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SG(n), are derived in terms of the results at a certain stage. As the difference between these
bounds converges quickly to zero as the calculated stage increases, the numerical value of

f(ceey rﬁ(c);jdsl: the entropy can be evaluatgd with more than a hupdred sign.iﬁcant‘ figure.s accuracy. The
Eight-vertex model corresponding result of the ice model on the generalized two-dimensional Sierpinski gasket
Sierpinski gasket SGp(n) with b = 3is also obtained, and the general upper and lower bounds for the entropy
Recursion relations per site for arbitrary b are conjectured. We also consider the number of eight-vertex model
Entropy configurations on SG(n) and the number of generalized vertex models Ej, () on SG,(n), and

obtain exactly E,(n) = 2RG+DIbG+HD/21"+b+4)/(b+2) It follows that the entropy per site is
limy_ o INEy(n) /v = % In2.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ice model was introduced by Pauling to study the residual entropy of water ice [ 1], and was solved exactly by Lieb on
the square lattice [2,3]. The eight-vertex model is a generalization of the ice-type (six-vertex) models [4,5] and was solved
by Baxter for the zero-field case [6,7]. On the triangular lattice, there are 20 vertex configurations for the ice rule [8] and
the generalized 32-vertex model was considered in Ref. [9]. There is a correspondence between such a model and the Ising
model, while there are other related models (see, for example, [10]). It is of interest to consider the ice model, the eight-
vertex model and its generalization on self-similar fractal lattices that have scaling invariance rather than translational
invariance. Fractals are geometric structures of non-integer Hausdorff dimension realized by repeated construction of an
elementary shape on progressively smaller length scales [11,12]. A well-known example of a fractal is the Sierpinski gasket
which has been extensively studied in several contexts, e.g., phase transitions [13,14], percolation [15,16], Schrédinger
equation [17,18], random walks [19], self-avoiding random walks [20], loop-erased random walks [21], Potts model [22-24],
colorings [25,26], sandpiles [27], branched polymers [28] spanning trees [29,30], spanning forests [31], connected spanning
subgraphs [32], dimer coverings [33], dimer-monomer model [34], Hamiltonian walks [35], acyclic orientations [36], etc.
We shall derive the recursion relations for the number of ice models with Boltzmann factors equal to one on the two-
dimensional Sierpinski gasket, and determine the entropies. We shall also consider the number of ice model configurations
on a generalized two-dimensional Sierpinski gasket. The number of eight-vertex model configurations and its generalization
on the generalized two-dimensional Sierpinski gasket will be derived exactly.
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Fig. 1. (a) The six different kinds of configurations for the ice rule and (b) the other two configurations for the eight-vertex model on a degree-4 vertex.
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Fig. 2. (a) The 20 different kinds of configurations for the ice rule and (b) the other 12 configurations for the 32-vertex model on a degree-6 vertex.

2. Preliminaries

We first recall some relevant definitions in this section. A connected graph (without loops) G = (V, E) is defined by its
vertex (site) and edge (bond) sets V and E [37,38]. Let v(G) = |V| be the number of vertices and e(G) = |E| be the number of
edges in G. The degree or coordination number k; of a vertex v; € V is the number of edges attached to it. A k-regular graph
is a graph with the property that each of its vertices has the same degree k. Let us consider a 4-regular graph first, and assign
an orientation on each edge. For the ice model, the ice rule must be satisfied at every vertex. Namely, the number of arrows
pointing inward at each vertex must be two and the number of arrows pointing outward is also two. There are six possible
different configurations of arrows at each vertex, as shown in Fig. 1(a). For the eight-vertex model, the number of arrows
pointing inward at each vertex must be an even number. There are now eight possible different configurations of arrows
at each vertex, including the six configurations of the ice model plus sink (all four arrows pointing inward) and source (all
four arrows pointing outward), as shown in Fig. 1(b). For a vertex with degree six, the ice rule requires that the number of
arrows pointing inward and the number of arrows pointing outward are the same and equal to three. There are 20 different
arrow configurations at such vertex, as shown in Fig. 2(a). For the 32-vertex model, the number of arrows pointing inward
at a degree-6 vertex must be an odd number. The 32 different arrow configurations include the previous 20 configurations
plus only one arrow (six possibilities) pointing outward and only one arrow (six possibilities) pointing inward, as shown in
Fig. 2(b). In general, one can associate an energy to the vertex for each configuration. All such Boltzmann weights are set to
one throughout this paper.

Let us denote the total number of ice model configurations on a graph G as I(G) and that of eight-vertex model
configurations as E(G). The entropy per site for the ice model is given by

InI(G)
1m ,
v(G)—oo VU (G)

Sic= (2.1)
where G, when used as a subscript in this manner, implicitly refers to the thermodynamic limit. Similarly, the corresponding
entropy per site for the eight-vertex model is denoted as Sg ¢. We will see that the limits S; ¢ and Sg ¢ exist for the Sierpinski
gasket considered in this paper.

