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Abstract

We present the numbers of dimer–monomers Md (n) on the Sierpinski gasket SGd (n) at stage n with dimension d equal to
two, three and four. The upper and lower bounds for the asymptotic growth constant, defined as zSGd = limv→∞ ln Md (n)/v

where v is the number of vertices on SGd (n), are derived in terms of the results at a certain stage. As the difference between these
bounds converges quickly to zero as the calculated stage increases, the numerical value of zSGd can be evaluated with more than
a hundred significant figures accurate. From the results for d = 2, 3, 4, we conjecture the upper and lower bounds of zSGd for
general dimension. The corresponding results on the generalized Sierpinski gasket SGd,b(n) with d = 2 and b = 3, 4 are also
obtained.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The enumeration of the number of dimer–monomers NDM (G) on a graph G is a classical model [1–3]. In the
model, each diatomic molecule is regarded as a dimer which occupies two adjacent sites of the graph. The sites that
are not covered by any dimers are considered as occupied by monomers. Although the close-packed dimer problem
on planar lattices has been expressed in closed form almost half a century ago [4–6], the general dimer–monomer
problem was shown to be computationally intractable [7]. Some recent studies on the enumeration of close-packed
dimer, single-monomer and general dimer–monomer problems on regular lattices were carried out in Refs. [8–18].
It is of interest to consider dimer–monomers on self-similar fractal lattices which have scaling invariance rather than
translational invariance. Fractals are geometrical structures of non-integer Hausdorff dimension realized by repeated
construction of an elementary shape on progressively smaller length scales [19,20]. A well-known example of fractal
is the Sierpinski gasket which has been extensively studied in several contexts [21–31]. We shall derive the recursion
relations for the numbers of dimer–monomers on the Sierpinski gasket with dimension equal to two, three and four, and
determine the asymptotic growth constants. We shall also consider the number of dimer–monomers on the generalized
Sierpinski gasket with dimension equal to two.
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Fig. 1. The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG2(n).

2. Preliminaries

We first recall some relevant definitions in this section. A connected graph (without loops) G = (V, E) is defined
by its vertex (site) and edge (bond) sets V and E [32,33]. Let v(G) = |V | be the number of vertices and e(G) = |E |

the number of edges in G. The degree or coordination number ki of a vertex vi ∈ V is the number of edges attached
to it. A k-regular graph is a graph with the property that each of its vertices has the same degree k. In general,
one can associate monomer and dimer weights to each monomer and dimer connecting adjacent vertices (see, for
example [16]). For simplicity, all such weights are set to one throughout this paper.

When the number of dimer–monomers NDM (G) grows exponentially with v(G) as v(G) → ∞, there exists a
constant zG describing this exponential growth

zG = lim
v(G)→∞

ln NDM (G)

v(G)
, (2.1)

where G, when used as a subscript in this manner, implicitly refers to the thermodynamic limit.
The construction of the two-dimensional Sierpinski gasket SG2(n) at stage n is shown in Fig. 1. At stage n = 0, it

is an equilateral triangle; while stage n + 1 is obtained by the juxtaposition of three n-stage structures. In general, the
Sierpinski gaskets SGd can be built in any Euclidean dimension d with fractal dimensionality D = ln(d+1)/ ln 2 [22].
For the Sierpinski gasket SGd(n), the numbers of edges and vertices are given by

e(SGd(n)) =

(
d + 1

2

)
(d + 1)n

=
d

2
(d + 1)n+1 , (2.2)

v(SGd(n)) =
d + 1

2
[(d + 1)n

+ 1] . (2.3)

Except the (d + 1) outmost vertices which have degree d, all other vertices of SGd(n) have degree 2d. In the large n
limit, SGd is 2d-regular.

The Sierpinski gasket can be generalized, denoted as SGd,b(n), by introducing the side length b which is an integer
larger or equal to two [34]. The generalized Sierpinski gasket at stage n + 1 is constructed with b layers of stage n
hypertetrahedrons. The two-dimensional SG2,b(n) with b = 3 at stage n = 1, 2 and b = 4 at stage n = 1 are
illustrated in Fig. 2. The ordinary Sierpinski gasket SGd(n) corresponds to the b = 2 case, where the index b is

neglected for simplicity. The Hausdorff dimension for SGd,b is given by D = ln
(

b+d−1
d

)
/ ln b [34]. Notice that

SGd,b is not k-regular even in the thermodynamic limit.

3. The number of dimer–monomers on SG2(n)

In this section we derive the asymptotic growth constant for the number of dimer–monomers on the two-
dimensional Sierpinski gasket SG2(n) in detail. Let us start with the definitions of the quantities to be used.

Definition 3.1. Consider the generalized two-dimensional Sierpinski gasket SG2,b(n) at stage n. (i) Define M2,b(n) ≡

NDM (SG2,b(n)) as the number of dimer–monomers. (ii) Define f2,b(n) as the number of dimer–monomers such
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Fig. 2. The generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 3 at stage n = 1, 2 and b = 4 at stage n = 1.

Fig. 3. Illustration for the configurations M2(n), f2(n), g2(n), h2(n), and t2(n). Only the three outmost vertices are shown explicitly for f2(n),
g2(n), h2(n) and t2(n), where each open circle is occupied by a monomer and each solid circle is occupied by a dimer.

that the three outmost vertices are occupied by monomers. (iii) Define g2,b(n) as the numbers of dimer–monomers
such that one certain outmost vertex, say the topmost vertex as illustrated in Fig. 3 for ordinary Sierpinski gasket,
is occupied by a dimer while the other two outmost vertices are occupied by monomers. (iv) Define h2,b(n) as the
numbers of dimer–monomers such that one certain outmost vertex, say the topmost vertex as illustrated in Fig. 3 for
ordinary Sierpinski gasket, is occupied by a monomer while the other two outmost vertices are occupied by dimers.
(v) Define t2,b(n) as the number of dimer–monomers such that all three outmost vertices are occupied by dimers.

Since we only consider ordinary Sierpinski gasket in this section, we use the notations M2(n), f2(n), g2(n), h2(n),
and t2(n) for simplicity. They are illustrated in Fig. 3, where only the outmost vertices are shown. Because of rotational
symmetry, there are three possible g2(n) and three possible h2(n) such that

M2(n) = f2(n) + 3g2(n) + 3h2(n) + t2(n) (3.1)

for nonnegative integer n. The initial values at stage zero are f2(0) = 1, g2(0) = 0, h2(0) = 1, t2(0) = 0 and
M2(0) = 4. The values at stage one are f2(1) = 4, g2(1) = 4, h2(1) = 3, t2(1) = 2 and M2(1) = 27. The purpose of
this section is to obtain the asymptotic behaviour of M2(n) as follows. The five quantities M2(n), f2(n), g2(n), h2(n)

and t2(n) satisfy recursion relations.

