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a b s t r a c t

We consider a version of directed bond percolation on a square latticewhose vertical edges
are directed upward with probabilities pv and horizontal edges are directed rightward
with probabilities ph and 1 in alternate rows. Let τ(M,N) be the probability that there is a
connected directed path of occupied edges from (0, 0) to (M,N). For each ph ∈ [0, 1], pv =

(0, 1) and aspect ratio α = M/N fixed, it was established (Chen and Wu, 2006) [9] that
there is an αc = [1 − p2v − ph(1 − pv)

2
]/2p2v such that, as N → ∞, τ(M,N) is 1, 0, and

1/2 for α > αc , α < αc , and α = αc , respectively. In particular, for ph = 0 or 1, the model
reduces to the Domany–Kinzel model (Domany and Kinzel, 1981 [7]). In this article, we
investigate the rate of convergence of τ(M,N) and the asymptotic behavior of τ(M−

n ,N)
and τ(M+

n ,N), where M−
n /N ↑ αc and M+

n /N ↓ αc as N ↑ ∞. Moreover, we obtain a
susceptibility on the rectangular net {(m, n) ∈ Z+ × Z+ : 0 ≤ m ≤ M and 0 ≤ n ≤ N}.
The proof is based on the Berry–Esseen theorem.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Directed percolation (oriented percolation) can be thought of simply as a percolation process on a directed lattice in
which connections are allowed only in a preferred direction. It was first studied by Broadbent and Hammersley in 1957 [1]
and it has remained to this day as one of themost outstanding interesting problems in probability and statistical mechanics.
Furthermore, directed percolation is closely related to the Reggeon field theory in high-energy physics and the Markov
processes with branching, recombination, and absorption that occur in chemistry and biology [2,3], etc. Various properties,
results, and conjectures of directed percolation can be found in [4,5] and the references therein. However, very little is known
in the way of exact solutions for the directed percolation problem.

We say that the vertex (m, n) is percolating if there is a connected directed path of occupied edges from (0, 0) to (m, n).
Compact directed percolation [6] is a version of the universality of directed percolation class. It is defined on a square
by the condition transition probabilities as follows: P((x, y) is percolating: (x − 1, y), (x, y − 1) are not percolating) =

0, P((x, y) is percolating:(x − 1, y) is percolating and (x, y − 1) is not percolating) = p1, P((x, y) is percolating: (x −

1, y) is not percolating and (x, y−1) is percolating) = p2 and P((x, y) is percolating: (x−1, y), (x, y−1) are percolating) =

1 for any p1, p2 ∈ [0, 1] and (x, y) ≠ (0, 0). Hence, the system has two absorbing states, namely, the empty and the fully
occupied lattice.

Domany and Kinzel [7] defined a solvable version of compact directed percolation on a square lattice in 1981, as follows.
For p ∈ (0, 1) fixed, each nearest-neighbour vertical bond is directed upward with occupation probability p (independently
of the other bonds) and each nearest-neighbour horizontal bond is directed rightward with occupation probability 1.
Furthermore, it is known that the boundary of the Domany–Kinzel model has the same distribution as the one-dimensional
last-passage percolation model [8]. In this article, we consider a version of directed percolation on a square lattice whose
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Fig. 1. A typical percolating configuration on a 5×4 latticewith hole (3, 1). Open circles denote lattice sites. Oriented edges are occupiedwith probabilities
shown. Empty edges carry probabilities 1 − ph and 1 − pv in the horizontal and vertical directions, respectively.

vertical edges are occupiedwith a probability pv andwhose horizontal edges in the n-th row are occupiedwith a probability
1 if n is odd and ph if n is even. In particular, for ph = 0 or 1, themodel reduces to the Domany–Kinzelmodel, as shown below.
However, the model is not a compact directed percolation class for ph ∈ (0, 1), since the connected cluster may has hole(s)
(as shown in Fig. 1). Nevertheless, the hole(s) is (are) rectangular and its (their) width(s) is (are) 2;, it is believed that the
critical behavior of the model refers to the compact directed percolation class and not to the habitual directed percolation
class.

