Inf Syst Front (2012) 14:1019-1032
DOI 10.1007/s10796-011-9314-0

Applying ontology-based blog to detect information system
post-development change requests conflicts

Chi-Lun Liu - Heng-Li Yang

Published online: 16 July 2011
© Springer Science+Business Media, LLC 2011

Abstract Post-development change requests are user
requirements for information systems changes after devel-
opment. Conflicts might occur as contradictive or inconsis-
tent relationships between requests and existing system
design. Detecting conflicts in post-developmenet change
requests is an important task during requests management
processes. To address this topic, this article proposes an
ontology-based blog for automatically discovering conflicts
in the extended use-case models of requests from users.
This study proposed an information system maintenance
process. The proposed approach applies ontologies to
represent domain knowledge. A set of rules are used to
detect conflicts. This study developed a prototype and
invited two companies to evaluate it. Usage feedback
opinions about ontology-based blog from two companies
indicated the usefulness. The ontology-based blog is a
relatively new approach which bridge requirements blogs
with a formal and machine interpretable representational
model. The automatic conflicts detection capability of the
ontology-based blog can reduce the labor cost in require-
ments analysis phase.

C.-L. Liu

Department of Information and Electronic Commerce,
Kainan University,

1, Kainan Road,

Luzhu Shiang, Taoyuan County, 338, Taiwan

e-mail: tonyliu@mail knu.edu.tw

H.-L. Yang (D<)

Department of Management Information Systems,
National Cheng-Chi University,

64, Section 2, Chihnan Road, Mucha Dist., 116,
Taipei, Taiwan

e-mail: yanh@nccu.edu.tw

Keywords Information system maintenance
Ontology-based blog - Requirements conflict detection -
Ontologies

1 Introduction

Managing user requirements can be a complex and difficult
task (Robinson and Pawlowski 1999). Understanding what
the information system is supposed to do is necessary
before not only developing new systems but also maintain-
ing existent systems (Sommerville 2005; Kang and Chiang
2006). User requirements for system maintenance are called
post-development change requests. Unlike new system
requirements can be collected during a comparative short
period, post-development change requests usually come
randomly and respectively during a long period after
system deployment. Information systems department
should review the request content, prioritize its sequence
in a queue, and estimate its cost formally (Abran and
Nguyenkim 1993; April et al. 2005).

Use-case approach has rapidly emerged as a standard for
representing user requirements (Madallli and Suman 2008;
Dobing and Parsons 2000; Fatolahi and Shams 2006). A
typical large and complicated system would have a lot of use
cases. On the other hand, requirements inconsistency is a
major problem in requirements engineering phase (Paulo et al.
2007). Conflicting requirements cannot be designed and
implemented by information systems departments. Stake-
holders should provide their opinions in the conflict resolution
process (Gervasi and Zowghi 2005). Hence, detecting use-
case conflicts between a post-development change request and
the overall existing systems is important in request manage-
ment process. But conflict detection might be a time-
consuming and costly task when use cases are numerous.

@ Springer

1020

Inf Syst Front (2012) 14:1019-1032

Modeling use cases involves domain knowledge. Ontol-
ogies are shared conceptualization for expressing explicit
knowledge (Gruninger and Lee 2002). Ontologies also
include a representation vocabulary that describes concepts
and relationships between concepts, e.g., kind relationship
and composition relationship (Chandrasekaran et al. 1999).
Ontologies can be used to represent software design
specification (Eden 2002). Applying ontologies as domain
knowledge can be beneficial because semantic processing
of user requirements by computer is possible (Kaiya and
Saeki 2000).

This study uses extended use cases to handle functional and
nonfunctional requirements. For example, a functional re-
quirement about data storage is “bill payment can store credit
card number”. A nonfunctional requirement example about
security is “unregistered user cannot use purchase function”.

This study proposes an ontology-based blog to detect the
conflicts of extended use-case models between requests and
existing system. Blog is a widespread communication tool
nowadays. The ontology-based blog includes a set of
ontologies and rules. The terms in ontologies can be used
to constitute an extended use-case model for representing a
post-development change request. The proposed rules can
detect contradictions according to the semantic relations
between request and existing system concepts. The rules
may be triggered when a stakeholder use ontology-based
blog to submit a new function suggestion in the post-
development change requests management process.

The article is organized as follows. Section 2 discusses
related literature about post-development change requests
management, use cases, and ontology-based conflict detec-
tion. Post-development change requests management pro-
cess, which is supported by the proposed tool for detecting
request conflicts, is presented in Section 3. The proposed
use-case approach, ontologies, and rules are shown in
Sections 4 and 5. Finally, Section 6 presents the ontology-
based blog prototype tool and usage feedback opinions.

2 Literature review

Formulating systematic requirement management process is
an imperative topic for researchers (Jiao and Chen 2006). A
request management process in systems maintenance
should involve a supportive tool, standardized user request
form, request’s priority, cost, and up-to-date feedback (April
et al. 2005). However, so far, there exists few request
management process about systems maintenance. Problem
Management Process (Kajko-Mattsson 2002) is a request
management process for corrective maintenance. This
process involves three stages: problem reporting, problem
analysis, and problem resolution. Enhancive Maintenance
Model (EMM) (Kajko-Mattsson and Bosu 2006) is a

@ Springer

request management process for enhancive maintenance
based on the study of three organizations. The process has
four phases: enhancement submission, enhancement analy-
sis, decision making, and contract signing. Several guide-
lines are provided in each phases. Supportive tool and
conflict resolution do not explicitly addressed in EMM.

