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Abstract

The problems of non-normality or functional relationships between variables may often be sim-
plified by an appropriate transformation. However, the evidence for transformations may sometimes
depend crucially on one or a few observations. Therefore, the purpose of the paper is to develop a
method that will not be influenced by potential outliers during the process of data transformations.
The concepts of the least trimmed squares estimator and the trimmed likelihood estimator are used
to obtain the robust transformation parameters. Furthermore, the proposed procedure unifies robust
statistics and a diagnostic approach to deal with the outlier problem in the regression transformation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The assumption of normality customarily provides a powerful and convenient way to
analyze alinear regression problem. The problem of non-normality may often be simplified
by an appropriate transformation, such as the parametric family of power transformations
in Box and Cox (1964)In addition, relationships between variables can be explored or
simplified by means of data transformation. However, the evidence for transformations
may sometimes depend crucially on one or a few observations. Several authors have pointed
out that data transformations are very sensitive to outliers. (For more information on data
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transformations, se®akia, 1992 The purpose of this paper is to develop a method of data
transformation that will not be influenced by potential outliers.

There are two ways to deal with outlier problems in regression analysis, diagnostic
approaches and robust estimatétesseeuw and Leroy, 198Y. 8). Diagnostic approaches
for assessing the contribution of individuals to the evidence for a transformation have been
suggested bptkinson (1985) Cook and Wang (1983andLawrance (1988)Tsai and Wu
(1990)first take into account the deletion effect of a single observation on the Jacobian
of data transformatiorKim et al. (1996)extend the Jacobian effect to multiple deletion
diagnostics on Box—Cox transformations. Some disadvantages do limit the use of multiple
deletion diagnostics, which include combinatorial problems, the size of the deleted subsets
in practice, and lack of devices to present the results for a large sample size.

In an effort to robustify the analysis of the regression transformatiamoll and Ruppert
(1985, 1988ndapt a bounded influence estimatoKofsker and Welsch (1982in which
an estimating equation is used to allow for the effect on the estimate of the transformation
parameter by the leverage poirfesurker (1988¢onsiders thé. ; estimator for the regression
transformation. However, one of the shortcomings of these estimators is that they can have
a low breakdown point. The (finite) sample breakdown point of an estimator is the smallest
proportion of observations which when altered can cause the value of the estimator to be
arbitrarily large or small. One of the desirable properties for a robust estimator is one with
a high breakdown point, which is capable of handling multiple outliers. In this article, we
are particular interested in developing a robust transformation in the use of high breakdown
estimators.

The first high breakdown estimator, the least median of squares (LMS), was proposed by
Rousseeuw (1984¥ince then, robust diagnostics has been developed to solve the problem
of outliers in a systematic wayRpusseeuw and Van Zomeren, 1998kinson (1986a)
first employs the concept of the “constructed variable” geénson (1985)for details)
and shows the effect of the deletion of observations on the score statistic for power trans-
formation. He therefore suggests a two-stage procedure to avoid the masking effect on data
transformation. The first stage is an exploratory method for the identification of outliers,
in which a robust analysis using LMS is performed on a series of values of transformation
parameters. The second stage uses multiple-deletion diagnostic methods to serve as a con-
firmatory methodFung (1993Ralso proposes a stepwise procedure using robust methods to
confirm the outliers and leverage points without considering transformation. A similar idea
is suggested ikadi and Simonoff (1993pr the identification and test of multiple outliers
for linear models.

Atkinson and Riani (2000adapt the forward search algorithétKinson, 1992 by in-
cluding the score tests for the Box—Cox transformation. By giving a fixed value of the trans-
formation parameter, they show that the forward search algorithm provides high breakdown
estimates of regression parameters and monitors the effect of individual observations on
the transformed data. LMS is used again as the criterion to assess the performance of the
search. In terms of the “forward” search, the deletion diagnostidsaf and Wu (1990)
andKim et al. (1996)can be viewed as a “backward” approach.

An alternative to LMS is the least trimmed squares (LTS) estimator, which has better
theoretical properties than the LMS. The details of LTS will be given in the later sekiath.
and Lucefio (1997propose the trimmed likelihood estimator, which is based on trimming
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the likelihood function rather than directly trimming the data. In this article, we first connect
LTS and the idea of the trimmed likelihood approach for the problem of data transformation.
The robust framework is then proposed to provide a unified approach, together with the
concepts of exploratory and confirmatory methods. A resampling procedure is implemented
for this purpose and in order to obtain a high breakdown estimate of the transformation
parameters.