Lemma 3.1. For any nonnegative integer n,

M2(n + 1) = M3
2 (n) − 3M2(n)[g2(n) + 2h2(n) + t2(n)]2

+ 3[h2(n) + t2(n)][g2(n) + 2h2(n) + t2(n)]2
− [h2(n) + t2(n)]3, (3.2)

f2(n + 1) = f 3
2 (n) + 6 f 2

2 (n)g2(n) + 3 f 2
2 (n)h2(n) + 9 f2(n)g2

2(n) + 2g3
2(n) + 6 f2(n)g2(n)h2(n), (3.3)

g2(n + 1) = f 2
2 (n)g2(n) + 2 f 2

2 (n)h2(n) + 4 f2(n)g2
2(n) + f 2

2 (n)t2(n) + 8 f2(n)g2(n)h2(n)

+ 3g3
2(n) + 2 f2(n)g2(n)t2(n) + 2 f2(n)h2

2(n) + 4g2
2(n)h2(n), (3.4)

h2(n + 1) = f2(n)g2
2(n) + 4 f2(n)g2(n)h2(n) + 2g3

2(n) + 2 f2(n)g2(n)t2(n) + 7g2
2(n)h2(n)

+ 3 f2(n)h2
2(n) + 2 f2(n)h2(n)t2(n) + 2g2

2(n)t2(n) + 4g2(n)h2
2(n), (3.5)

t2(n + 1) = g3
2(n) + 6g2

2(n)h2(n) + 3g2
2(n)t2(n) + 9g2(n)h2

2(n) + 2h3
2(n) + 6g2(n)h2(n)t2(n). (3.6)
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Fig. 4. Illustration for the expression of M2(n +1). Certain outmost vertices of SG2(n) are not shown means they can be occupied by either dimers
or monomers.

Fig. 5. Illustration for the expression of f2(n + 1). The multiplication of three on the right-hand side corresponds to the three possible orientations
of SG2(n + 1).

Fig. 6. Illustration for the expression of g2(n + 1). The multiplication of two on the right-hand side corresponds to the reflection symmetry with
respect to the central vertical axis.

Proof. The Sierpinski gaskets SG2(n + 1) is composed of three SG2(n) with three pairs of vertices identified. For
the number M2(n + 1), the unallowable configurations are those with at least a pair of identified vertices occupied by
dimers in both the original SG2(n) configurations. Therefore, the three types of configuration with a pair of identified
vertices occupied by dimers should be subtracted from all possible configurations M3

2 (n). The configurations with two
pairs of identified vertices occupied by dimers are subtracted out twice, so that should be added back as illustrated in
Fig. 4. Finally, the configuration with three pairs of identified vertices occupied by dimers should be subtracted, and
Eq. (3.2) is verified.

As illustrated in Fig. 5, the number f2(n + 1) consists of (i) one configuration where all three of the SG2(n) are
in the f2(n) status, (ii) six configurations where two of the SG2(n) are in the f2(n) status and the other one is in the
g2(n) status, (iii) three configurations where two of the SG2(n) are in the f2(n) status and the other one is in the h2(n)

status, (iv) nine configurations where one of the SG2(n) is in the f2(n) status and the other two are in the g2(n) status,
(v) two configuration where all three of the SG2(n) are in the g2(n) status, (vi) six configurations where one of the
SG2(n) is in the f2(n) status, another one is in the g2(n) status and the other one is in the h2(n) status. Eq. (3.3) is
verified by adding all possible configurations.

Similarly, g2(n + 1), h2(n + 1) and t2(n + 1) for SG2(n + 1) can be obtained with appropriate configurations of
its three constituting SG2(n) as illustrated in Figs. 6–8 to verify Eqs. (3.4)–(3.6), respectively.

Eq. (3.2) can also be obtained by substituting Eqs. (3.3)–(3.6) into Eq. (3.1). �

There are always 27 = 33 terms in Eqs. (3.3)–(3.6) because there are three possible choices for each of the three
pairs of identified vertices: both of them are originally occupied by monomers, or either one of them is originally
occupied by a monomer while the other one by a dimer. The values of M2(n), f2(n), g2(n), h2(n), t2(n) for small n
can be evaluated recursively by Eqs. (3.2)–(3.6) as listed in Table 1. These numbers grow exponentially, and do not
have simple integer factorizations. To estimate the value of the asymptotic growth constant defined in Eq. (2.1), we
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Fig. 7. Illustration for the expression of h2(n + 1). The multiplication of two on the right-hand side corresponds to the reflection symmetry with
respect to the central vertical axis.

Fig. 8. Illustration for the expression of t2(n + 1). The multiplication of three on the right-hand side corresponds to the three possible orientations
of SG2(n + 1).

Table 1
The first few values of M2(n), f2(n), g2(n), h2(n), t2(n)

n 0 1 2 3 4

M2(n) 4 27 10,054 499,058,851,840 60,978,122,299,433,248,924,629,725,740,007,424
f2(n) 1 4 1,584 78,721,368,064 9,618,673,427,679,675,357,952,788,786,053,120
g2(n) 0 4 1,352 66,974,056,448 8,183,299,472,241,085,511,976,093,040,508,928
h2(n) 1 3 1,148 56,979,607,552 6,962,123,286,110,084,944,276,569,997,705,216
t2(n) 0 2 970 48,476,491,776 5,923,180,596,700,062,197,918,947,839,311,872

Table 2
The first few values of α2(n), β2(n), γ2(n)

n 1 2 3 4

α2(n) 1 0.853535353535354 0.850773533223540 0.850772150002722
β2(n) 0.75 0.849112426035503 0.850771337051088 0.850772150002159
γ2(n) 0.666666666666667 0.844947735191638 0.850769141078411 0.850772150001597

The last digits given are rounded off.

need the following lemmas. For the generalized two-dimensional Sierpinski gasket SG2,b(n), define the ratios

α2,b(n) =
g2,b(n)

f2,b(n)
, β2,b(n) =

h2,b(n)

g2,b(n)
, γ2,b(n) =

t2,b(n)

h2,b(n)
. (3.7)

For the ordinary Sierpinski gasket in this section,they are simplified to be α2(n), β2(n), γ2(n) and their values for
small n are listed in Table 2.