Use-case approaches are valuable and popular in
representing user requirements. Original use-case approach
includes three basic concepts: actor, use case, and system
(Conallen 1999; Booch et al. 1998). Actor is a role using
the system. Use case is depicted as an oval and presents a
part of the system. System indicates the software boundary
outside of several ovals of use cases. These three parts are
important points in user requirements. However, there are
three problems in original use-case approach for representing
requirements. Nonfunctional parts in requirements are not
systematically classified. Goal-driven use cases (Lee and Xue
1999) indicate that goals as nonfunctional parts should be
explicitly presented in extended use cases. Also, in order to
detect conflicts inside the oval, use case should be cut into
several small pieces. Besides, prohibition (e.g., unregistered
user cannot use purchase function) and unnecessary design
(e.g., member does not need to use pop-up advertisement)
are not considered in original use-case approach.

Although computer-aided software engineering (CASE)
tools have successfully support modeling and code gener-
ation, CASE tools have been less successful in supporting
requirements analysis (Robinson et al. 2003). On the other
hand, there are a lot of new requirements due to the
changing business environment (Sommerville 2005). Hence
automatic requirements conflict detection is a critical issue
and has been noticed.

There are several studies focusing on conflict detection
issue. CARL tool (Gervasi and Zowghi 2005) checks
logical contradictions (e.g., a car can drive on bus lane
and a car cannot drive on bus lane) in natural language
requirements. AGG tool (Hausmann et al. 2002) detects
differences between two concurrent versions of the require-
ment specification including class, activity, and use case
diagram. For example, in two class diagram V1 and V2,
attribute Y of class X=1000 in version V1. Meanwhile,
attribute Y of class X=1040 in version V2. In this case, the
two versions are different and result in conflict.

Ontology-based conflict detection is an emerging topic.
Lightweight semantic process approach (LSPA) (Kaiya and
Saeki 2005) is an ontology-based method and can detect
inconsistency in requirements. LSPA define inconsistency
as a tradeoff between two system features. For example, if a
user raises an issue of system quality about time efficiency,
the system designer may need to sacrifice the complex
function which is required by other users.

The above related works are fundaments for more in-
depth study in the conflict detection. The value of CARL

Inf Syst Front (2012) 14:1019-1032

1021

New Function

Request Preliminary Analysis

Suggestion K .
From > Busl[n\esslA?twny AIm[;ac't
Stakeholders nalysis nalysis

Prioritization

N Releas'e
Scheduling

v

T

Conflict Resolution

A4

Negotiation | Mediation

Arbitration

A

Fig. 1 Process model for managing post-development change requests

tool (Gervasi and Zowghi 2005) is disclosing contradictions
between verbs. AGG tool (Hausmann et al. 2002) points
out that Unified modeling language (UML) is a good
starting point for proposing requirements meta-model.
LSPA (Kaiya and Saeki 2005) indicates ontologies as a
semantic knowledge representation are a key element for
requirements conflicts detection. However, these ideas are
separated and do not be integrated. Therefore, it is
necessary to integrate the above ideas for enhancing the
conflict detection mechanism.

3 Post-development change requests management
process

This research proposes a management process for handling
post-development change requests from stakeholders at the
beginning of system maintenance works. The distinguish-
ing feature of this process model is to avoid that most
conflicts are arbitrarily resolved by the programmer during
the implementation of the post-development change re-
quest. This process model hopes to facilitate performing
preliminary and widespread discussions of the conflicts.
To deal with new function suggestions, the process
model includes three parts (Fig. 1): request preliminary
analysis, conflict resolution, and feedback reporting. Re-
quest preliminary analysis involves four phase: business
activity analysis, impact analysis, prioritization of request

Fig. 2 Proposed extended use-
case approach

Role

—» Regular Flow

.............. »

Triggered Flow

Feedback

Reporting — >

Feedback

implementation, and release scheduling of new version
software. In business activity analysis phase, the system
analysis should consider what the request touch on the
business level, such as the role who uses the system, the
activity which is supported by the system, and the goal and
assumption which are considered in system design. Impact
analysis is a process to evaluate the scope of the change in
software, resource needed to accomplish the change, and
the benefit accompanies with the change. Prioritization
adjusts priorities of all requests in a waiting queue. Release
scheduling concerns with placing the request in a version
release schedule and modifying other requests’ release
dates when necessary.

Conflict resolution, includes negotiation, mediation, and
arbitration phase, is a bottom-up approach from basic level
to administrative level in enterprises. Negotiation phase
encourages the disputants to negotiate the conflict issue. If
consensus cannot be achieved in negotiation phase,
meditation phase is triggered to elect an opinion leader to
introduce new professional opinions. If these two prior
phases are neither workable, the higher-level manager or
decision committee must provide a judgment to break
deadlock in arbitration phase.

Feedback reporting considers receiving follow-up infor-
mation during implementation of the post-development
change request and usage of new version software.
Feedback information can include release schedule delay,
resource demand raise, and technical and usage constraints.

[

Achieve
X

-Support>

Function

N
Manipulate

Activity

CTom ly with

@ Springer

1022

Inf Syst Front (2012) 14:1019-1032

Table 1 Evolvable noun ontologies

Noun ontology type Definition

Example terms

Role ontology

Function ontology Parts constituting software system.

