometric mean of theyi ’s. To assess the effect of themcases being deleted
from the data set, the closed form of the diagnostic is then defined as

�̂
TW

(M) = �̂ −
[
2GM + rTwrw + rTz ru − Sww,M − Szu,M − 2GMSzw,M

GM(rTz rz − Szz,M)− Szw,M

]−1

. (6)
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3. Robust regression

In this section, we first summarize some issues about robust regression, which will be
used in the later discussion.

3.1. High breakdown estimators

The first high breakdown estimator, the least median of squares (LMS), was proposed by
Rousseeuw (1984). Let

e2(1),n�e2(2),n� · · · �e2(n),n (7)

be the ordering of the residualse2i , i = 1, . . . , n. LMS is defined by

mine2(med),n,

wheremed=[(n+p+1)/2], and[·] indicates the integer part. However, the LMS estimator
converges at the low rate ofn−1/3 to a non-normal distribution. Its asymptotic efficiency
approaches 0 as the sample size goes to infinity (Rousseeuw and Leroy, 1987, Section 4.4.).
Instead of adding all the squared residuals as in (2), one can limit one’s attention to a

“trimmed” sum of squares. If only the firstq of those ordered residuals are included in the
summation, then the least trimmed squares (LTS) estimator is defined as

min
�̂

q∑
i=1

e2(i),n. (8)

Forq=[n/2]+[(p+1)/2], the LTS reaches themaximal possible value for the breakdown
point ([(n − p)/2] + 1)/n (Rousseeuw and Leroy, 1987, p. 132), which is the same as
that of the LMS estimate minimizing the “median” residuale2(q),n for the sameq. The LTS

estimator converges to a normal distribution at the rate ofn−1/2.
The use of LTS in the application of robust regression has become more feasible and

popular after the fast algorithm to find the LTS solution proposed byRousseeuw and Van
Driessen (1999). They show that after starting any approximation to the LTS estimate, it
is possible to obtain another approximation yielding an even lower objective function (8).
They call this aC-step, whereC stands for “concentration”. The resulting algorithm can
quickly obtain the LTS solution. This procedure is available in S-PLUS.
Atkinson and Cheng (1999)apply the forward search algorithm to find the LTS and also

discuss the choice ofq. They show that one can achievemore stable results for the detection
of outliers as well as highly efficient estimates when more data are fitted, provided thatq
is small enough to exclude outlying cases.Zaman et al. (2001)suggest that[0.75n] is a
reasonable value forq in most empirical studies.

3.2. Trimmed likelihood estimator

Let X be a random variable with a probability densityf (x; �) which depends on an
unknown parameter�. Let x1, . . . , xn ben independent realizations ofX. The MLE of� is
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the value of� that maximizes the logarithm of the likelihood function

L(�; x1, . . . , xn)=
n∑
i=1

(�; xi), (9)

where(�; xi)= ln f (xi; �) is the contribution of theith observation to the log likelihood
function (9). The ML method has desirable properties. However, it depends on aggregate
statistics, and it is sensitive to outlier and/or to violations of distributional assumptions.
Hadi and Luceño (1997)propose a trimmed likelihood principle based on trimming the

likelihood function rather than directly trimming the data. They show that this trimming
likelihood principle produces many existing estimators, such as MLE, LMS, and LTS. It
is always possible to order and trim observations according to their contributions to the
likelihood function, because the likelihood is scalar-valued. For any given value of�, the
likelihood ordering is

(�; x(1))� l(�; x(2))� · · · � l(�; x(n)).
The method proposed byHadi and Luceño (1997)replaces the log-likelihood function

by the trimmed log-likelihood function

b∑
i=a

wil(�; x(i)), (10)

wherea�b, (a, b) ∈ {1,2, . . . , n}, andwi�0 are weights. The estimator�(a, b,w) is
obtained bymaximizing (10). They refer to this method as themaximum trimmed likelihood
(MTL) method and tô�(a, b,w) as the maximum trimmed likelihood estimators (MTLE).
Consider the casewi = 1, a� i�b. Whena = 1 andb= n, �̂(1, n) is the MLE of�, so

that MLE is a special case of MTLE. Whena = b= [(n+ 1)/2], the resulting estimator is
referred to as the maximum median likelihood estimator (MMLE). Whena = 1 andb<n
and data are Gaussian, then�̂(1, b) is the LTS of the location parameter�. Hadi and Luceño
(1997)also show that the MMLE of� and�2 for model (1) are the same as the LMS
estimates of� and�2, respectively.

