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a b s t r a c t

In this study, we propose cause selecting control charts to monitor two dependent process stages with
attributes data. The control limits on the bivariate binomial control region can be obtained. The detection
ability of the cause selecting control charts is compared to those of Shewhart attributes control charts and
the bivariate binomial control region by different correlation. Numerical example and simulation study
show that the cause selecting control charts perform better than Shewhart attributes control charts
and the bivariate binomial control region.
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1. Introduction

Most of the products are produced by several different process
steps these days. If the process steps are independent then using a
Shewhart control chart to monitor each individual step is meaning-
ful. However if many process steps were dependent then the Shew-
hart charts are difficult to interpret the process state correctly. The
multivariate control charts have become a popular topic in quality
control. Lowery and Montgomery (1995) reviewed Hotelling mul-
tivariate control chart, multivariate cumulative sum (MCUSUM)
control procedure, and multivariate exponentially weighted mov-
ing average (MEWMA) control chart. But, little research has been
done on multi-attribute processes.

Let variable Xj be the number of defects or nonconformities with
respect to quality characteristic j, j = 1,2, . . . ,n, and p = (p1,p2, . . . ,pn)
be the vector of fraction nonconformities. However Xj’s are corre-
lated. Hence, control chart for multivariate-attribute processes
should be used. Patel (1973) proposed a Hotelling-type v2 chart
to monitor the time-dependent observations from multinomial or
multivariate Poisson populations. Because of its complexity, the
scheme was not widely used in practice. Lu, Xie, Goh, and Lai
(1998) established a multivariate np control chart to deal with
the multivariate-attribute processes. The weighted sum of noncon-
forming counts of each quality characteristic was defined as X sta-
tistic. Control limits of the Shewhart-type charts were derived using
X. The drawbacks of this work were the normality assumption and
the lack of discussion on the average run length. Niaki (2006) em-
ployed the concept of simultaneous confidence intervals to derive
control limits for several correlated quality characteristics in a
010 Published by Elsevier Ltd. All r

+886 29398024.
multi-attribute data. He took advantage of the bootstrap method
in designing the control charts, compare its performance to other
method. Niaki and Abbasi (2007) first proposed a new transforma-
tion technique to reduce the amount of skewness of distribution of
the attributes data and then use a Hotelling T2 control chart on the
transformed data. Mukhopadhyay (2008) expanded the concept of
‘Mahalanobis Distance’ in a multinomial distribution and thereby
proposed a multivariate-attribute control chart. A drawback of this
work is that when there was an out-of-control signal, it is often dif-
ficult to determine which component of the process was out of
control.

In this study, we propose cause selecting control charts to mon-
itor two dependent process stages with attributes data. The cause
selecting control chart is similar to the regression control chart by
Mandel (1969) in that a control chart is constructed for a variable
only after the observations have been adjusted for the effect of
some other random variables. Cause selecting control chart was
first introduced by Zhang (1984). In the past ten years, many works
have been done on this. Wade and Woodall (1993) gave excellent
review on the cause selecting control chart, and discussed its rela-
tionship to the Hotelling T2 control chart. In their opinion, the
cause selecting chart outperformed Hotelling T2 chart.

Let X be the quality variable in the first stage, and Y the quality
variable in the second stage. Since the two stages are dependent, Y
is influenced by X. To monitor the variation of X, attributes control
chart for X should be constructed. However, we cannot construct
attributes control chart for Y to monitor the second stage since
the out-of-control attributes control chart for Y may be influenced
by the out-of-control first stage. The correct approach is to adjust
the effect of X on Y, and the simple cause selecting control chart
is thus constructed to control the specific quality on the second
stage.
ights reserved.
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Let X be the number of nonconforming units of a specific part of
product, Y the number of nonconforming units of the product and
q is the correlation coefficient. A random sample of n units of a
product is selected. The interested quality characteristics (X,Y) is
assumed to follow a bivariate binomial distribution BB(n,px,py,q),
where px, py are the fraction nonconforming of X and Y, respec-
tively. The control limits of the bivariate binomial control region
(BB control region) are found using the exact distribution. When
any sample point lies outside the control region, we deem the
entire process is out-of-control. Otherwise it is in-control. The
drawback of the bivariate binomial control region is that it might
indicate the entire process is out-of-control, but does not show
which process part is out-of-control.