Given any α > 0 and ph ∈ [0, 1], pv ∈ (0, 1), throughout this article, let Nα = ⌊αN⌋ = sup{m ∈ Z+ : m ≤ αN} with
N ∈ Z+ and denote a two-dimensional rectangular net {(m, n) ∈ Z+ × Z+ : 0 ≤ m ≤ M and 0 ≤ n ≤ N} by M × N . Let P
be the probability distribution of the bond variables. Define the two-point correlation function as follows:

τ(Nα,N) = P((Nα,N) is percolating).

It was shown by the method of steepest descent [9] that there is

αc = [1 − p2v − ph(1 − pv)
2
]/2p2v, (1.1)

such that

lim
N→∞

τ(N2α, 2N) =


1 if α > αc,
0 if α < αc,

1
2

if α = αc .

(1.2)

For α < αc , the critical exponent of the correlation length ν = 2 is the same as that found in the Domany–Kinzel model
[7,10–12].

The behavior of (1.2) is interesting, since the critical point is discontinuous. It is appropriate to define someof the standard
critical exponents and to sketch the phenomenological scaling theory of τ(Nα,N). For α < αc , the scaling theory of critical
behavior now asserts that the singular part of τ(Nα,N) varies asymptotically as (see [13])

τ(Nα,N) ∼
Aα

Nη
exp


−BαN

(αc − α)−ν


, (1.3)

where f1(N) ∼ f2(N) means that limN→∞ f1(N)/f2(N) = 1, the constants Aα and Bα depend on α, and η, ν ∈ (0, ∞) are
universal constants. Furthermore, η is called the critical exponent and ν is called the critical exponent of the correlation
length [14]. Note that there has been no general proof of the existence of critical exponents. To the best of our knowledge,
the rate of convergence of (1.2) is unknown, and the values of Aα , Bα , and η in (1.3) for α ∈ (0, αc) are unknown too, even
for Domany–Kinzel model. This allows us analyze (1.2) in detail.

Probability theory is a powerful tool to deal with this model. In fact, we can get αc in (1.1) and the result of (1.2) by
the law of large numbers rather than the method of steepest descent. Furthermore, the Berry–Esseen theorem attempts to
quantify the rate at which this convergence to normality takes place. In this paper, we use the Berry–Esseen theorem to
obtain sharp new results.

The rest of this paper is organized as follows. In Section 2, we state the main results (Theorems 2.1, 2.2 and 2.4) of this
paper. Theorem 2.1 is proven in Section 3. In Section 4, we prove Theorem 2.2 by Theorem 2.1 and we apply Theorem 2.2 to
show Theorem 2.4.
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2. Main results

Let Φ(x) =
1

√
2π

 x
−∞

e−
u2
2 d u be the standard cumulative distribution function of a Gaussian distribution with mean 0

and variance 1, and let Ψ (x) = 1 − Φ(x) =
1

√
2π


∞

x e−
u2
2 d u. It is not difficult to get that

Ψ (x) =
e−

x2
2

√
2πx

(1 + O(x−2)) for x large. (2.1)

In the first result of this paper, we study the rate of convergence of τ(N2α, 2N) for α > 0 fixed.

Theorem 2.1. Let pv ∈ (0, 1) and ph ∈ [0, 1] be given. For any α > 0, there is a critical aspect ratio αc that is given in (1.1) such
that

τ(N2α, 2N) =




1 + O


1

√
N


Ψ (κ(αc − α)

√
N) if α < αc,

1
2

+ O


1
√
N


if α = αc,

1 −


1 + O


1

√
N


Ψ (κ(α − αc)

√
N) if α > αc,

where

κ =
2pv

p2v(2αc + 1)2 − ph(1 − pv)2 − 1
> 0. (2.2)

For ph = 1, our model reduces to a Domany–Kinzel model on N2α × 2N lattice, and (1.1) leads to αc = (1 − pv)/pv , in
agreementwith previous results [7,10], and κ =

√
2(1 − pv)/αc . For ph = 0, ourmodel is again aDomany–Kinzelmodel, but

on anN2α ×N latticewith vertical edge occupation probability p2v . Our result gives the critical aspect ratio 2αc = (1−p2v)/p
2
v ,

again in agreement with [7,10], and κ =

1 − p2v/αc .