Activity ontology Valuable tasks for stakeholders

Data ontology

Goal ontology
exist and be necessary

Assumption ontology

Different sizes and levels of organization units.

Messages which are handled in software system

Interests which explain why activities should

Constraints which guide how activity works
and what kinds of functions is necessary

Net-surfer, registered member, unregistered visitor

Purchase function, shopping cart, bill payment,
member join function

Putting commodities into shopping cart, paying
the money to the company on-line

Commodity item name, amount, receiver name,
address, credit card number

Minimizing bill payment phases, promoting
related products, increasing security level,
providing acceptable performance

Emphasizing global markets, maintenance cost
regulation

The result of request preliminary analysis may be modified
according to feedback information.

In the context of post-development change requests
management process, this study proposes a blog-based
prototype tool in supporting new function suggestion from
stakeholders. The conflict detection mechanism of the tool
can show the conflict situation between the submitted
request and existing system design. If the tool shows that
the submitted request has a conflict, the progress of the
process should be toward conflict resolution.

4 Extended use-case approach and ontologies

To address the conflict detection problem, this study
proposes a meta-model which is derived from use case
diagrams. The proposed meta-model includes six noun
concepts shown in Fig. 2. Role is the actor in use case
diagrams. The oval describing a part of the system is split
into three concepts: function, activity, and data. Function
means the system boundary. Activity indicates which work
is supported in the function. Data is the message which
are inputted, outputted, and stored by the function.
Besides, goal and assumption concepts are added in the

Purchase

Function

Part-of Part-of
Shopping 1) . Bill
Cart 1oung Payment

Fig. 3 Example of function ontology

@ Springer

proposed meta-model because the enterprise interests and
backgrounds are often presented unavoidably in user
requirements.

The proposed meta-model also includes five verb
concepts to present the relationships between noun con-
cepts in Fig. 2. ‘Use’ concept presents that the role uses,
can not use, or do not need to use the function. ‘Support’
concept reveals that whether the function support in the
activity or not. ‘Manipulate’ concept describes that opera-
tion relationship between the function and the data. The
concepts of ‘achieve’ and ‘comply with® show which
background consideration should be or has been examined
in system design.

Stakeholders can use the shared vocabulary in ontologies
to fill in the proposed meta-model for the requirement
model presentation. In other words, ontology is like
dictionary. Meta-model is like a form. Stakeholders can
use ontological terms (in dictionary) to fill in a meta-model
(form) for articulating a requirement. In this study, noun
ontologies are unfixed and can be added and deleted
depending on information system’s situation in practice.
Six noun ontologies are explained in Table 1.

Table 2 Fixed verb ontologies

Verb ontology type Including verb concepts

‘Use” ontology Use, cannot use, do not need to use

‘Support’ ontology Support, cannot support, do not need

to support

‘Manipulate’ ontology Input, cannot input, do not need to input;
store, cannot store, do not need to store;
output, cannot output, do not need to

output

Achieve, cannot achieve, do not need to
achieve

‘Achieve’ ontology

Comply with, cannot comply with, do not
need to comply with

‘Comply with’ ontology

Inf Syst Front (2012) 14:1019-1032

1023

Table 3 Conflict reasons

Conflict reason Description

Relevant rule no.

Access control contradiction

Data manipulation contradiction
Support activity contradiction

Goal achievement contradiction
Assumption accordance contradiction
Goal diversity

Possible assumption violation

Whether a role should use a function to do something or not

Whether a data should be manipulated by a function or not

Whether a activity should be supported by a function or not

Whether a goal should be achieved by a activity or not

Whether a assumption should be complied by a activity or not

Different goals should be achieved by a activity

A function supporting in a activity must comply with a regulative assumption

1,8, 10
2,11, 14
3,9, 12
4,13
5,15
6, 16
7,17

An example of function ontology is depicted in Fig. 3.
On-line retailing website usually includes purchase func-
tion supporting in shopping. Purchase function includes
two functions: shopping cart and bill payment. Therefore,
there is a part-of relationship between purchase function
and shopping cart. There is also a part-of relationship
between purchase function and bill payment. In addition, a
sibling relation exists between shopping cart and bill
payment.

On the other hand, verb ontologies are fixed and can not
be modified. There are three kinds of verbs in each verb
ontology: V, Cannot V, and Do not need to V. V is a variable
to present a verb concept. “Cannot V”’ can be used in a user
requirement which wants to prohibit something. And “Do
not need to V” reveals can be used in a user requirement
which wants to neglect something. The verb concepts
which are included in five verb ontologies are shown in
Table 2.

5 Proposed conflicts detection rules

This study proposes 18 rules for detecting conflicts between
user post-development change requests and system designs
presented by the extended use-case approach. So far, this
study has classified seven kinds of reasons that can cause
conflicts. These reasons include five types of contra-
dictions, one type of goal diversity, and one type of
possible assumption violation. These reasons’ explanations
and related rule number are shown in Table 3.

The 18 rules are designed to detect two forms of
requests. The first form of request models is named 2N-
1V request which includes two noun concepts and one verb
concept. The second form of request models is named 3N-
2V request which includes three noun concepts and two
verb concepts. All these rules can be expressed as “If
(condition), then conflict may occur”.