4. Robust transformations

For the robust estimation of transformation (3),Carroll and Ruppert (1987)propose an
M-type estimator̃� for �, which is the solution to

n∑
i=1

wi(yi, �̃)si(yi, �̃)= 0,

wheresi(·) is the score function of the log-likelihood function (4) foryi , andwi is a suitable
scalar function. They also extend this idea to “transformboth sides” of the regressionmodel.
This estimator is a kind of the robust bounded-influence estimators ofKrasker andWelsch
(1982).
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For an inference about�, it is easier toworkwith the normalizedBox–Cox transformation

z(�)=
{
(y� − 1)/�ẏ�−1, � �= 0,
ẏ log y, � = 0,

(11)

whereẏ = exp(
∑

log(yi/n)). The analogy of (4) for theith observation is

i = (�; zi)=̇ − 1

2
log�2(�)− (zi(�)− xTi �(�))

2

2�2(�)
. (12)

For a particular value of�, the MLE of� is equivalent to maximizing

L(·)= −n
2
log �̂2

(�).

Parker (1988)adapts Laplace errors for the transformation parameter, in which the log-
likelihood function becomes

L1(�)= −n log(2�(�))−
n∑
i=1

|zi(�)− xTi �(�)|/�(�).

However, it is known that the bounded-influence estimator is not robust from the view of
the breakdown point, and theL1 estimate is not able to resist the leverage points. Some
adaptive estimators to these aspects for model (1) without consideration of transformation
have been proposed (e.g.Simpson et al., 1992; Coakley and Hettmansperger, 1993; Chave
and Thomson, 2003). However, this direction is not covered in the scope of this paper.
Atkinson andRiani (2000)adapt the forward search algorithmusing LMS for the problem

of data transformation. The forward search is a powerful general method, which involves
successively augmenting the subset of data until all data are included on the fit. During the
process of data increment, the unidentified subsets of the data are detected and their effect on
fittedmodels can be evaluated. The fan plot provides a forward plot of the score test statistic
for a series of values of�. It is used to present the evolution of the score statistics during the
forward process. This procedure can be viewed as a unified result of Atkinson’s previous
works (Atkinson, 1985, 1986a).However, this approachdoesnot provideanexplicit estimate
of �.
In the following discussion, we unite the diagnostic and robust approaches to obtain the

robust estimates of transformed data.

4.1. LTS and transformation

The relationships of LTS and MTLE are discussed byMüller and Neykov (2003)for a
generalized linear model. In this subsection we show the LTS and MTLE solutions to the
transformation parameter.
Assume thatQ is the set including thoseq observations with the largest values of (12)

when a particular value of� is given. Therefore, the corresponding maximized trimmed
log-likelihood function of (10) for model (1) under transformation (11) is

Lq(�̂q)=
∑
i∈Q

(�̂q; z(i))=̇ − q

2
log �̂2

q(�), (13)
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where(�̂q; z(i)) is theith ordering likelihood, and̂�q = �̂q(�) = �̂(1, q) denotes MTLE
of � at the value of�. The MTLE of�2 at the value of� is then

�̂2
q(�)=

∑
i∈Q

e2i (�)/(q − p), (14)

where the residuals are defined as usual for the transformed data, which are

ei(�)= ei(�̂q)= zi(�)− xTi �̂q, i = 1, . . . , n.