Lemma 3.2. For any positive integer n, the magnitudes of α2(n), β2(n), γ2(n) are ordered as

0 ≤ γ2(n) ≤ β2(n) ≤ α2(n) ≤ 1 , (3.8)

and the magnitudes of f2(n), g2(n), h2(n), t2(n) are ordered as

t2(n) ≤ h2(n) ≤ g2(n) ≤ f2(n) . (3.9)
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Proof. It is clear that 0 ≤ γ2(n) since all the quantities f2(n), g2(n), h2(n), t2(n) are positive. γ2(n) ≤ β2(n) ≤ α2(n)

is valid for the first few positive integer n by the values given in Table 2. By Eqs. (3.3)–(3.6), we have

f2(n + 1)g2(n + 1)

f 4
2 (n)g2

2(n)
[α2(n + 1) − β2(n + 1)] =

[
g2(n + 1)

f 2
2 (n)g2(n)

]2

−
f2(n + 1)

f 3
2 (n)

h2(n + 1)

f2(n)g2
2(n)

= [α2(n) − β2(n)]2
[1 + 3α2(n) + γ2(n) + 4α2

2(n)[β2(n) + γ2(n)] + 4α2
2(n)β2

2 (n)]

+ [α2
2(n) − β2

2 (n)][[α2(n) − γ2(n)][1 + 2α2(n)β2(n)] + 2α2
2(n)[β2

2 (n) − γ 2
2 (n)]]

+ [α2(n) − β2(n)][4α2(n)[α2
2(n) − β2(n)γ2(n)] + α2(n)β2(n)[α2(n) − γ2(n)]

+ α2(n)β2(n)[β2(n) − γ2(n)]] + 4α2(n)[α3
2(n) − β3

2 (n)][β2(n) − γ2(n)]

+ [α2
2(n) − β2(n)γ2(n)]2

+ 2α2(n)[β2(n) − γ2(n)]2
[2β2

2 (n) + α3
2(n) + α2(n)β2

2 (n)], (3.10)

g2(n + 1)h2(n + 1)

f 2
2 (n)g4

2(n)
[β2(n + 1) − γ2(n + 1)] =

[
h2(n + 1)

f2(n)g2
2(n)

]2

−
g2(n + 1)

f 2
2 (n)g2(n)

t2(n + 1)

g3
2(n)

= [α2(n) − β2(n)]2
[1 + 4β2(n) + 2γ2(n) + 9β2

2 (n) + 6β3
2 (n) + 6β2

2 (n)γ2(n) + 2β2
2 (n)γ 2

2 (n)]

+ [α2(n) − β2(n)][2α2(n)[β2(n) − γ2(n)] + 4β2
2 (n)[α2(n) + β2(n) − 2γ2(n)]

+ 2α2(n)β2
2 (n)[β2

2 (n) − γ 2
2 (n)] + 2β3

2 (n)[α2(n)β2(n) − γ 2
2 (n)]]

+ β2(n)[α2
2(n) − β2

2 (n)][β2(n) − γ2(n)][1 + 8β2(n)]

+ β2
2 (n)[β2(n) − γ2(n)]2

[1 + 2α2(n) + 2β2(n) + 4α2
2(n)] (3.11)

such that γ2(n) ≤ β2(n) ≤ α2(n) is proved by mathematical induction. Next, Eq. (3.9) is valid for the first few positive
integer n by the numbers given in Table 1. Furthermore, the following expression is larger or equal to zero for any
positive integer n:

f2(n + 1)

f 3
2 (n)

−
g2(n + 1)

f 2
2 (n)g2(n)

= [α2(n) − β2(n)][2 + 5α2(n) + 2α2(n)β2(n)]

+ [1 + 2α2(n)][α2
2(n) − β2(n)γ2(n)], (3.12)

such that g2(n) ≤ f2(n) by induction, or equivalently α2(n) ≤ 1. Finally, we have t2(n) ≤ h2(n) ≤ g2(n) once Eq.
(3.9) is established. �

Lemma 3.3. Sequence {α2(n)}∞n=1 decreases monotonically, while sequences {γ2(n)}∞n=1 and {t2(n)/ f2(n)}∞n=1
increase monotonically. The limits α2 ≡ limn→∞ α2(n), β2 ≡ limn→∞ β2(n), γ2 ≡ limn→∞ γ2(n) exist.

Proof. Eq. (3.12) implies f2(n +1)g2(n)−g2(n +1) f2(n) ≥ 0. By induction, α2(n) decreases as positive n increases
using the results of Lemma 3.2. By Eqs. (3.5) and (3.6), we have

t2(n + 1)h2(n) − h2(n + 1)t2(n) = f2(n)h2(n)[g2
2(n) + 4g2(n)h2(n) + 3h2

2(n)][α2(n) − γ2(n)]

+ 2g2
2(n)h2(n)[g2(n) + 2h2(n) + t2(n)][β2(n) − γ2(n)]

+ 2 f2(n)h2
2(n)[g2(n) + h2(n)]

[
h2(n)

f2(n)
−

t2
2 (n)

h2
2(n)

]
≥ 0, (3.13)

such that γ2(n) increases as positive n increases. Finally, we have

t2(n + 1) f2(n) − f2(n + 1)t2(n) = f 4
2 (n)

[
g3

2(n)

f 3
2 (n)

−
t2(n)

f2(n)

]
+ 6 f 2

2 (n)g2(n)h2(n)[α2(n) − γ2(n)]

+ 3 f 2
2 (n)g2(n)t2(n)[α2(n) − β2(n)] + 9 f2(n)g2

2(n)h2(n)[β2(n) − γ2(n)]

− 2 f2(n)g2
2(n)t2(n)

[
g2(n)

f2(n)
−

h3
2(n)

g2
2(n)t2(n)

]
≥ 0, (3.14)
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where the last inequality holds because of the combination of the third and the last terms:

2 f2(n)g2(n)t2(n)

[
f2(n)

[
g2(n)

f2(n)
−

h2(n)

g2(n)

]
− g2(n)

[
g2(n)

f2(n)
−

h3
2(n)

g2
2(n)t2(n)

]]
≥ 0 . (3.15)

Because the sequence α2(n) decreases monotonically and is bounded below, the limit α2 exists. Similarly, sequence
γ2(n) and t2(n)/ f2(n) increase monotonically and are bounded above so that the limits γ2 and limn→∞ t2(n)/ f2(n)

exist. It follows that the limit limn→∞ h2(n)/ f2(n) exists since

lim
n→∞

t2(n)

f2(n)
= lim

n→∞

h2(n)

f2(n)
lim

n→∞

t2(n)

h2(n)
, (3.16)

such that β = limn→∞ h2(n)/g2(n) exists because

lim
n→∞

h2(n)

f2(n)
= lim

n→∞

g2(n)

f2(n)
lim

n→∞

h2(n)

g2(n)
. � (3.17)

With the existence of the limits α2, β2, γ2, and γ2 ≤ β2 ≤ α2, we have

1 = lim
n→∞

f2(n + 1)

f2(n)

g2(n)

g2(n + 1)

=
(1 + 3α2)

2
+ 2α3

2 + 3α2β2(1 + 2α2)

1 + 2β2 + 4α2 + β2γ2 + 8α2β2 + 3α2
2 + 2α2β2γ2 + 2α2β

2
2 + 4α2

2β2
(3.18)

by Eqs. (3.3) and (3.4), which leads to the following result:

Corollary 3.1. The three limits α2, β2 and γ2 are equal to one another.