The construction of the two-dimensional Sierpinski gasket SG(n) at stage n is shown in Fig. 3. At stage n = 0, it is an
equilateral triangle, while stage n + 1 is obtained by the juxtaposition of three n-stage structures. The two-dimensional
Sierpinski gasket has fractal dimensionality D = In3/1n 2 [15], and the numbers of edges and vertices are given by

e(SG(n)) = 3"1, (2.2)

v(SG(n)) = ;[3" + 1] (2.3)
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Fig. 3. The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG(n).
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Fig. 4. The generalized two-dimensional Sierpinski gasket SG,(n) with b = 3 atstagen = 1,2and b = 4 atstagen = 1.

Except for the three outmost vertices which have degree 2, all other vertices of SG(n) have degree 4. In the large n limit,
SG is 4-regular. The three outmost vertices of the Sierpinski gasket are exempt from the ice rule in the calculation of I(n)
and from the eight-vertex model restriction in the calculation of E(n). Namely, for the two edges connected to each of these
outmost vertices, each of them can be directed either inward or outward independently.

The two-dimensional Sierpinski gasket can be generalized, denoted as SG,,(n), by introducing the side length b which is
an integer larger than or equal to two [39]. The generalized two-dimensional Sierpinski gasket at stage n + 1 is constructed
with b layers of stage n structures. The two-dimensional SG,(n) with b = 3 atstagen = 1,2and b = 4 atstagen = 1is
illustrated in Fig. 4. The ordinary two-dimensional Sierpinski gasket SG(n) corresponds to the b = 2 case, where the index

2
k-regular even in the thermodynamic limit. Namely, there is always a fraction of vertices having degree six, while the others
have degree four. We shall use the notations I,(n) and E,(n) for the numbers of ice model and generalized vertex model
configurations on SGy(n).

b is neglected for simplicity. The Hausdorff dimension for SG; is given by D = In (b+1) /Inb [39]. Notice that SG; is not

3. The number of ice model configurations on SG (1)

We simply denote the number of ice model configurations on the two-dimensional Sierpinski gasket SG(n) as I(n). In
this section we derive its entropy per site in detail. Let us define the quantities to be used.

Definition 3.1. Consider the generalized two-dimensional Sierpinski gasket SG, (1) at stage n.

e Define g, (n) as the number of ice model configurations such that one certain edge connected to an outmost vertex, say
the topmost vertex in Fig. 5, is directed inward and the other five edges connected to the outmost vertices are directed
outward.

e Define pa,(n) as the number of ice model configurations such that the two edges of a certain outmost vertex, say the
left one in Fig. 5, are directed outward; the two edges of another certain outmost vertex, say the right one in Fig. 5, are
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Fig.5. Illustration of the configurations g(n), pa(n), pb(n), pc(n), pd(n),and r(n). Only the three outmost vertices and the directions of the edges connected
to them are shown explicitly.
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Fig. 6. [llustration of other possible edge directions which are not used here. Out of the six edges connected to the three outmost vertices, f (n) has all of
them directed outward; ha(n), hb(n), hc(n), hd(n) have four of them directed outward; qa(n), gb(n), gc(n), qd(n) have four of them directed inward; s(n)
has all of them directed inward.

directed inward; only one of the edges of the third outmost vertex is directed inward and it is on the same side of the
Sierpinski gasket as one of the edges of the second outmost vertex.

o Define pby(n) as the number of ice model configurations such that the two edges of a certain outmost vertex, say the
left one in Fig. 5, are directed outward; the two edges of another certain outmost vertex, say the right one in Fig. 5, are
directed inward; only one of the edges of the third outmost vertex is directed outward and it is on the same side of the
Sierpinski gasket as one of the edges of the second outmost vertex.

e Define pc,(n) as the number of ice model configurations such that all three outmost vertices have one edge directed
inward and one edge directed outward, while two certain directed-inward edges are on the same side of the Sierpinski
gasket, say the upper-right side in Fig. 5.

e Define pdy(n) as the number of ice model configurations such that all three outmost vertices have one edge directed
inward and one edge directed outward, while all three directed-inward edges are on different sides of the Sierpinski
gasket with a certain direction, say clockwise in Fig. 5.

e Define r,(n) as the number of ice model configurations such that one certain edge connected to an outmost vertex, say
the topmost vertex in Fig. 5, is directed outward and the other five edges connected to the outmost vertices are directed
inward.