The observations inQ of (14) are those cases with the smallestq residuals, which corre-
spond to those with the largest values of likelihood for (13). Once the setQ is attained, the
MTLE of � at the value ofq, denoted bŷ�q , can be computed by the MLE of� based on

the setQ. Therefore,̂�q = (�̂q, �̂
2
q, �̂q) are the LTS estimates and also the MTLE of� .

The LTS or MTLE of� is carried out by a two-stage estimation procedure, which is
similar to the solution of MLE described inAtkinson (1985, pp. 86–87). Note that for a
given�, the Jacobian of the transformed variables on the trimmed cases is independent of�,
which can be seen from (5). Therefore, maximizing (13) is equivalent to minimizing (14).

4.2. Numerical computing

For a specific value ofq, an approximate solution of�̂q can be obtained by subsampling
from the data in the following way:

• RT1: Give an estimate of� to transformation (11), and choose a random subsample with
scases, says = p + 1, from the transformed data.

• RT2: Apply theC-step ofRousseeuw and Van Driessen (1999)to obtain a subset withq
cases, which is denoted byQ.

• RT3:Apply result (6) to find the estimate of�, �̂
TW

(Q̄) , whereQ̄ denotes the complementary
set ofQ.

• RT4: Obtain the LSE of�, �̂q , based on the setQ after a transformation usinĝ�
TW

(Q̄) , and
calculate the objective function (14).

Steps RT1 to RT4 denote one subsampling scheme. The subsampling scheme is repeated,
and the estimate of the transformation parameter is updated to RT1 when a lower value of
(14) is reached.
The details of the procedure are described as follows. For the first step, the initial value

of � is MLE of � from the whole data set. This value is replaced by�̂q in the subsequent
subsampling. The working data are the transformed data in the following steps. IfS in-
dicates the set of randomly selecteds cases, then we compute LS regression coefficients,
denoted bŷ�S(�̂q), based onS. The ordered residuals for each observation are defined as

e(1),S�e(2),S� · · · �e(n),S, (15)
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where

ei,S=ei(�̂q,S)
= zi(�̂q)− xTi �̂S(�̂q), i = 1, . . . , n.

Applying theC-step procedure to the transformed data during step RT2, we can obtain a
new subset withqobservations which fulfills the necessary condition for a global minimum
of the LTS objective function. IfQ indicates the set ofq cases with the smallest residuals

of (15), then the estimatê�
TW

(Q̄) is computed by using (6) at step RT3. This step intends to

obtain the estimate of the transformation parameter excluding those potential outliers inQ̄.

For the last step, applying the estimate�̂
TW

(Q̄) to (11), we nowwork on the new transformed

data set. The estimated LS regression coefficient�̂Q(�̂
TW

(Q̄) ) is attained based on the setQ.
Therefore, the corresponding result (14) is computed by

s2q (�̂
TW

(Q̄) )=
∑
i∈Q

(
ei(�̂

TW

(Q̄) )
)2
/(q − p), (16)

whereei(�̂
TW

(Q̄) )= zi(�̂
TW

(Q̄) )− xTi �̂Q(�̂
TW

(Q̄) ), andi ∈ Q.

Once the smaller value of the objective function (16) is attained,�̂q is replaced by the new

estimate�̂
TW

(Q̄) for the new selected subsampleS of step RT1. Steps RT2 to RT4 are then

repeated, and̂�q is updated once a smaller value of (16) is reached. The resampling scheme
yields a series of values of (16), with the value defining the performance of the chosen
subset. Therefore, step RT2 is used to identify the possible outliers under transformation,
and RT3 gives the refined estimate of the transformation parameters.
Note that results (15) are used to carry out theC-step and achieve the deletion subset for

computing the estimate,�̂
TW

(Q̄) . Theminimum value of (14) from all chosen subsets indicates

the approximate solution of the LTS,�̂q . When the sample size is not large, an exhaustive
search is used; otherwise, several subsets are randomly drawn. Finally, for a general, but
specifiedq, the criterion for the trimmed likelihood estimates in this resampling procedure
is the same as (16) as we discussed in the previous subsection.