By (2.1) and Theorem 2.1, our result gives that τ(N2α, 2N) with α < αc and 1 − τ(N2α, 2N) with α > αc both decay ex-
ponentially to zero. Furthermore, the critical exponent of the correlation length ν = 2 and η =

1
2 , Aα = (

√
2πκ(αc −α))−1,

and Bα = κ2/2 in (1.3) for α < αc , which complements the previous asymptotic studies.
Since Aα → ∞ as α → αc , for the second result of this article, we investigate the asymptotic phenomena of τ(N2α−

N
, 2N)

and τ(N2α+

N
, 2N) where α+

N ↓ αc and α−

N ↑ αc as N ↑ ∞. We say that the sequence {ℓn}
∞

n=1 is a regularly varying sequence
if, for any λ ∈ (0, ∞), limn→∞ ℓ⌊λn⌋/ℓn = 1. For example, ℓN = logN or ℓN = c ∈ (0, ∞) for all N .

Theorem 2.2. Given pv ∈ (0, 1), ph ∈ [0, 1], ρ ∈ (0, ∞), and the positive regularly varying sequence {ℓn}
∞

n=1. Let
α−

N = αc − N−ρκ−1ℓN and α+

N = αc + N−ρκ−1ℓN . Then both

1 − τ(N2α+

N
, 2N) and τ(N2α−

N
, 2N)

=




1 + O


1

√
N


Ψ


N−ρ+

1
2 ℓN


if ρ ∈


0,

1
2


or ρ =

1
2
, ℓN → ∞,

Ψ (ℓ) + O(1)max


1
√
N

, |ℓ − ℓN |


if ρ =

1
2
, ℓN → ℓ ∈ [0, ∞),

1
2

+ O

N−ρ+

1
2 ℓN


if ρ ∈


1
2
, 1
]

,

1
2

+ O


1
√
N


if ρ ∈ (1, ∞).

Note that ρ =
1
2 is a critical value, and we have the following corollary.

Corollary 2.3. Under the same assumptions of Theorem 2.2, we have

lim
N→∞

τ(N2α−

N
, 2N) = lim

N→∞

(1 − τ(N2α+

N
, 2N)) =


0 if ρ ∈


0,

1
2


,

1
2

if ρ ∈


1
2
, ∞


,
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and when ρ = 1/2, ℓN → ℓ ∈ [0, ∞], we have

lim
N→∞

τ(N2α−

N
, 2N) = Ψ (ℓ), lim

N→∞

τ(N2α+

N
, 2N) = Φ(ℓ).

Finally, we denote the set of vertices that are connected from (0, 0) on the rectangular net N2α × 2N by C(N2α, 2N);
i.e., C(N2α, 2N) = {(m, n) ∈ N2α × 2N : (m, n) is percolating}. We also denote its cardinality by |C(N2α, 2N)|. Define a
susceptibility on the rectangle net N2α × 2N as follows:

χ(N2α, 2N) = E(|C(N2α, 2N)|),

where E is the expectation by P. In the last result of the article, we derive the asymptotic behavior of χ(N2α, 2N).

Theorem 2.4. Let pv ∈ (0, 1) and ph ∈ [0, 1] be given. For any α > 0, we have

χ(N2α, 2N) =


2(2α − αc)(N + 1)2


1 + O


logN
√
N


. if α > αc,

2α2

αc
(N + 1)2


1 + O


logN
√
N


if α ≤ αc .