Since we only consider ordinary Sierpinski gaskets in this section, we shall use the notations g(n), pa(n), pb(n), pc(n),
pd(n), and r(n) for simplicity. They are illustrated in Fig. 5, where only the outmost vertices and the directions of the
edges connected to them are shown. In principle, the edges of the three outmost vertices have other possible directions,
as illustrated in Fig. 6, but they do not appear in our consideration here, as discussed below. Because of rotational and
reflection symmetries, g(n), pa(n), pb(n), pc(n) and r (n) have multiplicity six, while pd(n) have multiplicity two. It is clear
that the initial values at stage zero are g(0) = pa(0) = pc(0) = r(0) = 0 and pb(0) = pd(0) = 1. For the purpose of
obtaining the asymptotic behavior of I(n) in this section, g(n) and r(n) are not needed, such that

I(n) = 6pa(n) + 6pb(n) + 6pc(n) + 2pd(n) (3.1)

for non-negative integer n. The reason for missing g(n) and r (n) is due to their zero value at stage zero. For example, g(n+1)
may contain a term like g(n)pb?(n) in its recursion relations, but all such terms are equal to zero since g(0) = 0. Now the
four quantities pa(n), pb(n), pc(n) and pd(n) satisfy recursion relations.

Lemma 3.1. For any non-negative integer n,

pa(n + 1) = [pa(n) + pb(n)1*[pa(n) + 3pc(n) + pd(n)], (32)
pb(n + 1) = [pa(n) + pb(n)]*[pb(n) + 3pc(n) + pd(n)], (3.3)
pc(n+ 1) = pa®(m)pb(n) + pb* (m)pa(n) + [3pc(n) + pd(n)]*, (34)
pd(n + 1) = pa*(n) 4 pb*(n) + [3pc(n) + pd(n)]°. (35)

Proof. The Sierpinski gasket SG(n + 1) is composed of three SG(n) with three pairs of vertices identified. At these identified
vertices, the ice rule should be satisfied. As illustrated in Fig. 7, the number pa(n + 1) consists of two cases. For the first case,
the top SG(n) is always counted by pa(n). The identified vertex of the lower two SG(n)’s has four possible configurations,
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Fig. 7. lllustration of the expression for pa(n + 1). The representation of a big circle at an identified vertex corresponds to four possible configurations
such that for each SG(n) one edge is directed inward and the other edge is outward.

Fig. 8. Illlustration of the expression for pc(n + 1).

Table 1

The first few values of pa(n), pb(n), pc(n), pd(n) and I(n).
n 0 1 2 3 4
pa(n) 0 1 54 7,953,309 152,890,249,552,106,555,312,694
pb(n) 1 2 63 8,076,510 152,921,906,677,033,336,640,655
pc(n) 0 1 131 146,761,217 202,319,214,683,073,568,675,255,835
pd(n) 1 2 134 146,770,694 202,319,214,926,381,958,377,247,254
I(n) 8 28 1756 1,270,287,604 1,620,388,590,888,580,168,157,749,612

such that for each of these SG(n)’s one edge is directed inward and the other edge is outward, as represented by a big circle
in Fig. 7. They are counted by pa(n)[pa(n) + pb(n)]?. One may wonder why the other two possible configurations satisfying
the ice rule are missing here. If the two edges of the left SG(n) are directed outward and the two edges of the right SG(n) are
directed inward, then the left SG(n) is counted by ha(n) and the right SG(n) is counted by ga(n). However, such terms have
no contributions because ha(n), ga(n) are always zero for any n for the same reason as discussed earlier. For the second case,
the directions of the edges of the bottom identified vertex are fixed, as shown in Fig. 7. There are four possible configurations
for the upper-left identified vertex multiplying four possible configurations for the upper-right identified vertex, and they
are counted by [pa(n) + pb(n)]?[3pc(n) + pd(n)]. Eq. (3.2) is verified by combining the results of these two cases.

The number pb(n+ 1) is almost the same as pa(n+ 1) except that the two edges of the topmost vertex change directions.
It follows that the top SG(n) is always counted by pb(n) for the first case, while the results for the second case remain the
same, so that Eq. (3.3) is verified.

As illustrated in Fig. 8, the number pc(n + 1) consists of three cases. For the first case, the directions of the edges of the
three identified vertices are fixed and the number is counted by pa®(n)pb(n). Reversing the directions of the edges of the
three identified vertices in the first case gives the second case, which is counted by pb?(n)pa(n). Finally, for the third case,
each of the three identified vertex has four possible configurations such that for each related SG(n) one edge is directed
inward and the other is outward. This number is counted by [3pc(n) + pd(n)]3, and Eq. (3.4) is verified.

The number pd(n+ 1) is almost the same as pc(n+ 1) except that the two edges of the topmost vertex change directions.
It follows that the first case is counted by pa®(n), the second case is counted by pb?(n), while the results for the third case
remain the same, so that Eq. (3.5) is verified. O

The values of pa(n), pb(n), pc(n), pd(n) and I(n) for small n can be evaluated recursively by Egs. (3.2)-(3.5), as listed
in Table 1. These numbers grow exponentially, and do not have simple integer factorizations. To estimate the value of the
entropy defined in Eq. (2.1), we need the following lemmas.