The conflict condition of 2N-1V request includes new
request model, existing system model, and their relation-
ships (Fig. 4). 2N-1V request includes noun E, verb G, and
noun I. The system model with corresponding 2N-1V

request includes noun F, verb H, and noun J. The
relationship between request model and system model
includes R/, R2, R3, and R4. The conflicts will occur if
concepts E, F, G, H, I, and J conform to the specific
conditions and R1, R2, R3, and R4 fit in with specific
relationships between the request and system model.
There are seven rules for detecting the conflicts in 2N-
1V request (Table 4). Rule 1 to rule 5 are designed to
detect contradictions if an antonym verb exists. Rule 1 in
Table 4 can be explained as “If E and F are role concepts,
G and H are usage concepts, I and J are function concepts,
R1 is a equal, composition, or kind relationship between E
and F, R2 is antonym relationship between G and H, and
R3 is equal, composition, or kind relationship between I
and J, then the conflict occurs.” For example, the new
request model is “Net-surfer use shopping cart”. One of
the existing system models is “Unregistered visitor cannot
use shopping cart”. The ontologies indicate kind relation-
ship between net-surfer and unregistered visitor. Accord-
ing to rule 1, the above new request model conflicts with
existing system model. Rule 2 to rule 5 have the similar
contradiction pattern comparing to rule 1, but they are
designed to cope with different concept types, such as
data, goal, and assumption concepts. For example, a new
request is “Bill payment cannot store credit card number”
for preventing hackers from stealing credit card numbers

NounE «——RIl—> NounF
R2
X
Noun I Noun J
———R3——>
Request Model System Model

Fig. 4 2N-1V contflict condition meta-model

@ Springer

1024

Inf Syst Front (2012) 14:1019-1032

Table 4 Proposed conflict condition for 2N-1V request

Rule No. E, F G, H I,J R1 R2 R3 R4

1 Cg, Cr Cu, Cy Cg, Cg ER/CKR AR ER/CKR Null

2 Ck Cr Cwm, Cum Cp, Cp

3 CS> CS CAct> CAct

4 CActa CACI CAch> CAch CG> CG

5 CC, CC CAss CAs

6 Achieve, Achieve Cg, Co ER OR

7 Cp, Cact Support, Comply with Cacts Cas Null ER/CKR

Cr Role Concept, Cr Function Concept, C,4., Activity Concept, Cp Data Concept, C; Goal Concept, C 4, Assumption Concept, C; Usage
Concept, Cg Support Concept, Cy, Manipulation Concept, C,.;, Achievement Concept, C- Compliance Concept, ER Equal Relationship, CKR
Composition or Kind Relationship, OR Opposing Relationship, 4R Antonym Relationship, 7" Or

in database. But the existing design is “Bill payment store
credit card number” so that customers don’t need to key in
their credit card number every time. Hence rule 2 is
triggered.

Rule 6 are designed to detect that activities achieve
opposing goals. Rule 6 in Table 4 can be explained as “If E
and F are activity concepts, G and H equal ‘achieve’, I and
J are goal concepts, R1 is a equal, composition, or kind
relationship, R2 is equal relationship, and R3 is opposing
relationship between goal I and goal J, then the conflict
occurs.”. For example, a request is “Paying the money to
the company on-line achieve minimizing bill payment
phases”. And the relevant original system design principle
is “Paying the money to the company on-line achieve
promoting related products”. In other words, the original
design is to add several phases to prompt other commod-
ities when customers pay the bill. The two goals of
“minimizing bill payment phases” and adding the phases
for “promoting related products” are opposing opinions.
Therefore the conflict occurs in this request.

Rule 7 are designed to detect regulative assumptions
when a function supports a new activity. For example, the
request is “Member join function support paying the money
to the company on-line” to give the membership fee. And
the original system design is ‘“Paying the money to the
company on-line comply with emphasizing global markets”
because the target market of this company is overseas
customers. When the information systems department
implements this request, the department should pay
attention that this new function should allow overseas
payment conveniently.

The conflict condition of 3N-2V request also includes
new request model, existing system model, and their
relationships (Fig. 5) and provides more complicated
concepts than 2N-1V request to describe maintenance
requirements. 3N-2V request includes noun E, verb G, noun
I, verb K, and noun M. The system model with
corresponding 3N-2V request includes noun F, verb H,
noun J, verb L, noun N, verb O, and noun P. The

@ Springer

relationship between request model and system model
includes RI, R2, R3, R4, and R5. The conflicts will occur
if the specific conditions exist in Fig. 5.

There are 11 rules for detecting conflict in 3IN-2V request.
Rule 8 to rule 15 in Table 5 detect contradictions if an
antonym verb exists. For example, a new request is “Net-
surfer using shopping cart support putting commodities into
shopping cart” and the original system design is “Unregis-
tered visitor using shopping cart cannot support putting
commodities into shopping cart”. Unregistered visitor is a
kind of net-surfer. According to rule 9, the conflict occurs in
this request.

Rule 16 in Table 5 is proposed to detect goal divergence
when a function supports an activity. Rule 17 in Table 5
detects which assumption regulates a request involving a
function support an activity.