The outline of this article is as follows. Section 2 shows the diagnostic approach on
Box—Cox transformation for the linear regression model. Section 3 first gives a brief de-
scription of high breakdown estimators. A robust transformation is then proposed and a
computing algorithm is also provided to obtain the result in Section 4. Section 5 carries
out a simulation study to show the performance of the resulting approach. Some real data
analyses are illustrated in Section 6. Section 7 draws some conclusions and comments.

2. Diagnostics on regression transformation

Consider the linear regression model

y=Xp+e, 1)
wherey = (y1,..., ), B = (Bo....,B,—1) denotesp x 1 regression coefficients,
X=xl,..., xl) is ann x p design matrix, an&k = (eg, ..., &,) represents the error
term. Letﬁ = (ﬁo, cees Bp_l) be any estimate of parametgrThe residuals from this es-
timate aree; (if) =y — xlTii i =1,...,n. The most popular regression estimator is the
least-squares estimate (LSE), which corresponds to

n
min > e?, )
B oiz1

wheree; =¢; (if). We often make a certain idealized assumption about the error term, syhere
is usually assumed to be independent and identically distributed with a normal distribution,
N (0, 62), for the purpose of statistical inferences. Under the assumption of normality, the
LSE is the same as the maximum likelihood estimator (MLE).

When the assumption of normality for model (1) does not efist and Cox (1964)
consider the following transformation:

yw:{(y ~1/i 2#0.

logy A=0. 3)

If the transformed observationgA) are normally distributed with meaXf(/) and
common variance2(4), for theith observation, then the log-likelihood function based
on the above transformation is

i) = X[ B(A)?
202()

1
b =0(0; yi)=— 3 log a2(4) + (4 — 1) logy;, 4

wheref = (B, a2, A). The ordinary MLE of/, 7, hence maximize3_;_1£(0, y;).
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Although MLE has good statistical properties, the estirﬁana/ery sensitive to outliers.
To identify those cases that influentgethe deletion diagnostic approach compa}emd
5»(1///) , wherei(j/) isthe MLE of/. based om —m observations after deletimgobservations.
The setofthose deletedcases is indicated hy/. This process is computationally intensive,
because the Jacobian differs for each.gétKim et al. (1996)extend the case-deletion
model approach of'sai and Wu (1990jo multiple deletion diagnostics on a Box—Cox
transformation. Il denotes the Jacobian of the transformation fsotmy(4), thenKim et
al. (1996)show that an approximation f”Q_//) of Tsai and Wu (199Q)ased on the — m
from n cases, minimizes

2(A—=1)/(n—m)
) . (5)

QD=2 —Hp)Z(2) ( N

el

wherez(2) = y(7)/JY =™ andH g = X (XL Xg) XL Here Xg = (X, E_4), andE_,
is ann x m matrix containimg a 1 in theposition of the row and column which correspond
to the set# and Q’s elsewhere. .

Kim et al. (1996)derive the one-step estimator to approximéte,, as follows. They
first define

wherez(Z)=y(%)/J*". Now letH_, be them x m submatrix oH =X (X"X) "X indexed
by .#. I\n addition,r;_ 4, rw,.«~, andry,_, indicatem x 1 subvectors of

rz=(1 — H)z(%),
rw=(1 — H)w(),
re=( — Hu(d),
respectively, and let
Spa,. = rg,v//(l - H./%/)fqu,,/h

wherep = z, w andg = z, w, u. Finally, define

Gu= |09< [ yt/)'fm)/(n —m),
iedl

wherey is the geometric mean of the’s. To assess the effect of thecases being deleted
from the data set, the closed form of the diagnostic is then defined as

(6)

-1
T T
Fwhw +rzfu — Sww,.z — Szu.v — 2G¢/1Szw,jlj|

n=~A—12G y+
) |: G.u(t3r2—Sez.0) — Sow.ur



T.-C. Cheng / Computational Statistics & Data Analysis 49 (2005) 875-891 879
3. Robust regression

In this section, we first summarize some issues about robust regression, which will be
used in the later discussion.