In other words, the limits α2, β2 and γ2 are fix points of the recursion relations, Eqs. (3.3)–(3.6), as illustrated by
Eq. (3.18). The valid solution is α2 = β2 = γ2, but the actual value cannot be obtained by solving the recursion
relations. By Eq. (3.7), the numerical results give

α2 = β2 = γ2 = 0.850772150002 . . . , (3.19)

where more than a hundred significant figures can be evaluated when stage n in Eq. (3.7) is equal to seven.

Lemma 3.4. The asymptotic growth constant for the number of dimer–monomers on SG2(n) is bounded

2

3m+1 ln f2(m) +
ln[1 + 2γ2(m)]

3m ≤ zSG2 ≤
2

3m+1 ln f2(m) +
ln[1 + 2α2(m)]

3m , (3.20)

where m is a positive integer.

Proof. Let us define λ2(n) = f2(n + 1)/ f 3
2 (n). By Eq. (3.3), we have

λ2(n) = [1 + 3α2(n)]2
+ 2α3

2(n) + 3α2(n)β2(n)[1 + 2α2(n)]. (3.21)

It is clear that 1 ≤ λn ≤ 27, and

[1 + 2γ2(m)]3
≤ [1 + 2γ2(n)]3

≤ [1 + 2β2(n)]3
≤ λ2(n) ≤ [1 + 2α2(n)]3

≤ [1 + 2α2(m)]3 (3.22)

for n ≥ m. By Eqs. (2.3) and (3.1), we have

ln M2(n)

v(SG2(n))
=

2 ln[1 + 3α2(n) + 3α2(n)β2(n) + α2(n)β2(n)γ2(n)]

3(3n + 1)
+

2 ln f2(n)

3(3n + 1)
, (3.23)

where

ln f2(n) = ln λ2(n − 1) + 3 ln f2(n − 1)

= ln λ2(n − 1) + 3 ln λ2(n − 2) + 32 ln f2(n − 2)
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= · · ·

=

n−1∑
j=m

3n−1− j ln λ2( j) + 3n−m ln f2(m) (3.24)

for any m < n. By the definition of the asymptotic growth constant in Eq. (2.1)

zSG2 = lim
n→∞

ln M2(n)

v(SG2(n))

= lim
n→∞

2 ln[1 + 3α2(n) + 3α2(n)β2(n) + α2(n)β2(n)γ2(n)]

3(3n + 1)

+ lim
n→∞

2
n−1∑
j=m

3n−1− j ln λ2( j) + 2[3n−m ln f2(m)]

3(3n + 1)

=
2

32

∞∑
j=m

ln λ2( j)

3 j +
2

3m+1 ln f2(m). (3.25)

The proof is completed using the inequality (3.22). �

The difference between the upper and lower bounds for zSG2 quickly converges to zero as m increases, and we
have the following proposition:

Proposition 3.1. The asymptotic growth constant for the number of dimer–monomers on the two-dimensional
Sierpinski gasket SG2(n) in the large n limit is zSG2 = 0.656294236916 . . ..

The numerical value of zSG2 can be calculated with more than a hundred significant figures accurate when m in Eq.
(3.20) is equal to seven. It is too lengthy to be included here and is available from the authors on request. In passing,
we notice that it is possible to tighten the lower bound in Eq. (3.20) if γ2(m) is replaced by β2(m). Numerically results
show that the difference between the upper bound and such new lower bound is about half of the difference between
the bounds given in Eq. (3.20). However, such improvement is insignificant compared with the convergence of the
bound-difference as m increases. As it is considerably more difficult to prove that sequence {β2(n)}∞n=1 increases
monotonically, we are satisfied by the lower bound reported here.

Define the asymptotic growth constants for the functions f2(n), g2(n), h2(n), t2(n) as in Eq. (2.1) for M2(n).
Because the magnitudes of f2(n), g2(n), h2(n), t2(n) are in the same order in the large n limit by Eqs. (3.7) and
(3.19), we have the following result:

Corollary 3.2. The asymptotic growth constants for f2(n), g2(n), h2(n), t2(n) are all equal to zSG2 .

This can also be seen by Eq. (3.20) that the asymptotic growth constant for f2(n) is the same as zSG2 .

4. The number of dimer–monomers on SG2,b(n) with b = 3, 4

The method given in the previous section can be applied to the number of dimer–monomers on SGd,b(n) with larger
values of d and b. The number of configurations to be considered increases as d and b increase, and the recursion
relations must be derived individually for each d and b. In this section, we consider the generalized two-dimensional
Sierpinski gasket SG2,b(n) with the number of layers b equal to three and four. For SG2,3(n), the numbers of edges
and vertices are given by

e(SG2,3(n)) = 3 × 6n, (4.1)

v(SG2,3(n)) =
7 × 6n

+ 8
5

, (4.2)

where the three outmost vertices have degree two. There are (6n
− 1)/5 vertices of SG2,3(n) with degree

six and 6(6n
− 1)/5 vertices with degree four. By Definition 3.1, the number of dimer–monomers is
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Table 3
The first few values of M2,3(n), f2,3(n), g2,3(n), h2,3(n), t2,3(n)

n 0 1 2

M2,3(n) 4 425 755,290,432,490,932
f2,3(n) 1 66 116,464,644,336,176
g2,3(n) 0 56 100,722,462,529,064
h2,3(n) 1 49 87,108,127,443,640
t2,3(n) 0 44 75,334,018,236,644

Table 4
The first few values of α2,3(n), β2,3(n), γ2,3(n)

n 1 2 3

α2,3(n) 0.848484848484848 0.864832955126948 0.864833096846111
β2,3(n) 0.875 0.864833178780796 0.864833096846111
γ2,3(n) 0.897959183673469 0.864833402432925 0.864833096846111

The last digits given are rounded off.

M2,3(n) = f2,3(n)+3g2,3(n)+3h2,3(n)+t2,3(n). The initial values are the same as for SG2: f2,3(0) = 1, g2,3(0) = 0,
h2,3(0) = 1 and t2,3(0) = 0.

The recursion relations are lengthy and given in the Appendix. Some values of M2,3(n), f2,3(n), g2,3(n), h2,3(n),
t2,3(n) are listed in Table 3. These numbers grow exponentially, and do not have simple integer factorizations.