5. Simulation study

To see the capability of the proposed procedure in the previous section, we conduct a
simulation for model (1). The data are generated in a similar manner to that of the famous
Rousseeuw’s data (Rousseeuw, 1984). For “good” data, each regressor,xTi , is generated

from the uniform distributionU(0,6) and the corresponding error term�i
iid∼N(0,0.042),

whereas “bad” data points are generated in the following form:(
yi
xTi

)
∼ MN

((
4

(14+ p)J

)
,

(
0.5 0
0 0.5Ip−1

))
,

whereJ is a unit vector with dimension(p − 1).
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Table 1
The simulation results forp = 3

Sample sizen Proportion of outliers (%) �

−1 −0.5 0 0.5

50 5 −0.9777 −0.4896 −0.0005 0.4881
(0.0267) (0.0155) (0.0230) (0.0193)

10 −0.9771 −0.4870 −0.0040 0.4840
(0.0419) (0.0194) (0.0256) (0.0214)

15 −0.9558 −0.4777 −0.0068 0.4759
(0.0588) (0.0245) (0.0406) (0.0311)

20 −0.9415 −0.4714 −0.0155 0.4589
(0.0696) ( 0.0315) (0.0521) (0.0368)

100 5 −0.9816 −0.4898 −0.0027 0.4904
(0.0195) (0.0109) (0.0329) (0.0125)

10 −0.9771 −0.4893 −0.0067 0.4818
(0.0222) (0.0146) (0.0513) (0.0134)

15 −0.9746 −0.4825 −0.0049 0.4799
(0.0284) (0.0197) (0.0645) (0.0194)

20 −0.9617 −0.4765 −0.0078 0.4700
(0.0432) (0.0267) (0.0060) (0.0285)

The simulation design considers the effects of dimensions of the data, sample size, and
proportion of outliers in data. The dimensions,p, are 3 and 5. Two sample sizes are consid-
ered,n= 50 and 100. Five percent, 10%, 15%, or 20% of the observations are outlying in
each simulated data set. All regression coefficients are assigned a value of 1. Once the data
have been generated, a transformation parameter is given to the response variable, for which
the inverse of the Box–Cox transformation (3) is applied toxT� + ε. Here, we consider the
values of� to be−1,−0.5, 0, and 0.5.
To compare the performance of the robust procedure, 200 data sets are generated to

implement the resampling algorithm, in which 100 subsampling schemes for each data set
are carried out to obtain the optimum. The default value ofq is set to be[0.75n], whereas
q = [0.7n] is used when the outlier proportion is 20%.Tables 1and2 show the mean and
standard deviation (in the parentheses) of the robust estimates of� from 200 replications
for dimensions 3 and 5, respectively.
From these simulation results, we have the following findings. As the proportion of

outliers increases, the estimates of�’s turn away from the true parameters, and the standard
deviations of the estimates become inflated when the sample size and dimension are the
same. While under the same dimension, the larger the sample size is, the smaller the value
will be of the standard deviation. The dimension plays an important role in the behaviors
of the robust estimators as well as in our study. Whenp = 5 andn = 50, the values of
some cells inTable 2(e.g. 10% outliers) are not as consistent as those inTable 1in terms
of the proportion of outliers and sample size. The ratio of the sample size and dimension
becomes a very important factor when the proportion of outliers is relatively high, e.g.
the cell of 20% of the outliers. However, this problem can be alleviated and improved if



T.-C. Cheng / Computational Statistics & Data Analysis 49 (2005) 875–891 885

Table 2
The simulation results forp = 5

Sample sizen Proportion of outliers (%) �

−1 −0.5 0 0.5

50 5 −0.9866 −0.4933 −0.0016 0.4926
(0.0246) (0.0117) (0.0219) (0.0161)

10 −0.9832 −0.4930 −0.0013 0.4912
(0.0357) (0.0443) (0.0395) (0.0758)