3.1. High breakdown estimators

The first high breakdown estimator, the least median of squares (LMS), was proposed by
Rousseeuw (1984) et

2 2 2
€),n g6(2),11 S ge(n),n @)
be the ordering of the residuad%, i=1,...,n LMSis defined by
MiN eZneg.n-

where med=[(n+ p+1)/2], and[-] indicates the integer part. However, the LMS estimator
converges at the low rate af%/2 to a non-normal distribution. Its asymptotic efficiency
approaches 0 as the sample size goes to infiRibpéseeuw and Leroy, 198ection 4.4.).

Instead of adding all the squared residuals as in (2), one can limit one’s attention to a
“trimmed” sum of squares. If only the firgtof those ordered residuals are included in the
summation, then the least trimmed squares (LTS) estimator is defined as

q
min> e%) . (8)
Boiz1

Forqg=[n/2]+[(p+1)/2], the LTS reaches the maximal possible value for the breakdown
point ([(n — p)/2] + 1)/n (Rousseeuw and Leroy, 1983. 132), which is the same as
that of the LMS estimate minimizing the “median” residaél)’n for the samey. The LTS

estimator converges to a normal distribution at the raie 6f2.

The use of LTS in the application of robust regression has become more feasible and
popular after the fast algorithm to find the LTS solution propose®bysseeuw and Van
Driessen (1999)They show that after starting any approximation to the LTS estimate, it
is possible to obtain another approximation yielding an even lower objective function (8).
They call this aC-step whereC stands for “concentration”. The resulting algorithm can
quickly obtain the LTS solution. This procedure is available in S-PLUS.

Atkinson and Cheng (199@)pply the forward search algorithm to find the LTS and also
discuss the choice of They show that one can achieve more stable results for the detection
of outliers as well as highly efficient estimates when more data are fitted, providegl that
is small enough to exclude outlying casZaman et al. (20013uggest thaf0.75:] is a
reasonable value farin most empirical studies.

3.2. Trimmed likelihood estimator

Let X be a random variable with a probability densjfyx; 0) which depends on an
unknown parametedt. Letxq, ..., x, benindependent realizations & The MLE of0 is
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the value off that maximizes the logarithm of the likelihood function
n
L(O;x1, ..., x0) = ) £(0; x), 9)
i=1

wherel(0; x;) = In f(x;; 0) is the contribution of théth observation to the log likelihood
function (9). The ML method has desirable properties. However, it depends on aggregate
statistics, and it is sensitive to outlier and/or to violations of distributional assumptions.

Hadi and Lucefio (199fropose a trimmed likelihood principle based on trimming the
likelihood function rather than directly trimming the data. They show that this trimming
likelihood principle produces many existing estimators, such as MLE, LMS, and LTS. It
is always possible to order and trim observations according to their contributions to the
likelihood function, because the likelihood is scalar-valued. For any given val@gtioé
likelihood ordering is

(0; x) 2105 x2) = -+ - Z1(0; x(n).

The method proposed byadi and Lucefio (1997 eplaces the log-likelihood function
by the trimmed log-likelihood function

b
Z wil (05 x¢iy). (10)
i =a

wherea <b, (a,b) € {1,2,...,n}, andw; >0 are weights. The estimatéia, b, w) is

obtained by maximizing (10). They refer to this method asthagimum trimmed likelihood
(MTL) method and tcﬁ(a, b, w) as the maximum trimmed likelihood estimators (MTLE).

Consider the case; =1, a<i<b.Whena=1andb =n, @(1, n) is the MLE of0, so
that MLE is a special case of MTLE. When= b = [(n + 1)/2], the resulting estimator is
referred to as the maximuAm median likelihood estimator (MMLE). Wienl andb < n
and data are Gaussian, th&A, b) is the LTS of the location parametérHadi and Lucefio
(1997) also show that the MMLE o and 62 for model (1) are the same as the LMS
estimates off anda?, respectively.

4. Robust transformations

For the robust estimation of transformation (Ggrroll and Ruppert (198 fropose an
M-type estimato# for 6, which is the solution to

> wi(yi, )si(vi, 0) =0,

i=1
wheres; () is the score function of the log-likelihood function (4) fgr andw; is a suitable
scalar function. They also extend this idea to “transform both sides” of the regression model.