The sequence of the ratio defined in Eq. (3.7) {α2,3(n)}∞n=1 increases monotonically and {γ2,3(n)}∞n=1 decreases
monotonically with 0 ≤ α2,3(n) ≤ γ2,3(n) ≤ 1, in contrast to the results for SG2(n). The values of α2,3(n), β2,3(n),
γ2,3(n) for small n are listed in Table 4. Define their limits as in Lemma 3.3, the numerical results give

α2,3 = β2,3 = γ2,3 = 0.864833096846 . . . , (4.3)

where more than a hundred significant figures can be evaluated when stage n in Eq. (3.7) is equal to five.
By a similar argument as Lemma 3.4, the asymptotic growth constant for the number of dimer–monomers on

SG2,3(n) is bounded

5 ln f2,3(m) + 6 ln[1 + 2α2,3(m)] + ln[1 + 3α2,3(m)]

7 × 6m ≤ zSG2,3

≤
5 ln f2,3(m) + 6 ln[1 + 2γ2,3(m)] + ln[1 + 3γ2,3(m)]

7 × 6m , (4.4)

with m a positive integer. We have the following proposition:

Proposition 4.1. The asymptotic growth constant for the number of dimer–monomers on the generalized two-
dimensional Sierpinski gasket SG2,3(n) in the large n limit is zSG2,3 = 0.671617161058 . . ..

The convergence of the upper and lower bounds remains quick. More than a hundred significant figures for zSG2,3

can be obtained when m in Eq. (4.4) is equal to five.
For SG2,4(n), the numbers of edges and vertices are given by

e(SG2,4(n)) = 3 × 10n, (4.5)

v(SG2,4(n)) =
4 × 10n

+ 5
3

, (4.6)

where again the three outmost vertices have degree two. There are (10n
− 1)/3 vertices of SG2,4(n) with degree

six, and (10n
− 1) vertices with degree four. By Definition 3.1, the number of dimer–monomers is M2,4(n) =

f2,4(n) + 3g2,4(n) + 3h2,4(n) + t2,4(n). The initial values are the same as for SG2: f2,4(0) = 1, g2,4(0) = 0,
h2,4(0) = 1 and t2,4(0) = 0. We have written a computer program to obtain the recursion relations for SG2,4(n).
They are too lengthy to be included here and are available from the authors on request. Some values of M2,4(n),
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Table 5
The first few values of M2,4(n), f2,4(n), g2,4(n), h2,4(n), t2,4(n)

n 0 1 2

M2,4(n) 4 14,278 7,033,761,314,434,948,243,456,944,474,554,222,281,728
f2,4(n) 1 2,220 1,095,249,688,634,151,454,219,516,689,432,826,798,080
g2,4(n) 0 1,914 940,563,707,718,765,231,855,988,194,853,818,067,968
h2,4(n) 1 1,640 807,724,574,091,886,425,362,687,789,454,449,995,776
t2,4(n) 0 1,396 693,646,780,368,841,817,581,399,832,196,591,292,416

Table 6
The first few values of α2,4(n), β2,4(n), γ2,4(n)

n 1 2 3

α2,4(n) 0.862162162162162 0.858766468942539 0.858766468941692
β2,4(n) 0.856844305120167 0.858766468941199 0.858766468941692
γ2,4(n) 0.851219512195122 0.858766468939860 0.858766468941692

The last digits given are rounded off.

f2,4(n), g2,4(n), h2,4(n), t2,4(n) are listed in Table 5. These numbers grow exponentially, and do not have simple
integer factorizations.

The sequence of the ratio defined in Eq. (3.7) {α2,4(n)}∞n=1 decreases monotonically and {γ2,4(n)}∞n=1 increases
monotonically with 0 ≤ γ2,4(n) ≤ α2,4(n) ≤ 1, the same as the results for SG2(n). The values of α2,4(n), β2,4(n),
γ2,4(n) for small n are listed in Table 6. Define their limits as in Lemma 3.3, the numerical results give

α2,4 = β2,4 = γ2,4 = 0.858766468941 . . . (4.7)

where more than a hundred significant figures can be evaluated when stage n in Eq. (3.7) is equal to four.
By a similar argument as Lemma 3.4, the asymptotic growth constant for the number of dimer–monomers on

SG2,4(n) is bounded

3 ln f2,4(m) + 3 ln[1 + 2γ2,4(m)] + ln[1 + 3γ2,4(m)]

4 × 10m ≤ zSG2,4

≤
3 ln f2,4(m) + 3 ln[1 + 2α2,4(m)] + ln[1 + 3α2,4(m)]

4 × 10m , (4.8)

with m a positive integer. We have the following proposition.

Proposition 4.2. The asymptotic growth constant for the number of dimer–monomers on the generalized two-
dimensional Sierpinski gasket SG2,4(n) in the large n limit is zSG2,4 = 0.684872262332 . . ..

The convergence of the upper and lower bounds is again quick. More than a hundred significant figures for zSG2,4

can be obtained when m in Eq. (4.8) is equal to four.

5. The number of dimer–monomers on SGd(n) with d = 3, 4

In this section, we derive the asymptotic growth constants of dimer–monomers on SGd(n) with d = 3, 4. For the
three-dimensional Sierpinski gasket SG3(n), we use the following definitions.

Definition 5.1. Consider the three-dimensional Sierpinski gasket SG3(n) at stage n. (i) Define M3(n) ≡

NDM (SG3(n)) as the number of dimer–monomers. (ii) Define f3(n) as the number of dimer–monomers such that
the four outmost vertices are occupied by monomers. (iii) Define g3(n) as the number of dimer–monomers such that
one certain outmost vertices is occupied by a dimer and the other three outmost vertices are occupied by monomers.
(iv) Define h3(n) as the number of dimer–monomers such that two certain outmost vertices are occupied by monomers
and the other two outmost vertices are occupied by dimers. (v) Define r3(n) as the number of dimer–monomers such
that one certain outmost vertices is occupied by a monomer and the other three outmost vertices are occupied by
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Fig. 9. Illustration for the configurations M3(n), f3(n), g3(n), h3(n), r3(n) and s3(n). Only the four outmost vertices are shown explicitly for
f3(n), g3(n), h3(n), r3(n) and s3(n), where each open circle is occupied by a monomer and each solid circle is occupied by a dimer.