15 −0.9401 −0.4774 −0.0058 0.4669
(0.0764) (0.0283) (0.0282) (0.0914)

20 −0.8927 −0.4729 −0.0772 0.4420
(0.1028) (0.0359) (0.0720) (0.0629)

100 5 −0.9922 −0.4959 −0.0026 0.4958
(0.0162) (0.0071) (0.0264) (0.0084)

10 −0.9786 −0.4908 0.0004 0.4871
(0.0249) (0.0119) (0.0433) (0.0143)

15 −0.9572 −0.4813 −0.0056 0.4738
(0.0474) (0.0196) (0.0184) (0.0741)

20 −0.9146 −0.4690 −0.0615 0.4506
(0.0661) (0.0245) (0.0672) (0.0489)

more subsamples are drawn. These results are quite similar to common conclusions in the
literature of robustness, in which the dimension, sample size, and proportion of outliers
in the data are the main factors on the influence of performance of robust estimators. The
number of subsamples is an issue, which is more related to computation rather than the
data.
Another effect for the LTS and MTLE is the choice ofq. Atkinson and Cheng (1999)

conclude that the higher the value ofq is, the higher the efficiency of LTS will be, and the
more stable the identification of outliers is, provided that the value ofq is not large enough
to include the existing outliers. A similar result can be expected in the robust estimates of
transformationparameters.Moreover, smaller valuesofqmaybeneeded for somesimulated
data. For instance, we compare[0.65n] and [0.7n] for the values ofq when 20% of the
outliers exit in the data withn=50 andp=5. The range of the 200 estimates of� is smaller
for q = [0.65n] than that ofq = [0.7n]. Forq = [0.65n], it also produces closer estimates
to the true parameter and a smaller value of standard deviation of the estimates. The mean
(standard deviation) of the 200 estimates of� are−0.8927 (0.1028) as reported inTable 2
for q = [0.7n], whereas the result is improved to be−0.9246 (0.0834) forq = [0.65n]. The
smaller value ofq provides a higher breakdown to prevent a relatively higher proportion of
outliers when keeping other conditions the same.
Tables 1and2 are used to compare how some factors influence the performance of the

proposedprocedure.The refinedoutput of thesimulationcanbeobtained ifmoresubsamples
are used to find the optima, and/or different values ofq. Nevertheless, the conclusion of
Atkinson and Cheng (1999)is still valid whereby the larger values ofq can yield higher
efficient estimates and the stability of identification of outliers. In the test of the simulation
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design, however, we experience that the choice of the value ofq is smaller than the expected
one for the transformation problem, especially when the proportion of outliers is relatively
high and the ratio of the sample size and dimension is small.

6. Examples

6.1. Stack loss data

The stack loss data are “famous” in the literature of robust estimation and detection of
outliers (seeAtkinson, 1985, p. 129;Rousseeuw and Leroy, 1987, p. 76). There are 21 cases
and 3 explanatory variables in the data, so thatp=4, and it is well known that observations
1, 3, 4, and 21 are extreme outliers and observation 2 is a mild outlier. The data are also
used to illustrate the processes of the forward search algorithm based on LMS and LTS
in Atkinson (1994)andAtkinson and Cheng (1999), respectively.Dodge (1996)traces the
history of this data set to document the instances in which it has been used as an example
of statistical methodology.
These data are also presented in transformation problems by several authors. The MLE

of � is 0.30 for the first-order model, and�̂ = 0.48 when case 21 is excluded. The results of
other models, e.g. the second-order model, refer to that ofAtkinson (1985, pp. 129–136).
The robust analysis ofCarroll and Ruppert (1985)suggests that� = 0.5 is reasonable.
No outlier is revealed if the robust transformation parameter 0.42 is considered inParker
(1988). Atkinson and Riani (2000, Section 4.9)point out that the log transformation is not
acceptablewhen observations 4 and 21 are deleted, but it is acceptablewhen all observations
are included. Their fan plot of the score statistics shows that� = 0.5 is supported by all the
data.
The proposed robust method is applied to the first-order model for these data. To check