This estimator is a kind of the robust bounded-influence estimatd{sasker and Welsch
(1982)
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For aninference about it is easier to work with the normalized Box—Cox transformation

_ @ =D/t i #£0,
20 = { ylogy, A=0, (11)

wherey = exp(}_log(y;/n)). The analogy of (4) for th&h observation is
(zi (1) = X] B(2))?
2052(A)

For a particular value of, the MLE of f§ is equivalent to maximizing

0 =0(0; ;)= — % loga?(A) — (12)

n A2,
L()= —5 log6“(4).

Parker (1988padapts Laplace errors for the transformation parameter, in which the log-
likelihood function becomes

n
L1(0) = —n109(20(2) — ) 1zi(A) = X] B(A)I/a(2).
i=1

However, it is known that the bounded-influence estimator is not robust from the view of
the breakdown point, and thle; estimate is not able to resist the leverage points. Some
adaptive estimators to these aspects for model (1) without consideration of transformation
have been proposed (egmpson et al., 1992; Coakley and Hettmansperger, 1993; Chave
and Thomson, 20Q3However, this direction is not covered in the scope of this paper.

Atkinson and Riani (200@dapt the forward search algorithm using LMS for the problem
of data transformation. The forward search is a powerful general method, which involves
successively augmenting the subset of data until all data are included on the fit. During the
process of dataincrement, the unidentified subsets of the data are detected and their effect on
fitted models can be evaluated. The fan plot provides a forward plot of the score test statistic
for a series of values df. It is used to present the evolution of the score statistics during the
forward process. This procedure can be viewed as a unified result of Atkinson’s previous
works @Atkinson, 1985, 1986aHowever, this approach does not provide an explicit estimate
of /.

In the following discussion, we unite the diagnostic and robust approaches to obtain the
robust estimates of transformed data.

4.1. LTS and transformation

The relationships of LTS and MTLE are discussedvbiyiler and Neykov (2003jor a
generalized linear model. In this subsection we show the LTS and MTLE solutions to the
transformation parameter.

Assume that? is the set including thosg observations with the largest values of (12)
when a particular value of is given. Therefore, the corresponding maximized trimmed
log-likelihood function of (10) for model (1) under transformation (11) is

Lo(By) = Y t(By: z0)= — 5 10985 (. (13)
ie?
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wheret(B,; z()) is theith ordering likelihood, an@, = B, (1) = B(1, ¢) denotes MTLE
of p at the value of.. The MTLE of o2 at the value of. is then

650 = et(/(q - p), (14)

ie2
where the residuals are defined as usual for the transformed data, which are
e =ei(B)=z() =X By, i=1...,n

The observations i of (14) are those cases with the smallgstsiduals, which corre-
spond to those with the largest values of likelihood for (13). Once the sehttained, the
MTLE of /4 at the value ofy, denoted bﬁq, can be computed by the MLE dfbased on
the set2. Thereforef, = (B,. 62, 4,) are the LTS estimates and also the MTLEof

The LTS or MTLE of @ is carried out by a two-stage estimation procedure, which is
similar to the solution of MLE described istkinson (1985, pp. 86—87Note that for a
given 4, the Jacobian of the transformed variables on the trimmed cases is indeperfiient of
which can be seen from (5). Therefore, maximizing (13) is equivalent to minimizing (14).

4.2. Numerical computing

For a specific value df, an approximate solution @t, can be obtained by subsampling
from the data in the following way:

e RTI Give an estimate of to transformation (11), and choose a random subsample with
scases, say = p + 1, from the transformed data.

e RT2 Apply theC-step ofRousseeuw and Van Driessen (1989dbtain a subset with
cases, which is denoted k¥

~TW -
e RT3 Apply result (6) to find the estimate af 4 3, , where2 denotes the complementary
set of 2.

) n , ATW
e RT4 Obtain the LSE of3, B, based on the set after a transformation using 3, , and
calculate the objective function (14).

Steps RT1 to RT4 denote one subsampling scheme. The subsampling scheme is repeated,
and the estimate of the transformation parameter is updated to RT1 when a lower value of
(14) is reached.