Let us use the notations «(n) = pa(n)/pb(n), B(n) = pd(n)/pc(n) and y (n) = pb(n)/pc(n) forn > 1.

Lemma 3.2. «(n) € (0, 1) and B(n) > 1 for any positive integer n. Furthermore,

0<l—a(m+1) < @[1 —a(m], (36)

3 _ 2 3 _ 2
a(my m)°[1—a(m)] < B+1)—1< y(m)°[1 —a(m)] ’

328(n)3 + y(n)? 32 (37
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4y )[4+ y )] y(m?*[3+y ™) + )]

1 3.8
S 0T a1 £ 6dam) 2 ~ YD = 16 (38)
for n > 1, such that the sequence «(n) increases to one, B(n) decreases to one, and y (n) decreases to zero as n increases.
Proof. By Egs. (3.2) and (3.3), we have
pb(n + 1) — pa(n + 1) = [pb(n) — pa(n)][pa(n) + pb(m)]*, (3.9)

pa(n) < pb(n) is established by mathematical induction hypothesis, «(n) € (0, 1) and the initial value (1) = 1/2. By
Eqgs. (3.4) and (3.5), we have

pd(n+ 1) — pc(n + 1) = [pa(n) + pb(n)1[pb(n) — pa(n)]* > 0, (3.10)

so that B(n) > 1foralln > 1.
Next, using the fact that pa(n) < pb(n) and pc(n) < pd(n), we have

pa(n) 4+ 3pc(n) + pd(n)  pb(n) —pa(n)  y(n)

0O<l—an+1)=1- b () + 3pe () £ pd() < pm == [1—am], (3.11)
and
[pa(n) + pb(n)1[pb(n) — pa(n)J*
H—1= , 3.12
Pt ) = pb(mpatn) + pb(m] + Bpe(n) + pd() T 3.12)
such that
amym?*[1 —am]*  2pa(n)[ph(n) — pa(n)]?
2O+ @ 2pb(ny + [pdwp DT
_ 2 3r1 _ 2
2pb(n)[pb(n) — pa(n)] _ vy’ a(n)] . (3.13)
[4pc(m)]? 32
Finally, by Egs. (3.3) and (3.4), we have
[a(n) + 11°[y (n) + 3 + B(n)]
1) = 2 3.14
D =y P + a1 + B+ AP G149
so that
4o (n)?y ()?[4 + y ()] ym?[3+yn) + Bn)]
Y @Rl + a1+ 64pmE TS 16 ‘ (3.13)
By Egs. (3.11),(3.13) and (3.15), we have
1—an+1) _ym yn+1) _ ym[3+ym+pm]
1—a) 4’ y(n) 16 ’
Bm+2)—1 - y(m+ D1 —an+ DI - Y33+ ym) + BMIP[328(n)° + y(n)?] (3.16)
Bn+1) —1 32[BMn+1) —1] 221 (n) ' :

With a(1) = 1/2,8(1) = 2,y(1) = 2,and (2) = 6/7, B(2) = 134/131, y(2) = 63/131, it is easy to see that «(n)
increases to one, 8(n) decreases to one and y (n) decreases to zero as n increases. [

In passing, we notice that either y (n)/[1 — a(n)] or [B(n) — 1]/y (n)>/? approaches to a finite and positive value in the
infinite n limit.

Lemma 3.3. The entropy for the number of ice model configurations on SG(n) is bounded:

2 2 2 2
F Inpc(m) + T In2 < S;5¢ < prom) In pd(m) + I In2, (3.17)

where m is a positive integer.

Proof. By Eq. (3.4) and Lemma 3.2, we have

pe(n) > 64pc>(n — 1) > 64[64pc>(n — 2)1> > -+ > pc(m)® " x 643" "~V/2 (3.18)
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for any m < n. Similarly by Eq. (3.5) and Lemma 3.2, we obtain

pd(n) < 64pd>(n — 1) < 64[64pd>(n —2)]® < --- < pd(m)®" " x 643" "-V/2, (3.19)
so that
3" M™Inpc(m) +3(3"™ - 1)In2 < Inpc(n) < Inpd(n) < 3" ™ Inpd(m) +33"™ — 1) In2. (3.20)

By Egs. (2.3) and (3.1), we have

InI(n) _ 2 n |:2 . 6pc(n) . pr(n) pa(n)] 2Inpd(n) ' (321)
v(SG(n)) 33"+ 1) pd(n) pd(n) pd(n) 33"+ 1)
By the definition of the entropy in Eq. (2.1) and Lemma 3.2,
S = InI(n)
156 = e D(SG(n))
— tim 2 . [ . pe(n) n PP pa(n)] . 2Inpd(n)
n—co 3(3" 4 1) pd(n) = pd(n)  pd(n)| n—>o03(3"+ 1)
_ Jim 210P® (3.22)

n—oo 3(3" + 1)
The proof is completed using the inequality (3.20). O

The difference between the upper and lower bounds for S; s quickly converges to zero as m increases, and we have the
following proposition.