the stability of the algorithm, 500 resampling schemes are used to show the performance,
in which 100 subsamplings of sample size 5 are randomly drawn to obtain the optimum
for each resampling scheme. Whenq = [0.65n] and[0.8n], all 500 resampling procedures
yield the same estimate,�̂q = 0.4681 and 0.4943, respectively. This is quite similar to the
previous studies. If 75% of data are used for the LTS criterion, then there are two solutions
in 500 subsampling schemes,�̂q = 0.9264 for six times and̂�q = 0.4989 for all others.
The author at first thought that the randomness of the resampling procedure and/or the

number of subsamples cause the problem of a local optimum whenq = [0.75n]. However,
when 1000 subsets are randomly selected, the same two solutions are obtained again in 500
resamplings. In 16 resampling schemes,�̂q=0.9264, and theother 484 solutions lead to�̂q=
0.4989; the corresponding deleted cases are{1,3,4,13,20,21} and{2,4,13,14,20,21},
respectively. In fact, we can see that the two solutions are not accidental, as�̂q = 0.9264
implies that no transformation is required. The set of deleted cases includes those outliers
identified when raw data are used. This may also partly explain the accuracy problem of the

�̂
TW

diagnostic inKim et al. (1996). We conclude that both these solutions are reasonable
in terms of robustness and diagnostics whenq = [0.75n] is used for LTS. Nevertheless, the
log transformation is more acceptable for this data set.
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Table 3
The estimation results for tree data

q �̂q Times in 500 samplings Deleted cases

[0.65n] 0.1553 1 11, 14, 15, 16, 17, 18, 21, 23, 29, 30, 31
0.3264 499 11, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28

[0.75n] 0.2705 500 9, 11, 17, 21, 23, 26, 27, 28

[0.85n] 0.3582 476 15, 16, 18, 23, 26
0.2115 24 15, 18, 29, 30, 31

[0.95n] 0.3472 500 15, 18

6.2. Minitab tree data

The Minitab tree data set is used by several authors to illustrate the problems of a re-
gression transformation and a transform-both-sides model. This is a set of measurements
on the volume, girth, and height of 31 black cherry trees.Atkinson (1985, pp. 124–129)
compares some candidate models to provide a means of predicting the volume of timber in
unfelled trees. He concludes that a formula based solely on girth would be preferred. If the
first-order regression model is considered, which includes the response variable, volume,
and two explanatory variables, girth and height, then the score statistic suggests strong ev-
idence of a transformation on the response variable and�̂ = 0.3066.Tsai and Wu (1990)
conclude that the cube root transformation (the quick estimate ofCook and Wang (1983)
for � is 0.2931) to the dependent variable with the weighted regression model provides a
reasonable explanation of the data.
When 500 resampling schemes are used to show the proposed algorithm,Table 3

summarizes the results produced by using 65%, 75%, 85%, and 95% of the data for the LTS
criteria. If 65% of data are used for LTS, then there are two solutions resulting in 500 resam-
plings. One leads tô�q =0.1553, and all others obtain̂�q =0.3264.Whenq =[0.75n] and
[0.95n], all 500 resampling procedures yield the same estimates,�̂q = 0.2705 and 0.3472,
respectively. This result shows that the cube root transformation is reasonable in physical
consideration.
The different estimated values of� when different proportions of data are used for LTS

may be due to the heteroscedastic error structure in the data (Tsai and Wu, 1990). We do
not explore this issue further in this article.