3. Proof of Theorem 2.1

Themain body of this paper is the proof of Theorem2.1. To showTheorem2.1,weuse the Berry–Esseen theorem (see [15])
whose statement is as follows.

Theorem 3.1 (Berry–Esseen Theorem). Given a probability space (Ω, F , P), with its expectation denoted by E. Let Y1, Y2, . . . be
independent and identically distributed random variables with E(Y1) = 0, E(Y 2

1 ) = σ 2 < ∞ and E(|Y1|
3) = ρ < ∞. Also let

Sn = Y1 + · · · + Yn for n ∈ N. (3.1)

Then there exists a positive constant c ∈ (0, ∞) such thatP  Sn
σ
√
n

≤ x


− Φ(x)
 ≤

cρ
σ 3

√
n

for all x ∈ R and n ∈ N.

For any N ∈ N, we say that an occupied vertical edge in a bond configuration is wet if it lies on a percolating path where
(N2α, 2N) is percolating, and is primary wet if it is the first wet edge (in a row of vertical edges) counting from the left.
In a percolating configuration where (N2α, 2N) is percolating, there is one primary wet edge in every row. Since a bond
configuration is percolating whenever a vertical edge in the 2N-th row is primary wet, which can occur at any of the m-th
horizontal positionsm = 0, 1, 2, . . . ,N2α , we have for N ∈ N

τ(N2α, 2N) =

N2α−
m=0

PN(m), (3.2)

where PN(m) is the probability that the primary wet edge in the 2N-th row occurs at the horizontal position m. Let
P0(m) = δ0,m, where δ is the Kronecker delta.

Since the vertical edges are occupied with a probability pv and the horizontal edges in the n-th row are occupied with
a probability 1 if n is odd and ph if n is even, it is not difficult to see that PN is the N-step transition probability for one-
dimensional simple random walk starting from the origin whose 1-step distribution is given by D; i.e.,

PN(m) =

m−
k=0

P1(k)PN−1(m − k) = D∗N(m), (3.3)

where D∗N is N-fold convolution and D(m) = P1(m) for m = 0, 1, 2, . . .. Therefore we can define a random walk Sn with a
probability Prob. as follows: Prob. (S0 = m) = δ0,m and, for N ∈ N,

SN = X1 + X2 + · · · + XN ,

where Prob. (Xj = m) = D(m) for j = 1, 2, . . . ,N and Prob. (SN = m) = PN(m) with m ∈ Z+. We denote the expectation
using Prob. by Exp.

Let the mean of D be µ and the variance of D be σ 2. Then by Theorem 3.1 with Yj = Xj − µ, we have, for any z ∈ R,

Prob.

SN − Nµ

σ
√
N

≤ z


= Φ(z)

1 + O


1

√
N


if Exp.(|X1|

3) < ∞.
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Fig. 2. Construction of (3.8). Occupied edges are shown as oriented edges; dotted edges can be either occupied or vacant.

Since PN(m) is the probability that the primary wet edge in the 2N-th row occurs at the horizontal position m, from (3.2), if
2α ≤ µ, we have

τ(N2α, 2N) = Prob.(0 ≤ SN ≤ N2α)

= Prob.(−Nµ ≤ SN − Nµ ≤ N2α − Nµ)

=


1 + O


1

√
N


Prob.


−

µ
√
N

σ
≤

SN − Nµ

σ
√
N

≤

√
N

σ
(2α − µ)



=


1 + O


1

√
N

∫ (2α−µ)

√
N

σ

−
µ

√
N

σ

e
u2
2

√
2π

d u

=


1 + O


1

√
N


Φ


(2α − µ)

√
N

σ



=


1 + O


1

√
N


Ψ


(µ − 2α)

√
N

σ


, (3.4)

where the last equality holds due to the symmetry of a Gaussian distribution (Φ(−x) = Ψ (x) for x > 0). Similarly, when
2α > µ, we have

τ(N2α, 2N) = 1 − Prob.(SN > N2α)

= 1 −


1 + O


1

√
N


Prob.