Table 7
The first few values of M3(n), f3(n), g3(n), h3(n), r3(n), s3(n)

n 0 1 2 3

M3(n) 10 945 132,820,373,046 49,123,375,811,021,432,878,640,796,802,876,545,882,185,505
f3(n) 1 51 7,365,569,811 2,724,928,560,954,289,860,903,291,271,266,882,549,492,483
g3(n) 0 57 7,816,070,424 2,889,924,536,764,017,260,444,663,495,693,780,813,791,233
h3(n) 1 62 8,289,450,499 3,064,910,998,294,837,201,844,707,724,238,032,710,560,958
r3(n) 0 60 8,786,476,992 3,250,492,861,272,219,038,243,497,885,127,347,116,333,900
s3(n) 3 54 9,307,910,577 3,447,311,668,153,174,611,916,613,662,896,955,348,826,742

Table 8
The first few values of α3(n), γ3(n) and other ratios

n 1 2 3 4

α3(n) 1.11764705882353 1.06116303620220 1.06055056935215 1.06055052894365
h3(n)/g3(n) 1.08771929824561 1.06056497054408 1.06055052971271 1.06055052894365
r3(n)/h3(n) 0.96774193548387 1.05995891923837 1.06055049007316 1.06055052894365
γ3(n) 0.9 1.05934501228135 1.06055045043351 1.06055052894365

The last digits given are rounded off.

dimers. (vi) Define s3(n) as the number of dimer–monomers such that all four outmost vertices are occupied by
dimers.

The quantities M3(n), f3(n), g3(n), h3(n), r3(n) and s3(n) are illustrated in Fig. 9, where only the outmost vertices

are shown. There are
(

4
1

)
= 4 equivalent g3(n),

(
4
2

)
= 6 equivalent h3(n), and

(
4
1

)
= 4 equivalent r3(n). By

definition,

M3(n) = f3(n) + 4g3(n) + 6h3(n) + 4r3(n) + s3(n). (5.1)

The initial values at stage zero are f3(0) = 1, g3(0) = 0, h3(0) = 1, r3(0) = 0, s3(0) = 3 and M3(0) = 10.
The recursion relations are lengthy and given in the Appendix. Some values of M3(n), f3(n), g3(n), h3(n), r3(n),

s3(n) are listed in Table 7. These numbers grow exponentially, and do not have simple integer factorizations.
Define α3(n) = g3(n)/ f3(n) and γ3(n) = s3(n)/r3(n) as in Eq. (3.7). We find {α3(n)}∞n=1 decreases monotonically

and {γ3(n)}∞n=1 increases monotonically with 1 ≤ γ3(n) ≤ α3(n) for n ≥ 2. The values of α3(n), γ3(n) and other
ratios for small n are listed in Table 8. Define their limits as in Lemma 3.3, the numerical results give

α3 = h3/g3 = r3/h3 = γ3 = 1.06055052894 . . . , (5.2)

where more than a hundred significant figures can be evaluated when stage n is equal to seven.
By a similar argument as Lemma 3.4, the asymptotic growth constant for the number of dimer–monomers on

SG3(n) is bounded:

ln f3(m) + 2 ln[1 + 2γ3(m)]

2 × 4m ≤ zSG3 ≤
ln f3(m) + 2 ln[1 + 2α3(m)]

2 × 4m , (5.3)

with m a positive integer. We have the following proposition.

Proposition 5.1. The asymptotic growth constant for the number of dimer–monomers on the three-dimensional
Sierpinski gasket SG3(n) in the large n limit is zSG3 = 0.781151467411 . . ..
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Fig. 10. Illustration for the configurations M4(n), f4(n), g4(n), h4(n), r4(n), s4(n) and t4(n). Only the five outmost vertices are shown explicitly
for f4(n), g4(n), h4(n), r4(n), s4(n) and t4(n), where each open circle is occupied by a monomer and each solid circle is occupied by a dimer.

Table 9
The first few values of M4(n), f4(n), g4(n), h4(n), r4(n), s4(n), t4(n)

n 0 1 2

M4(n) 26 141,339 1,567,220,397,434,550,336,692,928
f4(n) 1 2,460 27,951,923,701,499,685,610,752
g4(n) 0 3,168 34,593,006,758,221,606,500,864
h4(n) 1 3,990 42,806,033,106,111,666,338,688
r4(n) 0 4,852 52,961,649,817,161,203,920,896
s4(n) 3 5,683 65,517,552,720,775,495,239,744
t4(n) 0 6,204 81,038,847,105,336,439,783,296

The convergence of the upper and lower bounds is as quick as for the ordinary two-dimensional case. More than a
hundred significant figures for zSG3 can be obtained when m in Eq. (5.3) is equal to seven.

For the four-dimensional Sierpinski gasket SG4(n), we use the following definitions.

Definition 5.2. Consider the four-dimensional Sierpinski gasket SG4(n) at stage n. (i) Define M4(n) ≡

NDM (SG4(n)) as the number of dimer–monomers. (ii) Define f4(n) as the number of dimer–monomers such that
the five outmost vertices are occupied by monomers. (iii) Define g4(n) as the number of dimer–monomers such that
one certain outmost vertices is occupied by a dimer and the other four outmost vertices are occupied by monomers. (iv)
Define h4(n) as the number of dimer–monomers such that two certain outmost vertices are occupied by dimers and the
other three outmost vertices are occupied by monomers. (v) Define r4(n) as the number of dimer–monomers such that
two certain outmost vertices are occupied by monomers and the other three outmost vertices are occupied by dimers.
(vi) Define s4(n) as the number of dimer–monomers such that one certain outmost vertices is occupied by a monomer
and the other four outmost vertices are occupied by dimers. (vii) Define t4(n) as the number of dimer–monomers such
that all five outmost vertices are occupied by dimers.

The quantities M4(n), f4(n), g4(n), h4(n), r4(n), s4(n) and t4(n) are illustrated in Fig. 10, where only the outmost

vertices are shown. There are
(

5
1

)
= 5 equivalent g4(n),

(
5
2

)
= 10 equivalent h4(n),

(
5
3

)
= 10 equivalent r4(n),(

5
1

)
= 5 equivalent s4(n). By definition,

M4(n) = f4(n) + 5g4(n) + 10h4(n) + 10r4(n) + 5s4(n) + t4(n). (5.4)

The initial values at stage zero are f4(0) = 1, g4(0) = 0, h4(0) = 1, r4(0) = 0, s4(0) = 3, t4(0) = 0 and M4(0) = 26.
We have written a computer program to obtain the recursion relations for SG4(n). They are too lengthy to be

included here, and are available from the authors on request. Some values of M4(n), f4(n), g4(n), h4(n), r4(n), s4(n),
t4(n) are listed in Table 9. These numbers grow exponentially, and do not have simple integer factorizations.
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Table 10
The first few values of α4(n), γ4(n) and other ratios

n 1 2 3 4

α4(n) 1.28780487804878 1.23758948141253 1.23734576161280 1.23734575732423
h4(n)/g4(n) 1.25946969696970 1.23741869000555 1.23734575860203 1.23734575732423
r4(n)/h4(n) 1.21604010025063 1.23724732179398 1.23734575559125 1.23734575732423
s4(n)/r4(n) 1.17126957955482 1.23707537334960 1.23734575258048 1.23734575732423
γ4(n) 1.09167693119831 1.23690284114717 1.23734574956971 1.23734575732423

The last digits given are rounded off.