6.3. Hill racing data

As first studied byAtkinson (1986b), this data set includes the record times for 35 hill
races, togetherwith thedistances inmiles and the climbs in feet.Without any transformation,
Atkinson (1988)shows that cases 7, 11, 33, and 35 have largest positive residuals, in which
the record time for observation 18 has been corrected. Given the initial values of� = 0,
0.5, and 1, which appear in the null hypothesis when applying the score statistics, the quick
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Fig. 1. Hill racing data: fan plot of the score statistics for five values of� to the forward search algorithm.

estimates of� vary from 0.67 to 1.10 if no case, case 7, and cases 7 and 33 are deleted from
the data. Furthermore, he concludes that these data do not require a transformation based
on the score test, and that cases 7 and 33 are outliers.
Applying the forward search procedure ofAtkinson and Riani (2000)to these data,

Fig. 1shows the fan plot of the score test statistic,Tp(�), for � = −1,−0.5,0,0.5, and 1.
Table4presents the last fiveobservations toenter the forwardsearchesand thecorresponding
score test statistics and the values of the log likelihood for transformation at each stage.
The transformations 0,−0.5, and 0 are clearly not acceptable. The most important feature
is that� = 0.5 is the only transformation for which the score statistic remains within the
boundary through the search. Moreover, observation 7 is no longer an outlier for the square
root transformation on these data. However, the largest value of the log likelihood is 158.9,
which occurs at no transformation required and cases 7, 19, and 33 are excluded from the
data.
Again, 500 resampling schemes are used.Table 5shows the estimates of� and the

observations being excluded from the data when different values ofq are considered. All
500 resamplings yield the same result for eachq. We can see that the results are close to
those ofAtkinson (1988).

7. Conclusions

In this paper, we have combined robust and diagnostic approaches to deal with the prob-
lem of data transformations. This combination provides a resampling procedure which
unites both a high breakdown estimate and a deletion diagnostic quantity. The performance
of the proposed algorithm shows its stability and effectiveness from both simulations and
real data presentations. The importance of combining both ideas of robustness and di-
agnostics emerges from the data analysis. The high breakdown estimate is used to resist
the multiple outliers. The simulation study shows that it provides a very robust estima-
tion procedure when an appreciable proportion of outlying points exist in the data. The
deletion diagnostic quantity provides important information for data transformation in this
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Table 4
Hill racing data: the last five observations to enter the forward searches for five values of�, and the corresponding
score test statistics and the values of the log likelihood for transformation at each stage

� Subset size

31 32 33 34 35

Observation
−1 17 7 33 35 11
−0.5 17 7 33 35 11
0 17 7 33 35 11
0.5 6 14 19 35 11
1 11 6 19 33 7

Score statistic
−1 10.81 12.77 14.59 15.54 17.14
−0.5 7.896 10.612 12.372 12.702 14.085
0 5.002 6.045 7.201 7.282 8.217
0.5 0.8157 0.7178 0.9560 1.2656 1.7300
1 −2.234 −1.887 −1.423 −3.174 −6.240

Log likelihood
−1 86.59 82.45 80.57 79.07 78.67
−0.5 102.01 99.86 99.65 99.22 100.59
0 117.7 153.7 123.0 123.0 126.4
0.5 156.2 153.7 149.7 148.7 155.9
1 157.9 158.9 156.6 149.2 132.9

Table 5
The estimation results for hill racing data

q �̂q Deleted cases

[0.75n] 0.8558 6, 7, 14, 15, 19, 26, 29, 30, 33
[0.85n] 0.9113 6, 7, 14, 19, 30, 33
[0.90n] 0.9277 7, 14, 19, 33
[0.95n] 1.0194 7, 33

paper. Furthermore, from the simulation results, the high breakdown estimate is essentially
needed for the transformation problem when the percentage of outliers is relatively high in
the data.
Outliers are relative to models, while transformations of the response variable lead to

differentmodels.Theremaybe somedifferent aspects or solutionswhendealingwith outlier
detection and data transformations. On the other hand, as discussed by several authors,
there does not exist a method that may successfully fulfill all the concerns or criteria for
regression analysis. Several concerns related to the current work deserve further discussion.
For examples, possible extensions can cover the high breakdown estimate with a high
efficiency, or the bounded-influence estimate with a high breakdown point. Nevertheless,
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the present article intends to show a possible way forward in understanding and solving
part of these issues. Some interesting aspects are covered in the current study of the author
(seeCheng, 2004).
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