NounE |[«——Rl— > NounF
R2
Nounl <«—R3—» NounJ
R4
Noun M Noun N
[——R5—>
Request Model System Model

Fig. 5 3N-2V contflict condition meta-model

Inf Syst Front (2012) 14:1019-1032

1025

Table 5 Proposed conflict condition for 3N-2V request

Rule no. E, F G, H IJ K, L M, N R1 R2 R3 R4 RS
8 Cr, Cr Cy, Cy Cg, Cr Support, support Cactr Cact ER/CKR AR ER/CKR ER ER/CKR
9 Use, use Cs, Cg ER AR
10 Cy, Cy Input, input/store, store/ Cp, Cp AR ER
output, output
11 Use, use Cwm, Cum ER AR
12 Cp, Cg Cg, Cg Cact Cact Achieve, achieve Cg, C AR ER
13 Support, support Cach» Cach ER AR
14 Cg, Cg Comply with, comply with Cass Cas AR ER
15 Support, support Ce, Cc ER AR
16 Achieve, achieve Cq, C ER OR
17 Null, comply with Null, Cxq Null

Cr Role Concept, Cr Function Concept, C,4., Activity Concept, Cp Data Concept, C; Goal Concept, C,, Assumption Concept, C; Usage
Concept, Cg Support Concept, Cy, Manipulation Concept, C,.;, Achievement Concept, C- Compliance Concept, ER Equal Relationship, CKR
Composition or Kind Relationship, OR Opposing Relationship, 4R Antonym Relationship, 7" Or

Besides the above 2N-1V and 3N-2V request, 4N-3V
request can exist. However, few 4N-3V requests appear and
the rules for detecting the conflicts in 4N-3V request are
similar to above rules. Rule 1~17 can be used to detect 4N-
3V request. For example, in Fig. 6, “Member use checkout
function to_support paying the money to the company on-
line to achieve minimizing bill payment phases” conflicts
with “Member use checkout function to support paying

the money to the company on-line to achieve promoting
related products™.. This conflict can be detected by Rule 6
if we only consider two nouns and one verb (“Paying the
money to the company on-line achieve minimizing bill
payment phases” and “Paying the money to the company
on-line achieve promoting related products™). Therefore
the conflicts in 4N-3V request are not described addition-
ally here.

Fig. 6 4N-3V conflict detection
example Member <«—R1l—— > Member
R2
Checkout Checkout
—R3———
process process
R4
Paying the Paying the

company on-
line

money to the [+——————R5———— money to the

S

company on-
line

In this example, the 4N-3V
request can be considered as
2N-1V request. Therefore
Rule 6 can detect this conflict.

Minimizing Promoting
bill payment «——R7——» related
phases products
Request Model System Model

@ Springer

1026

Inf Syst Front (2012) 14:1019-1032

Fig. 7 Entity-relationship mod-
el of the database in the tool

System
Model

Ontologies

Concpet

Correspond to

Request
Model

Subject
Concept

Verb
Concept

Object
Concept

o>

Conflict

6 Ontology-based blog prototype tool

A prototype tool is implemented in this study. The open-
source blog package software called Community Server,
which is developed by Telligent Cooperation, is chosen as the
base to be modified in this study. This prototype tool is
developed in C# language and Structured Query Language
(SQL). The database administration system of this prototype
is Microsoft SQL Server 2005. The original Community
Server only provides the English user interface. This study
added another version of user interface in Traditional Chinese.

In the database of the blog, several new entities and
relationships are added to store ontologies, system model,
request models, and conflicts (Fig. 7). Ontologies contain
concepts, such as role, function, activity, and data. Relation-
ships between concepts, such as is-a, kind-of, and antonym,
are also included in ontologies. Both system model and
request model contain subject, verb, and object concepts.
These concepts in system model and request model can be
found in ontologies or can be added into ontologies. The

Fig. 8 Component diagram of

the prototype System Model Manager

Request Model Maker -

@ Springer

automatic detection results of the request conflicts can be
stored in the database.

This study has added four modules into the original blog
package software. These modules are ontologies manager,
system model manager, request model maker, and conflict
detector. Ontologies manager and system model manager
are added in the back-end of the blog-based tool for
modeling domain knowledge and existing system design.
Request model maker and conflict detector are added in the
front-end of the blog-based tool for making request models
and detecting conflicts. The component, sequence, activity,
and collaboration diagrams of the four modules are shown
in Figs. 8, 9, 10, 11.

Information systems department can use onfologies
manager to add, modify, or delete the concepts or the
relationships of domain knowledge. The concepts include
roles, functions, data, activities, goals, and assumptions.
The relationships include is-a, part-of, and anonym. For
example, a part of ontologies can be “Unregistered visitor is
a kind of Net-Surfer”. Besides, this module can be used to

Conflict Detector

Inf Syst Front (2012) 14:1019-1032

1027

System Model Manager Ontologies Manager

Request Model Maker

Conflict Detector

T
|
|

i
|
\
Select Concept |
1

Compose System Model

I Select Concept

Maintain Ontology

T
|
|
|
|
|
|
|
|
|
|
|
1

Maintain Ontology

Compose Request Model

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—_—

I
Query Semantics

Detect Conflict

L

Response Semantics

Fig. 9 Sequence diagram of the prototype

put new terms, which are proposed by users, into existing
ontologies.