In Section 2, process description for attribute is illustrated. In
Section 3, a bivariate binomial control region is constructed for dif-
ferent px, py, n and q. The effect of px and py on control region is ex-
plained. In Section 4, numerical example for Shewhart npx–npy

chart, cause selecting npx–e chart, and BB control region is pre-
sented and the detection ability for different method is compared.
In Section 5, the ARL computation is carried out. In Section 6, con-
cluding remarks are provided.

The detection ability of the cause selecting control charts is
compared to those of Shewart attributes control charts and the
bivariate binomial control region by considering three levels of
correlation between X and Y – low, medium and high. Numerical
example and simulation data showed that the cause selecting con-
trol charts performed better than Shewhart attributes control
charts and the bivariate binomial control region. The cause select-
ing control charts are thus recommended to monitor the depen-
dent process stages with attributes data.

2. Process description for attributes data

X is the input quality variable and Y is the outgoing quality var-
iable. Here we assume that the paired data can only be collected at
the end of the second stage. A random sample of n units of a prod-
uct is taken. Biswas and Huang (2002) gave the joint p.d.f of X and Y
as follows:

pðX ¼ x;Y ¼ yÞ ¼
n

x

� �
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Fig. 1 shows the two-stage process.
The distribution of the bivariate quality characteristic (X,Y) is

not symmetric. To solve the asymmetric problem, Freeman and
Tukey (1950) proposed a better arcsin approach of normalized
transformation.

Since the two stages are dependent, i.e. the second stage is
influenced by the first stage, the relation of Y and X may be ex-
pressed by the arcsin transformed model, (Y*jX*) = f (x*) + e, where
Y should be no less than X, Y* = Y/n, X* = X/n, and e is a random er-
ror, e � N(0,r2). In order to exclude the effect from the first stage
while monitoring the second stage, we let

e ¼ arcsinðY�jX�Þ � arĉ sinðY�jX�Þ � Nð0;r2Þ

where arĉ sinðY�jX�Þ is fitted value of arcsin (Y*jX*). To control the
two dependent process stages effectively, the Shewhart npx chart
and e chart (cause selecting control charts) are used. When both
stages are in-control

X � binðn;pXÞ; e � Nð0;r2Þ

We constructed the npx chart and e chart as follows:

UCLX ¼ npX þ kX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npXð1� pXÞ

p
CLX ¼ npX ð1Þ
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p
UCLe ¼ ker
CLe ¼ 0 ð2Þ
LCLe ¼ �ker

This is to say, we use npx chart to monitor the first stage, and e chart
to monitor the second stage. When px and r are unknown, they are
estimated from the sample.

3. Determination of the bivariate binomial control region

(X,Y) follows a bivariate binomial distribution BB(n,pX,pY,q).
The control limits can be calculated by using the exact probability
distribution. That is

pððX;YÞP UCLBÞ 6 a; where ðX;YÞ � BBðn;pX ;pY ;qÞ

this implies
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When n, pX, pY, q, a are given, the bivariate binomial control re-
gion,the triangular and upper control limit (UCLB) can be con-
structed as shown in Fig. 2

When the BB control region is determined, we can plot statistics
(X,Y) on the BB control region and monitor the process.

3.1. Numerical example

Table 1 lists critical points on the Upper Control Limit (UCLB) for
three different combinations of px, py, q = 0.1–0.9, n = 100 and
a = 0.0027.

Fig. 3 shows the BB control region for three different combina-
tions of px, py, q, n = 50 and a = 0.0027.

Table 2 shows critical points on the Upper Control Limit (UCLB)
for three different combinations of px, py, q = 0.1–0.9, n = 100 and
a = 0.0027.



Fig. 1. Two-stage process for attribute data.

Fig. 2. BB control region for n = 25, px = 0.01, py = 0.01, q = 0.1, a = 0.0027, where A:
acceptance region, R: rejection region.

Table 1
Critical points on the UCLB for n = 50, px, py, a = 0.0027, q = 0.1–0.9.