Proposition 3.1. The entropy per site for the number of ice model configurations on the two-dimensional Sierpinski gasket SG(n)
in the large n limit is S; ¢ = 0.515648810655. . ..

The numerical value of S; s¢ can be calculated with more than a hundred significant figures accuracy when min Eq. (3.17)

is equal to eight. It is too lengthy to be included here and is available from the authors on request. As the square lattice
(sq) also has degree 4, it is interesting to compare our result with Lieb’s result on the square lattice [2,3], S; g = % In % =

0.431523108677 . ... We see that the entropy per site on the two-dimensional Sierpinski gasket is significantly larger.
The upper bound given in Lemma 3.3 can be improved further as follows.

Lemma 3.4. For any integersn > m > 1,

@3EvMm_1)/2
n—m n—m n—m n—m m 3 m) — 1 3
643" "D 2pe(m)* ™" < pe(n) < 64" "D/ 2pc(m)? [ygz) + <1 LA 31 ) : (3:23)

Proof. By Eq. (3.4), we know

pe(n+ 1) = pem)? [y ) + amy ) + (3+ m)’| (3:24)
for any n > 1. By Lemma 3.2, we have for any positive integersn > m > 1
3
64pc(n — 1)% < pc(n) < 64pc(n — 1)3 |:y(m) + ( + %) i| . (3.25)

. n—m__ n—m
Using the formula a, = ¢®" " ~1/2¢3

ifajq = caj3 forj=m,m+1,...,n— 1, where c is a constant, then Eq. (3.23) is
established. O

Lemma 3.5. The logarithm of the number of ice model configurations divided by the number of vertices on SG(n) is bounded:

2ln2 (3™ —-3")In4 2 3-m | Inl(n) 2 n2 | [ ]
3n+1 T R v(SGm) ~ 3+ 1 {n Ty pm y(m) }
37" —37" ﬂ( m) — 1 y (m)? 2 37"
+1+3_n{1n4+1n[ 1 ]4—31 [ D ]}+3>< 33 In pc(m) (3.26)

for positive integersn > m > 1.
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Proof. The number of ice model configurations can be rewritten as

I(n) = 6[pa(n) + pb(n) + pc(m)] + 2pd(n) = 2pc(n){3[a(n) + 1]y +3+ ﬁ(n)}, (3.27)
then by Lemma 3.2,
3 3
8pC(n){1 + 2oz(n)a/(n)] < I(n) < 8pc(n) [ﬁ(n) + 2V(”):|~ (3.28)
It follows that

InI(n)

<
v(SG(m)) 33"+ 1)
By Lemma 3.4, the upper and lower bounds of In pc(n) are given by

n—m __
3 1 _
— (3In4) + 3" ™Inpc(m) < Inpc(n)

# [3 In2 + lnpc(n)] <

3
335D 3In2 + Inpc(n) + ln[ﬁ(m) + 2y(m)i| } (3.29)

311—111

3
-1 )/(m)3 ,B(m) —1 n—m
<f 3In4 +In 32 +(1+4 + 3" In pc(m)

n—-m __ _ 3
< 3271 {31n4+3ln [1 + ﬂ(m‘)l]] +1In [1 + y(;zl) “ + 3" ™ Inpc(m). (3.30)

Combining Egs. (3.29) and (3.30), the proof is completed. O

Taking the limit n — oo in Eq. (3.26), the entropy is bounded as

2 -1 1 3
0<Ssc— 3_m|:1n4+ 3 lnpc(m):| < 3‘"’{ln|:1 + ﬂ(m‘)‘i| + 3 ln|:l + J/(3ﬂ21) i“ (3.31)

Using the inequality In(1 + €) < € for any € € (0, 1), we obtain the improved upper bound

(3.32)

2 9 ,
0<Ssc—3" |:1n4+ 3 lnpc(m):| < 3—m[ﬂ(m‘)1 n y(gn;) :|

According to Lemma 3.2, it is clear that the upper bound converges to zero quickly as m increases.

4. The number of ice model configurations on SG,(n) withb = 3

In this section, we consider the generalized two-dimensional Sierpinski gasket SG, () with the number of layers b equal
to three. For SG3(n), the numbers of edges and vertices are given by

e(SGs(n)) = 3 x 6", (4.1)
7 x 6"+ 8
v(8G3(n)) = — (4.2)

where the three outmost vertices have degree two. There are (6" — 1)/5 vertices of SG;(n) with degree six and 6(6" — 1) /5
vertices with degree four. For each of the vertices with degree six, we allow three edges directed inward and the other three
directed outward, just like the consideration in the 20-vertex triangular ice-rule problem [8].