Information systems department can use system model
manager to select concepts from ontologies for composing
model of existing systems design. System models are made

Gelect concept form ontologies to compose system mod@

Gelect concept from ontologies to compose request mode)

@uery semantics from ontoogies to detect conﬂic)

Show no conflict

[Else]

[Semantics match rule condition]

Show conflict

Fig. 10 Activity diagram of the prototype

T
I
I
I
} > Execute Rule
I
I

according to the proposed extended use-case approach in
Fig. 2. For example, a system model can be “Unregistered
visitor cannot use shopping cart”. If necessary, system
model manager can be also used to modify and delete
system models.

Stakeholders can use request model maker and blog
comment function to post a post-development change
request. A screenshot of blog comment function are
presented in Fig. 12. Stakeholders can join as members,
log in the blog, enter personal website Uniform Resource
Locator (URL) optionally, click the hyperlink of request
model maker to make a request model, enter footnote to
explain the request model, and finally submit this request.
The meaning of the Chinese sentence in the request
footnote of Fig. 12 is as follows “I think the persons, who
do not want to enter burdensome and complete personal
information, also can use purchase function if they enter
few necessary information”.

A screenshot of request model maker is shown in
Fig. 13. The interface in Fig. 13 has three areas: selected
items, request model, and templates area. There are five
types of templates in templates area. Stakeholders can use
an appropriate template to choose two nouns of the
template into selected items area and then choose a verb
of the template to compose a request model which is shown
in request model area. For example, a user wants to express
the request: “Unregistered visitors also can use purchase
function in the shopping website”. Firstly, he considers
template 1 is appropriate for expressing his request. Hence
he click role button and browse the role items list which
shows role concepts in ontologies. He selects “Unregistered

@ Springer

1028

Inf Syst Front (2012) 14:1019-1032

Fig. 11 Collaboration diagram
of the prototype

3. Compose_System_Model()
<7

1. Select_Concept()
e

2. /5. Maintain_Ontology()

System Model Manageri

6. Compose_Request_Model() i

Visitor” item, which is a child of “Net-Surfer”, and this item
is shown in selected items area in Fig. 13. Then he selects
“Purchase Function” item and this item is shown in selected
items area. Finally, he select “use” verb item and the
request model (Unregistered visitor use purchase function)
is presented in request model area.

After a stakeholder submits a post-development change
request, the conflict detector module is triggered for detect
conflicts between request model and system model. The
above 18 rules were implemented by C# programming code
in this module. Consequently, the request model and the
conflict detection result are shown in the blog-based tool.
For example, the request model in Fig. 14 can be translated
as “Unregistered visitor use purchase function”. An existing
system model is “Unregistered visitor cannot use purchase
function”. According to rule 1, the conflict occurs because
two verbs are antonyms. Therefore, the result of conflict
situation in Fig. 14 can be translated as “This request has
conflict because unregistered visitor cannot use purchase
function in current system design”.

Name

tony

URL of Personal Website

Request Model
[Request Model Maker]

Request FootNote

HRATERARINN ERASFNBEAEHE ©
BZILERBYHERITBER

[JRemember Me?
X

Fig. 12 Posting a request in the tool

@ Springer

Ontologies Manager

T 4. Select_Concept() TS. Query_Semantics()

Request Model Maker

i 7. Detect_Conflict()

9. Response_Semantics()

Conflict Detector
10. Execute_Rule()
7 Usage feedback opinions

Two companies in Taiwan adopted the post-development
change requests management process and tried the blog-
based prototype tool. The online newspaper company has
1,600 employees and the television station company has
700 employees. The two companies put the hyperlink of the
blog-based prototype tool on their newspaper and shopping
website for promoting post-development change requests
collection. After 2 weeks, several requests were posted in
the blog-based tool. The amounts of requirements and
conflicts are showed in Table 6. The two companies tried to
apply the post-development change requests management
process to handle these requests. Their website directors
and information systems department directors were then
interviewed.

In general, two companies confirmed that the benefits of
the post-development change requests management process
and the blog-based prototype tool. The benefit of the
process is offering disciplined steps for guiding requirement
analysis. The benefits of the tool are two folds. One of the
benefits is offering an effective and direct channel for
understanding requirements from website users. The second
benefit of the tool is reducing the labor cost of conflict
analysis when companies face over hundred requirements.

The website directors and the information systems
department directors also provided several recommenda-
tions for improving the blog-based tool. These recommen-
dations are summarized in Table 6.

The above recommendations are detailed and discussed
as follows. (1) Indicating problems: Two interviewees
believed that stakeholders are often unable to propose
request models when a new topic is emerging. Stakeholders
may be only capable to indicate where the problems are.
Therefore, the blog-based tool should allow stakeholders to
select the noun concepts for pointing out which parts of the
information system should be improved. (2) Rating a
request: Two interviewees suggested how many customers
who support or oppose the requests should be surveyed.
The blog-based tool should provide rating function for

Inf Syst Front (2012) 14:1019-1032

1029

Selected Items

Raole Functisa =
&R Remove EMITAERemove ACTVIDY: Nome

Reqest Model

Assumption: None

FEE8 (A FOTIHE Remove

Please use at least one of following templets to make a request model

Template 1: (Roe][.Use J(Function]

Template 2;[Function][...Support][Activity]

J[Date]

Template 3: [Activity || _Input/Store/Output

Teaple - (i)i)[Goa]