The details of the procedure are described as follows. For the first step, the initial value
of 1 is MLE of 4 from the whole data set. This value is replacedftpyn the subsequent
subsampling. The working data are the transformed data in the following stegsink
dicates the set of randomly selectedases, then we compute LS regression coefficients,
denoted b)ﬁy(iq), based or”. The ordered residuals for each observation are defined as

ey <e.s< - <em) .7 (15)
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where

ei,iq):ez'(@q,y)
=zi(lg) =X Bsr(Zg), i=1....n.
Applying theC-step procedure to the transformed data during step RT2, we can obtain a

new subset witlg observations which fulfills the necessary condition for a global minimum
of the LTS objective function. I indicates the set af cases with the smallest residuals

ATW
of (15), then the estimatg 3, is computed by using (6) at step RT3. This step intends to
obtain the estimate of the transformation parameter excluding those potential outlters in
ATW
For the last step, applying the estimag, to (11), we now work on the new transformed

A ATW
data set. The estimated LS regression coeffighertt. 3, ) is attained based on the set
Therefore, the corresponding result (14) is computed by

ATW ATW \2
s200) =Y (e1Ciz)) /@ = p, (16)
ieQ

~TW ATW A ATW .

wheree; (45)) =2zi (43 ) — X{ B2(43)), andi € 2. )

Once the smaller value of the objective function (16) is attaingt replaced by the new

~TW

estimatel 5, for the new selected subsamp#e of step RT1. Steps RT2 to RT4 are then

repeated, anﬁiq is updated once a smaller value of (16) is reached. The resampling scheme
yields a series of values of (16), with the value defining the performance of the chosen
subset. Therefore, step RT2 is used to identify the possible outliers under transformation,
and RT3 gives the refined estimate of the transformation parameters.

Note that results (15) are used to carry out@step and achieve the deletion subset for

. . ~TW . .
computing the estimaté 3, . The minimum value of (14) from all chosen subsets indicates

the approximate solution of the LT@E,. When the sample size is not large, an exhaustive
search is used; otherwise, several subsets are randomly drawn. Finally, for a general, but
specifiedq, the criterion for the trimmed likelihood estimates in this resampling procedure

is the same as (16) as we discussed in the previous subsection.

5. Simulation study

To see the capability of the proposed procedure in the previous section, we conduct a
simulation for model (1). The data are generated in a similar manner to that of the famous
Rousseeuw’s datdRpusseeuw, 1984For “good” data, each regressolﬁ, is generated

from the uniform distributiortU (0, 6) and the corresponding error tem;’niE N (0, 0.04%),
whereas “bad” data points are generated in the following form:

i) o 4 0.5 0
(XiT) MN<<(14+p)J)’<o o.5|,,1))’

whereJ is a unit vector with dimensiotp — 1).
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Table 1
The simulation results fop = 3
Sample sizen Proportion of outliers (%) A
-1 -0.5 0 0.5
50 5 —0.9777 —0.4896 —0.0005 0.4881
(0.0267) (0.0155) (0.0230) (0.0193)
10 —-0.9771 —0.4870 —0.0040 0.4840
(0.0419) (0.0194) (0.0256) (0.0214)
15 —0.9558 —0.4777 —0.0068 0.4759
(0.0588) (0.0245) (0.0406) (0.0311)
20 —0.9415 —0.4714 —0.0155 0.4589
(0.0696) (0.0315) (0.0521) (0.0368)
100 5 —0.9816 —0.4898 —0.0027 0.4904
(0.0195) (0.0109) (0.0329) (0.0125)
10 —-0.9771 —0.4893 —0.0067 0.4818
(0.0222) (0.0146) (0.0513) (0.0134)
15 —0.9746 —0.4825 —0.0049 0.4799
(0.0284) (0.0197) (0.0645) (0.0194)
20 —0.9617 —0.4765 —0.0078 0.4700
(0.0432) (0.0267) (0.0060) (0.0285)

The simulation design considers the effects of dimensions of the data, sample size, and
proportion of outliers in data. The dimensiopsare 3 and 5. Two sample sizes are consid-
ered,n =50 and 100. Five percent, 10%, 15%, or 20% of the observations are outlying in
each simulated data set. All regression coefficients are assigned a value of 1. Once the data
have been generated, a transformation parameter is given to the response variable, for which
the inverse of the Box—Cox transformation (3) is applied 't + €. Here, we consider the
values of/ to be—1, —0.5, 0, and 0.5.

To compare the performance of the robust procedure, 200 data sets are generated to
implement the resampling algorithm, in which 100 subsampling schemes for each data set
are carried out to obtain the optimum. The default valug isfset to bg0.75:], whereas
g = [0.7n] is used when the outlier proportion is 20%ables land2 show the mean and
standard deviation (in the parentheses) of the robust estimategah 200 replications
for dimensions 3 and 5, respectively.