By Definition 3.1, the number of ice model configurations is I5(n) = 6pas(n) + 6pbs(n) + 6pc3(n) + 2pds(n). The initial
values are the same as for SG: pas3(0) = pc3(0) = 0 and pb3(0) = pd3(0) = 1. Again, gs(n) and r3(n) are zero for any
nonnegative n. The recursion relations are lengthy and are given in Appendix A. Some values of pas(n), pbs(n), pc3(n), pds(n)
and I3(n) are listed in Table 2. These numbers grow exponentially, and do not have simple integer factorizations.

By a similar argument to Lemma 3.3, the entropy for the number of ice model configurations on SG;(n) is bounded:

5
Inpcs(m) + In2 <S¢, < ——— Inpds3(m) + In2, (4.3)

7 x 6™ 7 x 6™ 7 x 6™ 7 x 6™

where m is a positive integer. We have the following proposition.
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Table 2

The first few values of pas(n), pbs(n), pcs(n), pds(n) and I5(n).
n 0 1 2 3
pas(n) 0 11 29,665,405,536 8,329,624,787,357,979,293,987,412,541,852,867,738,187,867,580,946,289,512,122,074,041,155,584
pbs(n) 1 15 29,990,772,448 8,329,642,677,826,723,066,417,765,699,958,803,959,673,796,982,684,471,740,765,855,746,621,440
pcs(n) O 15 527,746,306,872 708,045,663,245,136,812,838,888,349,048,042,396,698,172,710,195,432,765,544,715,130,291,741,523,968
pds(n) 1 18 527,789,051,704 708,045,663,245,233,047,276,563,406,582,556,247,659,516,105,436,007,524,358,474,481,355,710,267,392
I3(n) 8 282 4579993,012,544 5,664,465,261,566,078,079,800,619,338,522,817,745,538,255,642,031,993,426,552,757,072,040,596,340,736

Proposition 4.1. The entropy per site for the number of ice model configurations on the generalized two-dimensional Sierpinski
gasket SGs(n) in the large n limit is S; 56, = 0.576812423363 .. ..

The convergence of the upper and lower bounds remains quick. More than a hundred significant figures for S; s¢, can be
obtained when m in Eq. (4.3) is equal to five. For the ice model on square and triangular lattices, recall that S; ;q = % In %

and S; 4 = In 32£ [8]. As the number of vertices with degree four is six times the number of vertices with degree six for
SG3(n), it is interesting to compare our results with SS,,Sq + %S,,m- = 0.506272843501 . ... We see that the entropy per site

on SG3(n) is again larger.

5. Discussion of ice model configurations

For the generalized two-dimensional Sierpinski gasket SG,(n), the numbers of edges and vertices are given by

bb+1)]"
€(SGy(m) =3[(2+)} , (5.1)
Cb+4a[bo+1] 20+ 1)
v(SGb(n))—b+2|: . } e (5.2)

The bounds of the entropies for the ice model on SG(n) and SG3(n) given in Sections 3 and 4 lead to the following conjecture
for general SGy, (n).

Conjecture 5.1. The entropy per site for the number of ice model configurations on the generalized two-dimensional Sierpinski
gasket SGy, is bounded:

b+2
e [Inpcy(m) +3In2] < S5, <
(b+4) [ 252

where m is a positive integer.

b+2
M[lnpd,,(m) +31In2], (5.3)
(b+4)| 52

However, calculation of pc, (im) and pd,, (m) for general b may be difficult. We notice that S s, is a bit larger than §; s¢. It
is expected that the value of §; s, increases slightly as b increases for the generalized two-dimensional Sierpinski gasket.

6. The number of eight-vertex model or generalized vertex model configurations on SGy (1)

In this section, we derive the number of generalized vertex model configurations, denoted as E,(n), on SGp(n). The eight-
vertex model configurations on SG(n) correspond to the b = 2 case. As there are vertices with degree six when b > 2, the
eight-vertex model should be generalized. For the vertices with degree four, the number of arrows pointing inward is even
just like the eight-vertex model on the square lattice, while for the vertices with degree six, the number of arrows pointing
inward is odd just like the 32-vertex model on the triangular lattice. Although we could again derive recursion relations
including the configurations g(n) and r (n) shown in Fig. 5, here we shall provide two better methods to obtain E, (1) exactly
for arbitrary b.