SN − Nµ

σ
√
N

>

√
N

σ
(2α − µ)



= 1 −


1 + O


1

√
N

∫
∞

(2α−µ)

√
N

σ

e−
u2
2

√
2π

d u

= 1 −


1 + O


1

√
N


Ψ


(2α − µ)

√
N

σ


. (3.5)

Then it is sufficient to show that µ = 2αc and σ 2
= (2αc + 1)2 −

1+ph(1−pv)2

p2v
and Exp. (|X1|

3) < ∞. To do this, we first
define the generating function

D̂(t) =

∞−
m=0

D(m)tm. (3.6)

As mentioned above, D(m) is the probability that (m, 2) is percolating with the primary wet vertical edge in the top row
occurring atm. However, the primary wet vertical edge in the bottom row can be at any k in 0 ≤ k ≤ m. Then we have

D(m) =

m−
k=0

D1(k)D2(m − k), (3.7)

where D1(k) and D2(m − k) are the probabilities that the primary wet edge in the bottom row is at k and the distance
between the primary wet edge in the bottom row and the primary wet edge in the top row ism− k, respectively. Since each
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Fig. 3. Construction of (3.9). Occupied edges are shown as oriented edges; dotted edges can be either occupied or vacant.

horizontal edges connecting (j, 2) and (j + 1, 2) with j ∈ Z+ is occupied with probability 1, it is easy to see that (as shown
in Fig. 2)

D2(m − k) = pv(1 − pv)
m−kpm−k

h . (3.8)

To compute the factor D1(k) with k ≥ 1 is more complicated. Note that D1(0) = pv . We decompose D1 into two terms, as
follows:

D1(k) = ∆(k) + Σ(k), (3.9)

where ∆(k) is the probability that the first primary wet edge is at k such that the site (k − 1, 1) is disconnected with (0, 0)
and Σ(k) is the probability that the first primary wet edge is at k such that the site (k − 1, 1) is connected with (0, 0) (as
shown in Fig. 3). Consider ∆(k); the vertical edge connecting (k − 1, 0) and (k − 1, 1) is empty with probability 1 − pv .
Then ∆(k) = pv((1 − pv)D1(k − 1)/pv). Consider Σ(k); the factor (1 − ph)(1 − pv) ensures that site (k − 1, 1) is not on a
percolating path since the primary wet edge is at k. So Σ(k) = pv((1− ph)(1− pv)D(k− 1)/pv). Therefore,the factor D1(k)
satisfies a recursive relation, which can be written as

D1(k) = (1 − pv)D1(k − 1) + (1 − ph)(1 − pv)D(k − 1), k = 1, 2, . . . ,m. (3.10)

Define the generating function

D̂1(t) =

∞−
k=0

D1(k)tk.

Multiplying (3.7) and (3.10) by tm and tk−1, respectively, and summing overm and k − 1 from 0 to ∞, we obtain that

D̂(t) =

∞−
k=0

D(k)tk =
pvD̂1(t)

1 − ph(1 − pv)t
,

1
t
(D̂1(t) − pv) = (1 − pv)D̂1(t) + (1 − ph)(1 − pv)D̂(t).

This gives

D̂(t) =
p2v

1 − at + bt2
, (3.11)

where

a = 1 − p2v + ph(1 − pv)
2, b = ph(1 − pv)

2. (3.12)

Then, by (3.11) and (3.12), we have the mean of D as follows:

µ =

∞−
m=1

mD(m) =
dD̂(t)
dt

|t=1 =
p2v(a − 2b)

(1 − a + b)2
= 2αc, (3.13)
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and the variance of D as follows:

σ 2
=

∞−
m=1

m2D(m) − µ2

=
d2D̂(t)
dt2

|t=1 + µ − µ2

= (2αc + 1)2 −
1 + ph(1 − pv)

2

p2v
. (3.14)

Finally, it is easy to check that E(|X1|
3) =

∑
∞

m=1 m
3D(m) = O(1) d3D̂(t)

dt3
|t=1 < ∞. From (3.4), (3.5), (3.13) and (3.14), this

completes the proof, as required. �

4. Proof of Theorems 2.2 and 2.4

We use Theorem 2.1 to show Theorem 2.2.