From these simulation results, we have the following findings. As the proportion of
outliers increases, the estimatesisfturn away from the true parameters, and the standard
deviations of the estimates become inflated when the sample size and dimension are the
same. While under the same dimension, the larger the sample size is, the smaller the value
will be of the standard deviation. The dimension plays an important role in the behaviors
of the robust estimators as well as in our study. Wipea 5 andn = 50, the values of
some cells inTable 2(e.g. 10% outliers) are not as consistent as thoJalre 1in terms
of the proportion of outliers and sample size. The ratio of the sample size and dimension
becomes a very important factor when the proportion of outliers is relatively high, e.g.
the cell of 20% of the outliers. However, this problem can be alleviated and improved if
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Table 2
The simulation results fop =5
Sample sizen Proportion of outliers (%) A
-1 -0.5 0 0.5
50 5 —0.9866 —0.4933 —0.0016 0.4926
(0.0246) (0.0117) (0.0219) (0.0161)
10 —0.9832 —0.4930 —0.0013 0.4912
(0.0357) (0.0443) (0.0395) (0.0758)
15 —0.9401 —0.4774 —0.0058 0.4669
(0.0764) (0.0283) (0.0282) (0.0914)
20 —0.8927 —0.4729 —0.0772 0.4420
(0.1028) (0.0359) (0.0720) (0.0629)
100 5 —0.9922 —0.4959 —0.0026 0.4958
(0.0162) (0.0071) (0.0264) (0.0084)
10 —0.9786 —0.4908 0.0004 0.4871
(0.0249) (0.0119) (0.0433) (0.0143)
15 —0.9572 —0.4813 —0.0056 0.4738
(0.0474) (0.0196) (0.0184) (0.0741)
20 —0.9146 —0.4690 —0.0615 0.4506
(0.0661) (0.0245) (0.0672) (0.0489)

more subsamples are drawn. These results are quite similar to common conclusions in the
literature of robustness, in which the dimension, sample size, and proportion of outliers
in the data are the main factors on the influence of performance of robust estimators. The
number of subsamples is an issue, which is more related to computation rather than the
data.

Another effect for the LTS and MTLE is the choice @fAtkinson and Cheng (1999)
conclude that the higher the valueais, the higher the efficiency of LTS will be, and the
more stable the identification of outliers is, provided that the valugi®hot large enough
to include the existing outliers. A similar result can be expected in the robust estimates of
transformation parameters. Moreover, smaller valugsmdy be needed for some simulated
data. For instance, we compd@65:] and[0.7r] for the values ofj when 20% of the
outliers exit in the data with =50 andp = 5. The range of the 200 estimatesia$ smaller
for ¢ = [0.65] than that ofy = [0.71]. Forg = [0.65¢], it also produces closer estimates
to the true parameter and a smaller value of standard deviation of the estimates. The mean
(standard deviation) of the 200 estimates.@ire —0.8927 (0.1028) as reported Table 2
for ¢ =[0.7n], whereas the result is improved to £6.9246 (0.0834) foyy =[0.651]. The
smaller value ofj provides a higher breakdown to prevent a relatively higher proportion of
outliers when keeping other conditions the same.

Tables 1and2 are used to compare how some factors influence the performance of the
proposed procedure. The refined output of the simulation can be obtained if more subsamples
are used to find the optima, and/or different valuesj.dilevertheless, the conclusion of
Atkinson and Cheng (19993 still valid whereby the larger values gfcan yield higher
efficient estimates and the stability of identification of outliers. In the test of the simulation
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design, however, we experience that the choice of the valgesamaller than the expected
one for the transformation problem, especially when the proportion of outliers is relatively
high and the ratio of the sample size and dimension is small.

6. Examples
6.1. Stack loss data

The stack loss data are “famous” in the literature of robust estimation and detection of
outliers (sedtkinson, 1985p. 129;Rousseeuw and Leroy, 198Y. 76). There are 21 cases
and 3 explanatory variables in the data, so ghat4, and it is well known that observations
1, 3, 4, and 21 are extreme outliers and observation 2 is a mild outlier. The data are also
used to illustrate the processes of the forward search algorithm based on LMS and LTS
in Atkinson (1994)andAtkinson and Cheng (1999espectivelyDodge (1996}races the
history of this data set to document the instances in which it has been used as an example
of statistical methodology.