The first method to calculate the number of generalized vertex model configurations is to use the well-known map due to
F.Y.Wu [40] and Kadanoff and Wegner [41], i.e. to map the eight-vertex model to an Ising spin model on the faces [42]. Since
all the weights are set to one, which corresponds to the infinite-temperature limit, the spins do not interact. One can set the
adjacent spins to be parallel for the following three cases: the orientation of the edge is (i) to the right; (ii) from the lower-
right to the upper-left; (iii) from the upper-right to the lower-left. On the other hand, the adjacent spins are antiparallel
when the orientation of the edge is (i) to the left; (ii) from the lower-left to the upper-right; (iii) from the upper-left to the
lower-right. Let us first consider the case where there is one arrow pointing inward and one arrow pointing outward at
each of the three outmost vertices. We denote the number of interior faces as F,(n) for the generalized two-dimensional
Sierpinski gasket SG, (1), then there are 2f™+1 spin states. As the map between the Ising spin model and the eight-vertex
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model is two to one (flipping all the spins simultaneously gives the same edge orientations), the number of eight-vertex
models is 2™ For the degree-6 vertices of SG,(1n) with b > 2, the above statement is still held since a degree-6 vertices
can be resolved as a triangle of three degree-4 vertices. Now, to relax the restriction at the three outmost vertices, one can
flip the arrows on all edges of one exterior side of SG,(n) separately. That gives an extra factor of four, such that the number
of eight-vertex models becomes 2™+2 The problem reduces to the counting of F,(1n). We denote by u;,(n) the number of
up-pointing triangles and by d,(n) the number of down-pointing ones surrounding an interior face. The initial values are
up(0) = 1,dp(0) = 0, up(1) = b(b+ 1)/2,dy(1) = b(b — 1)/2, so that

up(n) = up(Dup(n — 1) = [up(D]",
dy (Df[up(D]" — 1}

dy(n) =dp(Duy(n—1) +dpy(n—1) = s
(M) = dp(Dup(n — 1) +dp(n — 1) (1) — 1
2b+ 1D[bb+1)/2]"+b+ 4
b+2 '
With the number of vertices of SG,(n) given in Eq. (5.2), we have the following proposition.

Fy(n) +2=up(n) +dp(n) +2 =

(6.1)

Proposition 6.1. The number of generalized vertex model configurations on the generalized two-dimensional Sierpinski gasket

SGy(n) is Ep(n) = 212G+ DIbG+D/21+b+41/6+2) gn the entropy per site in the large n limit is Sg sc, = Z(bl’j;) In2.

A corollary is that in the infinite b limit, the entropy per site approaches limy_, o Sg,s¢, = 21n 2.

For the ordinary two-dimensional Sierpinski gasket SG(n), the number of eight-vertex model configurations is E(n) =
230G"+1D/2 and the entropy per site in the large n limit is Sg sc = In 2. Compare again with the square lattice (sq). The special
case of Baxter’s result [7] with Boltzmann weights equal to one also gives Sg 5, = In 2. It is intriguing to observe that the
entropies per site for the two-dimensional Sierpinski gasket and the square lattice are the same for the eight-vertex model,
in contrast with the comparison for the ice model given in Section 3.

The second method to calculate the number of generalized vertex model configurations is to consider edge orientations
directly. We denote such a number by 2™ and let us first consider the ordinary two-dimensional Sierpinski gasket (b = 2).
As there are no restrictions for the orientations of edges connected to the outmost vertices, it is clear that P,(0) = 3.
Recall that SG(n + 1) is constructed from three SG(n) by identifying three pairs of vertices. For each identified vertex, the
orientations of its four edges were arbitrary before the identification and now can only assume the eight configurations
given in Fig. 1. Therefore, the number of eight-vertex model configurations should reduce by a factor two whenever a pair
of outmost vertices is identified. It follows that P,(1) = 3 x 3 -3 =6,P,(2) =6 x3—-3 =3 —-32 -3 = 15,etc. In
general,

3" -1
3—-1

3
Pz(n)=3”+]—3"—3”_]—~--—3=3|:3"— }:2(3%1). (6.2)
Similarly, for b = 3, SG3(n + 1) is constructed from six SGs(n) by identifying six pairs of vertices and a set of three vertices.
When three vertices are identified, the orientations of their six edges were arbitrary before the identification and can only
assume the thirty-two configurations given in Fig. 2 afterwards. The number of generalized vertex model configurations
again reduces by a factor two whenever three outmost vertices are identified. As the initial value P3(0) = 3 is the same, we
have

6"—1 1
Ps(n) =3 x6"—76" " +---4+1)=3x6"—7x =B x6"+7). (6.3)

6—1
For general b, SG,(n + 1) is constructed from b(b + 1) /25G(n) by identifying2+3+---+b+(b—-1) = (b—-1)(b+4)/2
sets of vertices, such that

b(b+l)]n b=+ b+ -1 2b+2[b(b+1)}n e (6.4)

Py(n) =3 X = i
2 2 bbb+ 1)/2—1  b+2 2 b+ 2

which agrees with Proposition 6.1.
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Appendix A. Recursion relations for the ice model on SG; (1)

We give here the recursion relations for the ice model on the generalized two-dimensional Sierpinski gasket SG3(n).
Since the subscript is b = 3 for all the quantities throughout this section, we will use the simplified notation pa,; to
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denote pas(n + 1) and similar notations for other quantities. For any non-negative integer n, we have