(px,py) (0.01,0.03) (0.01,

Critical points {(3,6), (3,7) � � �(3,50), (4,6), (5,6), (6,6)} {(3,8)

Fig. 3. BB control regions for (n = 50, px = 0.01, 0.03, py = 0.03, 0.05, q = 0.5,
a = 0.0027) and A: acceptance region, R: rejection region.
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Fig. 4 shows the BB control region for three different combina-
tions of px, py, n = 50, q = 0.5 and a = 0.0027

3.2. The effect of px and py on BB control region

From above, we found that the area of accepted region would
increase toward right-side and the area of the rejection region
would shrink gradually while px is increasing at q = 0.1–0.9. When
py is increased, the area of rejection region would decrease upward
and the area of the acceptance region would expand gradually.
3.3. Relationship to the cause selecting chart

The control limit of BB control region is obtained by the 1-a
quantile of the bivariate binomial distribution with a false rate of
a. Figs. 2–4 show the typical control region. When a sample point
falls in R it gives an out-of-control signal of the process, however it
does not tell us which step of the process is out-of-control. The
advantage of the cause selecting chart over the BB control region
is that it is easier to identify which stage is out-of-control.
4. Numerical example

The paint defect data in Table 3 is taken from Mukhopadhyay
(2008) but the sample size is changed to 100. This example deals
with the fraction defective of two types of paint defects of a ceiling
fan cover. Let X be the number of patty defect, and Y be the number
of poor covering. The correlation coefficient of X and Y is 0.553, and
Y is influenced by X.

Scatter plot indicates that the relationship of arĉ sinðY�jX�Þ and
X� is linear. Using the least square error method to find their rela-
tionship, the regression model is

arĉ sinðY�jX�Þ ¼ 0:0643þ 0:874X�

The residual is

e ¼ arcsinðY�jX�Þ � ð0:0643þ 0:874X�Þ

The in-control distribution of e is N(0, (0.002)2)
To compare the performance among (npx and e charts), BB con-

trol region and (Shewhart npx and npy charts), let the identical false
alarm rate be 0.0054 and we plot the data on Figs. 5–7.

Fig. 5 shows an out-of-control point (the sample 20) on npx

chart and an out-of-control point (the sample 10) on e chart.
Fig. 6 shows that all (X,Y)’s are inside the BB control region.
Fig. 7 shows an out-of-control point (the sample 20) on npx

chart, but none on npy chart.
The detection results of the 3-typed control charts show that

using npx–e chart outperforms others.
0.05) (0.03,0.05)

, (3,9) � � � (3,50), (4,8), (5,8) � � �(8,8)} {(6,8), (6,9) � � � (6,50), (7,8), (8,8)}



Table 2
Critical points on the UCLB for n = 100, px, py, a = 0.0027, q = 0.1–0.9.

(px,py) (0.01,0.03) (0.01,0.05) (0.03,0.05)

Critical
points

{(5,9), (5,10) � � �(5,100), (6,9), (7,9), (8,9), (9,9)} {(5,12), (5,13) � � � (5,100), (6,12), (7,12) � � �(12,12)} {(9,12), (9,13) � � � (9,100), (10,12), (11,12) � � �(12,12)}

Fig. 4. BB control region for (n = 100, px = 0.01, 0.03, py = 0.03, 0.05,
q = 0.5,a = 0.0027).

Table 3
Paint defect data and monitoring results of the 3-typed charts.

Sample number n X Y npx–e chart BB control
region

npx–npy chart

1 100 1 9 in in in in in
2 100 3 8 in in in in in
3 100 3 10 in in in in in
4 100 3 7 in in in in in
5 100 1 3 in in in in in
6 100 1 6 in in in in in
7 100 2 7 in in in in in
8 100 4 8 in in in in in
9 100 3 8 in in in in in

10 100 3 14 in out in in in
11 100 2 15 in in in in in
12 100 1 5 in in in in in
13 100 3 8 in in in in in
14 100 2 11 in in in in in
15 100 2 7 in in in in in
16 100 2 6 in in in in in
17 100 5 10 in in in in in
18 100 1 7 in in in in in
19 100 2 8 in in in in in
20 100 10 15 out in in out in
21 100 3 10 in in in in in
22 100 2 10 in in in in in
23 100 3 8 in In in in in
24 100 2 10 in in in
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5. The ARL computation and comparison

The average run length (ARL) provides a measure of the sensi-
tivity of the control chart. With the assumption of the process in
control, the in-control ARL (ARL0) for a control chart is the average
number of samples before a signal is given. The out-of-control ARL
(ARL1) is the average number of samples that must be taken to de-
tect the fraction nonconforming shift when the process is out of
control. In this section, we compute ARL1 for npx–e chart, BB control
region, Shewhart npx–npy chart and compare their detection
ability.

For the npx–e chart, the ARL1 ¼ 1
1�b1

, b1 is calculated from,

b1 ¼ P LCLx < X < UCLx; LCLe < e < UCLejðn;px1; py1;qÞ
� �

where UCLx, LCLx, UCLe and LCLe are in (1) and (2), px1 and py1 are
out-of-control nonconforming rates.