These data are also presented in transformation problems by several authors. The MLE
of 4 is 0.30 for the first-order model, and= 0.48 when case 21 is excluded. The results of
other models, e.g. the second-order model, refer to thatkifison (1985, pp. 129-136)

The robust analysis d€arroll and Ruppert (1985uggests that = 0.5 is reasonable.

No outlier is revealed if the robust transformation parameter 0.42 is consideRatkar

(1988) Atkinson and Riani (2000, Section 4.8int out that the log transformation is not
acceptable when observations 4 and 21 are deleted, but it is acceptable when all observations
are included. Their fan plot of the score statistics showstka0.5 is supported by all the

data.

The proposed robust method is applied to the first-order model for these data. To check
the stability of the algorithm, 500 resampling schemes are used to show the performance,
in which 100 subsamplings of sample size 5 are randomly drawn to obtain the optimum
for each resampling scheme. Whge- [0.651] and[0.8r], all 500 resampling procedures
yield the same estimatéq = 0.4681 and 0.4943, respectively. This is quite similar to the
previous studies. If 75% of data are used for the LTS criterion, then there are two solutions
in 500 subsampling schemé@, = 0.9264 for six times an@lq = 0.4989 for all others.

The author at first thought that the randomness of the resampling procedure and/or the
number of subsamples cause the problem of a local optimum wkef0.752]. However,
when 1000 subsets are randomly selected, the same two solutions are obtained again in 500
resamplings. In 16 resampling schenf@go.9264, and the other 484 solutions Ieaéll;e:

0.4989; the corresponding deleted cases{&r8, 4, 13, 20, 21} and{2, 4, 13, 14, 20, 21},
respectively. In fact, we can see that the two solutions are not accidenﬁ@l,:a@.9264
implies that no transformation is required. The set of deleted cases includes those outliers
identified when raw data are used. This may also partly explain the accuracy problem of the

ATW
A diagnostic inKim et al. (1996) We conclude that both these solutions are reasonable
in terms of robustness and diagnostics whea[0.75:] is used for LTS. Nevertheless, the
log transformation is more acceptable for this data set.
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Table 3

The estimation results for tree data

q iq Times in 500 samplings Deleted cases

[0.651] 0.1553 1 11, 14, 15, 16, 17, 18, 21, 23, 29, 30, 31
0.3264 499 11, 14, 15, 16, 17, 18, 21, 23, 26, 27, 28

[0.751] 0.2705 500 9,11, 17, 21, 23, 26, 27, 28

[0.851] 0.3582 476 15, 16, 18, 23, 26
0.2115 24 15, 18, 29, 30, 31

[0.951] 0.3472 500 15,18

6.2. Minitab tree data

The Minitab tree data set is used by several authors to illustrate the problems of a re-
gression transformation and a transform-both-sides model. This is a set of measurements
on the volume, girth, and height of 31 black cherry tref&kinson (1985, pp. 124-129)
compares some candidate models to provide a means of predicting the volume of timber in
unfelled trees. He concludes that a formula based solely on girth would be preferred. If the
first-order regression model is considered, which includes the response variable, volume,
and two explanatory variables, girth and height, then the score statistic suggests strong ev-
idence of a transformation on the response variable/aad.3066.Tsai and Wu (1990)
conclude that the cube root transformation (the quick estima@&ook and Wang (1983)
for 1is 0.2931) to the dependent variable with the weighted regression model provides a
reasonable explanation of the data.

When 500 resampling schemes are used to show the proposed algoréhla, 3
summarizes the results produced by using 65%, 75%, 85%, and 95% of the data for the LTS
criteria. If 65% of data are used for LTS, then there are two solutions resulting in 500 resam-
plings. One leads tﬁJq =0.1553, and all others obtaftgl =0.3264. Whery =[0.75:] and

[0.951], all 500 resampling procedures yield the same estim%,;es,O.Z?OS and 0.3472,
respectively. This result shows that the cube root transformation is reasonable in physical
consideration.

The different estimated values s#fwhen different proportions of data are used for LTS
may be due to the heteroscedastic error structure in the Gsgagdnd Wu, 1990 We do
not explore this issue further in this article.