Pany1 = 3pa + pb6 + 16panpb + 6panpcn + 2panpd + 8pbnpan + 35pa§pb2 + 54pa:]‘pc2
+ Gpanpd2 —|— 25pb pa + 54pb pc + 6pb,, pd2 + 4Opanpb3 + 108panpc + 4panpd3
+ 108pb pc + 4pb;, pd3 + 24panpb,,pc,., + 8panpbnpd + 36panpc,,pd + prnpa,,pc,.,
+2pbnpanpd + 36pb;pcapdy + 36panpbnpcn + 12pa,,pb pdy, + 216pa, pcipb,
+ 108pa pC; 2pd, + 24panpd pb + 36panpd pCn + 24pbnpa pcn + 8pbnpanpdn
+ 216pbnpc pa, + 108pb pc, 2pd,, + 24pb? pdnpan + 36pb> pdnpcn + 324pc3pa§pb
+ 324pc;.pbpa, + 12pd>pa’pb, + 12pd>pb’pa, + 324pa’pb’pc; + 36pa’pb2pd>
+ l44panpbnpcnpd + 144pb panpcnpd, + 216panpb pcnpdn + 324panpc pbupd,
+ 108panpd pbupc, + 324pb e, 2pa,pd, + 108ph? pdnpanpcn, (A.1)

pbni1 = pad + 3pb® + 8pa’pb, + 16pb;pa, + 6pb;pc, + 2pb>pd, + 25panpb2 + 54pa,,pc
+ 6pa, pd2 —|— 35pb4pa + 54pb4pc + pr“pd2 + 40pa;, pb3 + 108pa pc + 4pa, pd3
+ 108pb pc + 4pb, pd3 + 6panpbnpcn + 2panpbnpd + 36panpcnpd + 24pbnpanpcn
+ 8pbypanpdy, + 36pbypcapd, + 24pa,pb;pc, + 8pa,pbpd, + 216pa;pcapby
+ 108panpc pd, + 24panpdnpb + 36panpdnpcn + 36pbnpa,,pcn + 12pb2pa’pd,
+ 216pbnpc pa, + ]08pbnpc pd, + 24pbnpdnpan + 36pb> pdnpcn + 324pc3paﬁpbn
+ 324pc, pbzpan + 12pdnpa pb, + 12pd3pb2pan + 324pa, pbzpc + 36pa2pb2pd2
+ 144pa"pbnpc,,pd + 144pb,,pa,.,pcnpd + 216panpb pcnpdy + 324panpc pbupd;,
+ 108pa,,pd pbupcn + 324pb pc, 2pa,pd, + 108pb? pdnpanpcn, (A.2)

PCay1 = 5832pcy + 8pd§ + panpb + 3panpcn + papd, + pb3pa, + 3pb3pcy + pbipd,
+ 1]664pc pd, + 144pd pcn + 4pa, pb + 4pb4pa + 9720pc; pd2 + 1080pdnpc
+ 6panpb3 + 162panpc + 6pa,1pd3 + 162pb pc + 6pb, pd3 -+ 4320pc; pd3
+ 21pa;pb,pc, + 7panpb pd, + 21pbypaypc, + 7pbypaypd, + 48pa,pb;pc,
+ 16panpb pd + 162panpc 2nd, + 54pa,,pdnpcn + 48pb,,panpcn + 16pb>pa’pd,
+ ]62pb jlom 2nd, + 54pb> pdnpcn + 486pc panpb + 486pc pbnpan + 18pdnpanpb
+ 18pdnpbnpan + 486panpc pb.pd, + 162panpd pbnpc, + 486pbnpc pa,pd,
+ 162pb? pdnpanpcn, (A.3)

pdni1 = pal + pb® + 5832pct + 8pdS + 3papb, + 9papc, + 3panpd + 3pb’pa, + 9pb;pc,
+ 3pb pd, + 11664pc pd, + 144pd,,pc,, + 3panpb2 + 3pb pa + 9720pc, pd2
+1080pdipc? + 2panpb3 + 162panpc + 6pa’pd: + 162pb]pc. + 6pb2pd:
+ 4320pcnpdi + 27panpb,,pcn + 9panpbnpd + 27pbnpanpc,, + 9pbnpanpd
+ 36pa;pb’pc, + 12pa’pb’pd, + 162pa’pclpd, + 54pa pdipc, + 36pbipazpcn
+ 12pb2pa’pd, + 162pb>pcipd, + 54pb> pdnpcn + 486pc.pa’pb, + 486pcpb’pa,
+ 18pdnpa,,pb + 18pd> pbnpan + 486pa’pc2pb,pd, + 162pa’pdpb,pc,
+486pb pc;, 2pa,pd, + 162pb? pdnpanpcn (A.4)
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