Template 5: [Activity | .. Accordingto][Assumption |

Fig. 13 Using templates for making request model in the tool

evaluating satisfactions of the requests by customers. (3)
Showing implementation status: An information system
department director deemed that the company should
declare whether the request is implemented or not publicly.
Therefore, the blog-based tool should shows the status of
the request, such as pending, decided to implement,
rejected, implementing, and released. (4) Covering content
request: For newspaper website, content is king. The blog-
based tool can be modified and applied to collect user
requirements about website content. (5) Revealing activity
sequences: The proposed extended use-case approach does
not cover activity process. However, process, which
contains a sequence of activity, is usually an important
concept. For example, online payment process and join
member process are common in e-commerce website.
Therefore, the request model of the blog-based tool should
cover the process model. (6) Allowing multiple ontologies:
Different departments and groups always have different
domain knowledge and jargons. Therefore the blog-based
tool should allow the companies to build multiple ontolo-

Fig. 14 Conflict detection
results in the tool

Bu

1
J0

gies and their interconnections between similar concepts in
different ontologies. (7) Explaining each function concept
concretely: Using URL, text description, or the screenshot
can help user to recognize what a function concept is.
However, making many screenshots is costly. The blog-
based tool should offer these ways for explaining function
concepts. (8) Recording member background: Understand-
ing who propose a request is important for deciding to
whether to implement the request or not. Therefore the
blog-based tool should assist the companies to collect
member background information. (9) Offering the wizard of
the request model maker: The next version of the blog-
based tool should provide an easier way for making a
request model. Providing a step-by-step wizard can guild
users to make request models through a sequence of
questions and answers. (10) Including other models: Use
cases diagram is the key model in UML. However, use
cases diagram is not enough for modeling more fine grain
requirements, such as the workflow sequence of the online
payment process. Therefore other models, such as activity

tony Fiit K
Rzyuesl Mudel — JE & B FBYITIAS
Conflict Situation - H#iZE. EAKEEHEIRRHD, IEGSTFEHEYIEE.

EATERBERRIA ERALTIEATAE WEZT LIEABYTIRERETEE

1, 2008 3:27 T4 [Delete]

@ Springer

1030

Inf Syst Front (2012) 14:1019-1032

Table 6 Amounts of requirements and conflicts

Existing requirements

New requirements

Detected conflicts

Conflict reasons

Newspaper website 88

Shopping website 67

4 3

Access control contradiction;
possible assumption violation

Access control contradiction;
goal diversity

Table 7 Improvement recom-
mendations about the prototype
tool

Table 8 Comparison among the
methodologies

@ Springer

Improvable item

Recommendation

1 Indicating problems

2 Rating a request

3 Showing implementation status

4 Covering content request

5 Revealing activity sequences

6 Allowing multiple ontologies

7 Explaining each function concept concretely

8 Recording member background
Offering the wizard of the request model maker

10 Including other models

11 Applying the tool for requirements
phase of a new system

Users can use this tool to easily indicate a
problematic concept than propose a request model.

The tool should be used to collect how many users
support or oppose the request.

Information system department should use this tool
to declare whether the request is implemented or not.

This tool can be modified for collecting requirements
about website content.

The tool should express the sequence of phases in
an activity process.

The tool should allow departments or groups to use
their own jargon to define their own ontologies.

The tool should provide function’s description,
such as its screenshot or URL.

The tool should record who proposes the request.

The tool should guide users to make a request
model step by step.

The tool should include other models beyond use
cases.

The tool should considered to support new system
requirements analysis

Detected conflict types

Tool support Field experiment

AGG Value diversity

LSPA Nonfunctional contradiction
CARL Logical contradiction

This study Seven kinds of conflicts

Yes No revealed in literature
No No revealed in literature
Yes Partial

Yes Yes

Inf Syst Front (2012) 14:1019-1032

1031

diagram and sequence diagram, should be included in the
next version of the blog-based tool. (11) Applying the
tool for requirements phase of a new system: How to
apply the tool for analyzing new system requirements is
an interesting topic. However, the ontologies are difficult
to be predefined before new requirements collection
phase because the domain knowledge about an innova-
tive and original new system is still unclear in this time.
Therefore the tool should be redesigned to cope with this
difficulty in supporting requirements phase of developing
new systems.

8 Conclusion

From the theoretical perspective, this study proposes the
extended use-case approach for presenting post-development
change requests. This study also proposes a set of rules for
detecting conflicts between new requests and existing system
design base on ontologies. The extended use-case approach
and the rules were implemented as the ontology-based blog
prototype tool. The comparison among this study and the
other methodologies are shown in Table 8.

From the practical perspective, the ontology-based blog
can help the companies to collect requests and detect
conflicts between request and existing system models. Two
companies tried to use this ontology-based blog and
confirmed that the tool is one of good alternatives for
collecting post-development change requests and detecting
conflicts. Several recommendations for improving the
ontology-based blog tool are detailed and discussed. The
impact of the conflict detection results can guide stake-
holders to discuss the inconsistent requirements further.
Without the conflict detection results, these inconsistent
requirements may be implemented wrongly and cause
disaster.

Although this study has obtained a preliminary fruit,
more tool usage experiments and tool improvement are
necessary in the further studies. Although this study
proposes 18 rules, which are richer than the related works,
some kinds of conflicts going beyond the best of our
current knowledge may not be detected. More rules may be
proposed in the future research.

References

Abran, A., & Nguyenkim, H. (1993). Measurement of the mainte-
nance process from a demand-based perspective. Journal of
Software Maintenance Research and Practice, 5(2), 63-90.