Define α4(n) = g4(n)/ f4(n) and γ4(n) = t4(n)/s4(n) as in Eq. (3.7). We find {α4(n)}∞n=1 decreases monotonically
and {γ4(n)}∞n=1 increases monotonically with 1 ≤ γ4(n) ≤ α4(n) for positive integer n. The values of α4(n), γ4(n)

and other ratios for small n are listed in Table 10. Define their limits as in Lemma 3.3, the numerical results give

α4 = h4/g4 = r4/h4 = s4/r4 = γ4 = 1.23734575732 . . . , (5.5)

where more than a hundred significant figures can be evaluated when stage n is equal to seven.
By a similar argument as Lemma 3.4, the asymptotic growth constant for the number of dimer–monomers on

SG4(n) is bounded:

2 ln f4(m) + 5 ln[1 + 2γ4(m)]

5m+1 ≤ zSG4 ≤
2 ln f4(m) + 5 ln[1 + 2α4(m)]

5m+1 , (5.6)

with m a positive integer. We have the following proposition:

Proposition 5.2. The asymptotic growth constant for the number of dimer–monomers on the four-dimensional
Sierpinski gasket SG4(n) in the large n limit is zSG4 = 0.876779402949 . . ..

The convergence of the upper and lower bounds is as quick as for the ordinary two-dimensional case. More than a
hundred significant figures for zSG4 can be obtained when m in Eq. (5.6) is equal to seven.

6. Summary

The bounds of the asymptotic growth constants for dimer–monomers on SG2(n), SG3(n) and SG4(n) given in
Sections 3 and 5 lead to the following conjecture for general SGd(n).

Conjecture 6.1. Define αd(n) as the ratio: the number of dimer–monomers on SGd(n) with all but one outmost
vertices covered by monomers divided by that with all outmost vertices covered by monomers; define γd(n) as the
ratio: the number of dimer–monomers on SGd(n) with all outmost vertices covered by dimers divided by that with all
but one outmost vertices covered by dimers. The asymptotic growth constant for the number of dimer–monomers on
the d-dimensional Sierpinski gasket SGd is bounded

2 ln fd(m) + (d + 1) ln[1 + 2γd(m)]

(d + 1)m+1 ≤ zSGd ≤
2 ln fd(m) + (d + 1) ln[1 + 2αd(m)]

(d + 1)m+1 . (6.1)

We notice that the convergence of the upper and lower bounds of the asymptotic growth constants for
dimer–monomers on SGd(n) is about the same for each integer d ≥ 2, in contrast to the results observed in Ref. [35]
for spanning forests on SGd(n) where the convergence of the bounds of the asymptotic growth constants becomes
slow when d increases.

We summarize the values of asymptotic growth constants zSGd,b and the ratio αd,b in Table 11. The value of zSGd

increases as dimension d increases. Similarly for the generalized two-dimensional Sierpinski gasket, the value of
zSG2,b increases slightly as b increases. The ratio αd,b is less than one for the generalized two-dimensional Sierpinski
gasket, while it is larger than one for dimension larger or equal to three.

Compare the present results with those in Ref. [36], we find that the number of dimer–monomers on the Sierpinski
gasket SGd(n) is less than that of spanning trees in general.
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Table 11
Numerical values of zSGd,b and the ratio αd,b

d b D zSGd,b αd,b

2 2 1.585 0.6562942369 0.8507721500
2 3 1.631 0.6716171611 0.8648330968
2 4 1.661 0.6848722623 0.8587664689
3 2 2 0.7811514674 1.060550529
4 2 2.322 0.8767794029 1.237345757

The last digits given are rounded off.
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Appendix A. Recursion relations for SG2,3(n)

We give the recursion relations for the generalized two-dimensional Sierpinski gasket SG2,3(n) here. Since the
subscript is d = 2, b = 3 for all the quantities throughout this section, we will use the simplified notation fn+1 to
denote f2,3(n + 1) and similar notations for other quantities. For any nonnegative integer n, we have

fn+1 = f 6
n + 15 f 5

n gn + 12 f 5
n hn + 84 f 4

n g2
n + 3 f 5

n tn + 117 f 4
n gnhn + 220 f 3

n g3
n + 24 f 4

n gn tn + 33 f 4
n h2

n

+ 390 f 3
n g2

nhn + 273 f 2
n g4

n + 9 f 4
n hn tn + 63 f 3

n g2
n tn + 180 f 3

n gnh2
n + 519 f 2

n g3
nhn + 141 fng5

n

+ 36 f 3
n gnhn tn + 60 f 2

n g3
n tn + 20 f 3

n h3
n + 264 f 2

n g2
nh2

n + 240 fng4
nhn + 20g6

n + 3 f 3
n h2

n tn

+ 30 f 2
n g2

nhn tn + 15 fng4
n tn + 33 f 2

n gnh3
n + 90 fng3

nh2
n + 21g5

nhn, (A.1)

gn+1 = f 5
n gn + 2 f 5

n hn + 13 f 4
n g2

n + f 5
n tn + 35 f 4

n gnhn + 60 f 3
n g3

n + 14 f 4
n gn tn + 18 f 4

n h2
n + 188 f 3

n g2
nhn

+ 120 f 2
n g4

n + 11 f 4
n hn tn + 61 f 3

n g2
n tn + 152 f 3

n gnh2
n + 397 f 2

n g3
nhn + 99 fng5

n + f 4
n t2

n

+ 72 f 3
n gnhn tn + 102 f 2

n g3
n tn + 30 f 3

n h3
n + 372 f 2

n g2
nh2

n + 310 fng4
nhn + 25g6

n + 4 f 3
n gn t2

n

+ 13 f 3
n h2

n tn + 130 f 2
n g2

nhn tn + 57 fng4
n tn + 107 f 2

n gnh3
n + 266 fng3

nh2
n + 63g5

nhn + 4 f 2
n g2

n t2
n

+ 30 f 2
n gnh2

n tn + 52 fng3
nhn tn + 6g5

n tn + 6 f 2
n h4

n + 60 fng2
nh3

n + 34g4
nh2

n, (A.2)