6.3. Hill racing data

As first studied byAtkinson (1986b) this data set includes the record times for 35 hill
races, together with the distances in miles and the climbs in feet. Without any transformation,
Atkinson (1988khows that cases 7, 11, 33, and 35 have largest positive residuals, in which
the record time for observation 18 has been corrected. Given the initial values: 6f
0.5, and 1, which appear in the null hypothesis when applying the score statistics, the quick
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Fig. 1. Hill racing data: fan plot of the score statistics for five values tf the forward search algorithm.

estimates of. vary from 0.67 to 1.10 if no case, case 7, and cases 7 and 33 are deleted from
the data. Furthermore, he concludes that these data do not require a transformation based
on the score test, and that cases 7 and 33 are outliers.

Applying the forward search procedure Afkinson and Riani (2000jo these data,
Fig. 1shows the fan plot of the score test statisTig(4), for A= -1, —0.5,0, 0.5, and 1.
Table 4presents the last five observations to enter the forward searches and the corresponding
score test statistics and the values of the log likelihood for transformation at each stage.
The transformations 0;0.5, and 0 are clearly not acceptable. The most important feature
is thatA = 0.5 is the only transformation for which the score statistic remains within the
boundary through the search. Moreover, observation 7 is no longer an outlier for the square
root transformation on these data. However, the largest value of the log likelihood is 158.9,
which occurs at no transformation required and cases 7, 19, and 33 are excluded from the
data.

Again, 500 resampling schemes are uskble 5shows the estimates af and the
observations being excluded from the data when different valugsacé considered. All
500 resamplings yield the same result for egclive can see that the results are close to
those ofAtkinson (1988)

7. Conclusions

In this paper, we have combined robust and diagnostic approaches to deal with the prob-
lem of data transformations. This combination provides a resampling procedure which
unites both a high breakdown estimate and a deletion diagnostic quantity. The performance
of the proposed algorithm shows its stability and effectiveness from both simulations and
real data presentations. The importance of combining both ideas of robustness and di-
agnostics emerges from the data analysis. The high breakdown estimate is used to resist
the multiple outliers. The simulation study shows that it provides a very robust estima-
tion procedure when an appreciable proportion of outlying points exist in the data. The
deletion diagnostic quantity provides important information for data transformation in this
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Hill racing data: the last five observations to enter the forward searches for five valuemofthe corresponding

score test statistics and the values of the log likelihood for transformation at each stage

A Subset size
31 32 33 34 35
Observation
-1 17 7 33 35 11
-0.5 17 7 33 35 11
0 17 7 33 35 11
0.5 6 14 19 35 11
1 11 6 19 33 7
Score statistic
-1 10.81 12.77 14.59 15.54 17.14
-0.5 7.896 10.612 12.372 12.702 14.085
0 5.002 6.045 7.201 7.282 8.217
0.5 0.8157 0.7178 0.9560 1.2656 1.7300
1 —2.234 —1.887 —1.423 -3.174 —6.240
Log likelihood
-1 86.59 82.45 80.57 79.07 78.67
-0.5 102.01 99.86 99.65 99.22 100.59
0 117.7 153.7 123.0 123.0 126.4
0.5 156.2 153.7 149.7 148.7 155.9
1 157.9 158.9 156.6 149.2 132.9
Table 5

The estimation results for hill racing data

q g Deleted cases

[0.751] 0.8558 6,7,14,15, 19, 26, 29, 30, 33
[0.85n] 0.9113 6,7,14,19, 30, 33

[0.901] 0.9277 7,14,19, 33

[0.951] 1.0194 7,33

paper. Furthermore, from the simulation results, the high breakdown estimate is essentially
needed for the transformation problem when the percentage of outliers is relatively high in
the data.

Outliers are relative to models, while transformations of the response variable lead to
different models. There may be some different aspects or solutions when dealing with outlier
detection and data transformations. On the other hand, as discussed by several authors,
there does not exist a method that may successfully fulfill all the concerns or criteria for
regression analysis. Several concerns related to the current work deserve further discussion.
For examples, possible extensions can cover the high breakdown estimate with a high
efficiency, or the bounded-influence estimate with a high breakdown point. Nevertheless,
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the present article intends to show a possible way forward in understanding and solving
part of these issues. Some interesting aspects are covered in the current study of the author
(seeCheng, 20041
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