April, A., Hayes, J. H., Abran, A., & Dumke, R. (2005). Software
maintenance maturity model (SM™"): the software maintenance
process model. Journal of Sofiware Maintenance and Evolution,
17(3), 197-223.

Booch, G., Rumbaugh, J., & Jacobson, 1. (1998). The unified modeling
language user guide. Upper Saddle River: Addison-Wesley.
Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999).
What are ontologies, and why do we need then? /EEE Intelligent

Systems, 14(1), 20-26.

Conallen, J. (1999). Building web applications with UML. Upper
Saddle River: Addison-Wesley.

Dobing, B., & Parsons, J. (2000). Understanding the role of use cases
in UML: A review and research agenda. Journal of Database
Management, 11(4), 28-36.

Eden, A. H. (2002). A theory of object-oriented design. Information
Systems Frontiers, 4(4), 379-391.

Fatolahi, A., & Shams, F. (2006). An investigation into applying UML
to the Zachman framework. Information Systems Frontiers, 8
(12), 133-143.

Gervasi, V., & Zowghi, D. (2005). Reasoning about inconsistencies in
Natural language requirements. ACM Transactions on Sofiware
Engineering and Methodology, 14(3), 277-330.

Gruninger, M., & Lee, J. (2002). Ontology: Applications and design.
Communications of the ACM, 45(2), 39-65.

Hausmann, J. H., Heckel, R., & Taentzer, G. (2002). Detection of
conflicting functional requirements in a use case-driven ap-
proach. In: Proceedings of the 24th international conference on
software engineering (pp. 105-115). Long Beach CA: IEEE
Computer Society.

Jiao, J., & Chen, C. (2006). Customer requirement management in
product developmenet: A review of research issues. Concurrent
Engineering: Research and applications, 14(3), 173-185.

Kaiya, H., & Saeki, M. (2005). Ontology based requirements analysis:
lightweight semantic processing approach. In: Proceedings of the
Fifth International Conference on Quality Sofiware (pp. 223—
230). Long Beach CA: IEEE Computer Society.

Kaiya, H., & Sacki, M. (2006). Using domain ontology as
domain knowledge for requirements elicitation. In: Proceed-
ings of 14th IEEE International Requirements Engineering
Conference (pp. 189-198). Long Beach CA: IEEE Computer
Society.

Kang, D., & Chiang, R. (2006). A systematic approach in managing
post-deployment system changes. Communications of the ACM,
49(6), 91-95.

Kajko-Mattsson, M. (2002). Problem management maturity within
corrective maintenance. Journal of Sofiware Maintenance and
Evolution, 14(3), 197-227.

Kajko-Mattsson, M., & Bosu, M. (2006). Eliciting an enhancive
maintenance model in three organisations in Ghana. In: Proceed-
ings of 5th IEEE/ACIS International Conference on Computer
and Information Science and 1°' IEEE/ACIS International
Workshop on Component-Based Sofiware Engineering, Sofiware
Architecture and Reuse (pp. 244-251). Long Beach CA: IEEE
Computer Society.

Lee, J., & Xue, N. (1999). Analyzing user requirements by use cases:
A goal-driven approach. IEEE Software, 16(4), 92—-101.

Madallli, D. P., & Suman, A. (2008). UML for the conceptual web.
Online Information Review, 32(4), 511-515.

Paulo, J., Almeida, A., lacob, M. E., & van Eck, P. (2007).
Requirements traceability in model-driven development: Apply-
ing model and transformation conformance. Information Systems
Frontiers, 9(4), 327-342.

Robinson, W. N., & Pawlowski, S. D. (1999). Managing requirements
inconsistency with development goal monitor. /[EEE Transactions
on Software Engineering, 25(6), 816-835.

Robinson, W. N., Pawlowski, S. D., & Volkov, V. (2003). Require-
ments interaction management. ACM Computing Surveys, 35(2),
132-190.

Sommerville, 1. (2005). Integrated requirements engineering: A
tutorial. /EEE Software, 22(1), 16-23.

@ Springer

1032

Inf Syst Front (2012) 14:1019-1032

Chi-Lun Liu is an assistant professor in the Department of
Information and Electronic Commerce at Kainan University in
Taiwan. He holds his doctorate in Management Information Systems
from ChengChi University, Taipei, Taiwan. His current research
interests include social media, software engineering, information
security, and internet marketing. Contact him at tonyliu@mail.knu.
edu.tw or tonyliu@ms4.hinet.net.

Heng-Li Yang is a professor in the Department of Management
Information Systems, National Chengchi University in Taiwan. He

@ Springer

was the chairman of the department. His research interests include
data & knowledge engineering, software engineering, knowledge
management, information management in organizations, technolo-
gy impacts on organizations, and empirical studies in MIS. His
papers appeared on Computers in Human Behavior, Behaviour &
Information Technology, Computers & Education, Information &
Management, Information Processing and Management, Data and
Knowledge Engineering, Online Information Review, Industrial
Management & Data Systems, etc. Contact him at yanh@nccu.
edu.tw.

	Applying ontology-based blog to detect information system post-development change requests conflicts
	Abstract
	Introduction
	Literature review
	Post-development change requests management process
	Extended use-case approach and ontologies
	Proposed conflicts detection rules
	Ontology-based blog prototype tool
	Usage feedback opinions
	Conclusion
	References