hn+1 = f 4
n g2

n + 4 f 4
n gnhn + 11 f 3

n g3
n + 2 f 4

n gn tn + 4 f 4
n h2

n + 50 f 3
n g2

nhn + 40 f 2
n g4

n + 4 f 4
n hn tn

+ 21 f 3
n g2

n tn + 68 f 3
n gnh2

n + 191 f 2
n g3

nhn + 56 fng5
n + f 4

n t2
n + 52 f 3

n gnhn tn + 66 f 2
n g3

n tn

+ 25 f 3
n h3

n + 289 f 2
n g2

nh2
n + 263 fng4

nhn + 24g6
n + 9 f 3

n gn t2
n + 23 f 3

n h2
n tn + 167 f 2

n g2
nhn tn

+ 72 fng4
n tn + 150 f 2

n gnh3
n + 390 fng3

nh2
n + 101g5

nhn + 5 f 3
n hn t2

n + 19 f 2
n g2

n t2
n + 94 f 2

n gnh2
n tn

+ 158 fng3
nhn tn + 20g5

n tn + 20 f 2
n h4

n + 201 fng2
nh3

n + 123g4
nh2

n + 11 f 2
n gnhn t2

n + 9 fng3
n t2

n

+ 9 f 2
n h3

n tn + 68 fng2
nh2

n tn + 27g4
nhn tn + 27 fngnh4

n + 41g3
nh3

n, (A.3)

tn+1 = f 3
n g3

n + 6 f 3
n g2

nhn + 9 f 2
n g4

n + 3 f 3
n g2

n tn + 12 f 3
n gnh2

n + 57 f 2
n g3

nhn + 24 fng5
n + 12 f 3

n gnhn tn

+ 24 f 2
n g3

n tn + 8 f 3
n h3

n + 126 f 2
n g2

nh2
n + 150 fng4

nhn + 20g6
n + 3 f 3

n gn t2
n + 12 f 3

n h2
n tn

+ 99 f 2
n g2

nhn tn + 51 fng4
n tn + 111 f 2

n gnh3
n + 324 fng3

nh2
n + 120g5

nhn + 6 f 3
n hn t2

n + 18 f 2
n g2

n t2
n

+ 117 f 2
n gnh2

n tn + 186 fng3
nhn tn + 33g5

n tn + 30 f 2
n h4

n + 282 fng2
nh3

n + 240g4
nh2

n + f 3
n t3

n

+ 36 f 2
n gnhn t2

n + 21 fng3
n t2

n + 33 f 2
n h3

n tn + 183 fng2
nh2

n tn + 99g4
nhn tn + 87 fngnh4

n + 180g3
nh3

n

+ 3 f 2
n gn t3

n + 9 f 2
n h2

n t2
n + 24 fng2

nhn t2
n + 6g4

n t2
n + 42 fngnh3

n tn + 63g3
nh2

n tn + 6 fnh5
n

+ 39g2
nh4

n . (A.4)

There are always 2916 = 4 × 36 terms in these equations.
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Appendix B. Recursion relations for SG3(n)

We give the recursion relations for the three-dimensional Sierpinski gasket SG3(n) here. Since the subscript is
d = 3 for all the quantities throughout this section, we will use the simplified notation fn+1 to denote f3(n + 1) and
similar notations for other quantities. For any nonnegative integer n, we have

fn+1 = f 4
n + 12 f 3

n gn + 12 f 3
n hn + 48 f 2

n g2
n + 4 f 3

n rn + 84 f 2
n gnhn + 72 fng3

n + 24 f 2
n gnrn + 30 f 2

n h2
n

+ 156 fng2
nhn + 30g4

n + 12 f 2
n hnrn + 36 fng2

nrn + 84 fngnh2
n + 60g3

nhn + 24 fngnhnrn + 8g3
nrn

+ 8 fnh3
n + 24g2

nh2
n, (B.1)

gn+1 = f 3
n gn + 3 f 3

n hn + 9 f 2
n g2

n + 3 f 3
n rn + 33 f 2

n gnhn + 24 fng3
n + f 3

n sn + 24 f 2
n gnrn + 21 f 2

n h2
n

+ 96 fng2
nhn + 18g4

n + 6 f 2
n gnsn + 21 f 2

n hnrn + 51 fng2
nrn + 93 fngnh2

n + 69g3
nhn + 3 f 2

n hnsn

+ 9 fng2
nsn + 3 f 2

n r2
n + 66 fngnhnrn + 24g3

nrn + 21 fnh3
n + 66g2

nh2
n + 6 fngnhnsn + 2g3

nsn

+ 6 fngnr2
n + 12 fnh2

nrn + 24g2
nhnrn + 14gnh3

n, (B.2)

hn+1 = f 2
n g2

n + 6 f 2
n gnhn + 6 fng3

n + 6 f 2
n gnrn + 8 f 2

n h2
n + 38 fng2

nhn + 8g4
n + 2 f 2

n gnsn + 14 f 2
n hnrn

+ 30 fng2
nrn + 64 fngnh2

n + 50g3
nhn + 4 f 2

n hnsn + 8 fng2
nsn + 5 f 2

n r2
n + 80 fngnhnrn + 30g3

nrn

+ 26 fnh3
n + 87g2

nh2
n + 2 f 2

n rnsn + 16 fngnhnsn + 6g3
nsn + 18 fngnr2

n + 34 fnh2
nrn + 72g2

nhnrn

+ 44gnh3
n + 4 fngnrnsn + 4 fnh2

nsn + 8g2
nhnsn + 8 fnhnr2

n + 8g2
nr2

n + 28gnh2
nrn + 4h4

n, (B.3)

rn+1 = fng3
n + 9 fng2

nhn + 3g4
n + 9 fng2

nrn + 24 fngnh2
n + 27g3

nhn + 3 fng2
nsn + 42 fngnhnrn

+ 22g3
nrn + 18 fnh3

n + 75g2
nh2

n + 12 fngnhnsn + 6g3
nsn + 15 fngnr2

n + 39 fnh2
nrn + 99g2

nhnrn

+ 69gnh3
n + 6 fngnrnsn + 9 fnh2

nsn + 21g2
nhnsn + 21 fnhnr2

n + 24g2
nr2

n + 96gnh2
nrn + 15h4

n

+ 6 fnhnrnsn + 6g2
nrnsn + 12gnh2

nsn + 2 fnr3
n + 24gnhnr2

n + 14h3
nrn, (B.4)

sn+1 = g4
n + 12g3

nhn + 12g3
nrn + 48g2

nh2
n + 4g3

nsn + 84g2
nhnrn + 72gnh3

n + 24g2
nhnsn + 30g2

nr2
n

+ 156gnh2
nrn + 30h4

n + 12g2
nrnsn + 36gnh2

nsn + 84gnhnr2
n + 60h3

nrn + 24gnhnrnsn + 8h3
nsn

+ 8gnr3
n + 24h2

nr2
n . (B.5)

There are always 729 = 36 terms in these equations.
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