4.1. Proof of Theorem 2.2

Applying Theorem 2.1 with α−

N = α, if ρ ∈

0, 1

2


or ρ =

1
2 , limN→∞ ℓN = ∞, we have

τ(N2α−

N
, 2N) =


1 + O


1

√
N


Ψ


N−ρ+

1
2 ℓN


. (4.1)

If ρ ∈
 1
2 , ∞


, since N−ρ+

1
2 ℓN → 0 as N → ∞, we have the following estimation:

Ψ


N−ρ+

1
2 ℓN


=

1
√
2π

∫
∞

0
e−

u2
2 d u −

1
√
2π

∫ αcN
−ρ+

1
2 ℓN

0
e−

u2
2 d u

=
1
2

+ O

N−ρ+

1
2 ℓN


. (4.2)

Similarly, if ρ =
1
2 and limN→∞ ℓN = ℓ ∈ [0, ∞), we obtain

Ψ


N−ρ+

1
2 ℓN


=

1
√
2π

∫
∞

ℓ

e−
u2
2 d u −

1
√
2π

∫ ℓ

ℓN

e−
u2
2 d u = Ψ (ℓ) + O(ℓ − ℓN). (4.3)

By (4.1)–(4.3), this completes the proof of Theorem 2.2 for α = α−

N .
Using the same argument, it is easy to obtain the result for α = α+

N . We omit the proof for α = α+

N here. �

4.2. Proof of Theorem 2.4

Let

αN = αc


1 +

logN

κ
√
N


, αN = αc


1 −

logN

κ
√
N


.

Applying Fubini’s theorem, we obtain

χ(N2α, 2N) = E

 −
(m,n)∈N2α×2N

I{(m,n)∈C(N2α ,2N)}


=

−
(m,n)∈N2α×2N

E(I{(m,n)∈C(N2α ,2N)})

=

−
(m,n)∈N2α×2N

τ(m, n),

where I{·} is an indicator function. Then we decompose χ(N2α, 2N) into three parts, as follows:

χ(N2α, 2N) = I1 + I2 + I3, (4.4)
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where

I1 =

N2α−
m=0

2N−
n=0

τ(m, n)I{m/n≥αN },

I2 =

N2α−
m=0

2N−
n=0

τ(m, n)I{m/n≤αN },

I3 =

N2α−
m=0

2N−
n=0

τ(m, n)I{αN≤m/n≤αN }.

If α ≥ αc , applying Theorem 2.2 with ρ = 1/2, ℓN = logN , we have τ(m, n) = 1 + O(1/
√
N) for all m/n ≥ αN . It follows

that

I1 =


1 + O


1
N

 N2α−
m=0

2N−
n=0

I{m/n≥αN }

=


1 + O


1
N


1
2


2αN(N + 1)2


+ 2(2α − αN)N2


= 2(2α − αc)(N + 1)2


1 + O


logN
√
N


.

Similarly, applying Theorem 2.2 with ρ = 1/2, ℓN = logN , we have τ(m, n) = O(1/
√
N) for allm/n ≤ αN and τ(m, n) ≤ 1

for all αN ≤ m/n ≤ αN . We obtain

I2, I3 = O

N2 logN

√
N


.

Therefore, from (4.4),

χ(N2α, 2N) = 2(2α − αc)(N + 1)2

1 + O


logN
√
N


. (4.5)

If α < αc , in the same way,

χ(N2α, 2N) =
2α2

αc
(N + 1)2


1 + O


logN
√
N


.

This completes the proof of Theorem 2.4, as required. �
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