For the BB control region, the ARL1 ¼ 1
1�b2

. b2 is calculated from

b2 ¼ P ðX;YÞ < UCLBjðn;px1; py1;qÞ
� �

where UCLB see (3)
For the Shewhart npx–npy chart, the ARL1 ¼ 1

1�b3
, b3 is computed

from

b3 ¼ P LCLx < X < UCLx; LCLy < Y < UCLyjðn; px1; py1;qÞ
� �

where LCLy ¼ npy � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npyð1� pyÞ

q
and UCLy ¼ npy þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npyð1� pyÞ

q
.

To compare their detection ability, the ARL1 for various combi-
nations of q, px1 and py1 are calculated. We adopt n = 100,
q = 0.1(0.2)0.9, px = (0.001:0.1), py = 0.0011, py1 = (0.0015:0.30),
and 50,000 data sets are generated.

The ARL1 for npx–e chart, BB control region and npx–npy chart are
listed in Table 4.

We found that regardless of the value of q is, ARL1 of npx–e chart
is always smaller than that of npx–npy chart and BB control region.
The ARL1 of BB control region is always smaller than that of npx–npy

chart for small shift of py and small values of q(0.1 6 q 6 0.5) and
larger for large values of q(0.5 6 q 6 0.9). The information demon-
strates that the npx–e chart detects shift in px and py faster than BB
control region and npx–npy chart.
6. Conclusion

In this paper, we proposed a cause selecting control chart (npx–e
chart) to monitor dependent process stages with attributes data.
The numerical example shows that the cause selecting control
charts provide more information on the current process than the
npx–npy chart and BB control region.

From the ARL1 of npx–e chart, BB control region and Shewhart
npx–npy chart, the detection ability of npx–e chart performs better
than the other method for most cases regardless of the value of q.

When the correlation coefficient between Y and X, q, shifts from
small to high, the detection ability of npx–e chart performs better
than Shewhart npx–npy chart and BB control region except
px = 0.01. For small shift of py, The BB control region always has
smaller ARL1 than that of npx–npy chart when q is small
(0.1 6 q 6 0.5).

An advantage of the cause selecting chart over the BB control
region is that it is easier to determine which process is out-of-con-
trol. The BB control region may indicate the process is out-of-con-
trol but it does not identify which step is out-of-control.

If we misused the Shewhart npx–npy chart or BB control region
to control the second step, it might generate a false alarm. Hence
the cause selecting control charts are thus recommended to mon-
itor the process stages with attributes data.



Fig. 5. Monitoring results of npx and e charts.

Fig. 6. Monitoring results of BB control region.

Fig. 7. Monitoring results of Shewhart npx–npy chart.

Table 4
ARL1 for npx–e chart, BB control region and Shewhart npx–npy chart.

q px py1 npx–e
chart

BB control
region

Shewhart npx–npy

chart

0.1 0.001 0.0015 4.69 13.16 68.03
0.0030 3.04 14.86 24.33

0.01 0.015 12.55 4.19 12.28
0.030 2.77 11.82 2.74

0.1 0.15 9.46 9.28 9.23
0.30 1.01 100 1.01

0.3 0.001 0.0015 9.48 16.78 68.03
0.002 3.91 18.08 45.66

0.01 0.015 12.48 12.25 12.29
0.020 6.56 40.82 6.38

0.1 0.15 9.0 12.25 9.23
0.18 4.18 40.82 2.93

0.5 0.001 0.0015 4.59 24.10 85.48
0.0030 3.31 33.78 24.27

0.01 0.015 12.38 6.36 12.29
0.030 5.06 33.67 2.74

0.1 0.15 4.73 17.45 9.23
0.30 1.01 100 1.01

0.7 0.001 0.0015 4.52 46.51 68.03
0.0030 8.97 71.43 45.66

0.01 0.015 17.54 12.77 12.29
0.030 16.40 69.44 6.38

0.1 0.15 9.26 50.76 9.23
0.30 1.85 100 2.93

0.9 0.001 0.0015 5.21 91.74 98.04
0.0030 6.52 129.87 89.29

0.01 0.011 39.06 16.37 23.31
0.012 44.25 35.71 19.76

0.1 0.105 93.46 4.61 181.82
0.12 25.84 80 59.88
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