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Consider an adaptive linear model y, = x;0 + oe;, where x; = (s, ..., X;p) may depend on previ-
ous responses. Woodroofe and Coad [1999. Corrected confidence sets for sequentially designed
experiments: examples. In: Ghosh, S. (Ed.), Multivariate Analysis, Design of Experiments, and
Survey Sampling. Marcel Dekker, Inc., New York, pp. 135-161] derived very weak asymptotic
expansions for the distributions of an appropriate pivotal quantity and constructed corrected
confidence sets for 6, where the correction terms involve the limit of }";_,x.x;/n (as n ap-
proaches infinity) and its derivatives with respect to 0. However, the analytic form of this limit
and its derivatives may not be tractable in some models. This paper proposes a numerical
method to approximate the correction terms. For the resulting approximate pivot, we show
that under mild conditions the error induced by numerical approximation is op(1/n). Then,

we assess the accuracy of the proposed method by an autoregressive model and a threshold
autoregressive model.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider an adaptive linear model of the form
ye=x0+0e, t=1,2,..., (1)

whereey, ey, ... arei.id.standard normal random variables and 0=(0, ..., 0p) and o > 0 are unknown parameters. Here “adaptive”
means that x; = (X1, ...,Xp) may depend on previous responses; that is x; = X¢(y1, ..., ¥r—1). The above model is quite general
and includes time series and control problems as in Lai and Wei (1982), adaptive biased coin designs as in Eisele (1994), among
others.

An adaptive normal linear model with known variance was studied by Woodroofe (1989) and Woodroofe and Coad (1997).
They used a Bayesian approach and Stein’s (1981) identity to obtain asymptotic expansions for sampling distributions and
construct corrected confidence sets for 6 correct to order o(1/n). The case of unknown ¢ was considered by Coad and Woodroofe
(1998) and Woodroofe and Coad (1999), and approximations for confidence sets were evaluated for autoregressive (AR) processes,
Ford-Silvey model, and certain clinical trial examples. It was shown that the maximum likelihood estimators may be severely
biased in these models. This Bayesian approach starts with an approximate pivot, and employs Stein’s identity to derive asymptotic
expansions for the mean and variance corrections of the pivot. Then, it proceeds in the usual way to obtain the renormalized
pivot, which is used to form corrected confidence sets. The correction terms have simple expressions, which involve the analytic
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forms of the limit of }°}_;x:x;/n (as n approaches infinity) and its derivatives with respect to the parameter 6. For example, in
AR(2) models

Ve=01yr1+ 02ye 2 +oe, t=0,1,..., (2)
the correction terms depend on the first two moments of the process and the derivatives of these moments, which are tractable.

However, in some models the correction terms may not be available. Consider the following two-regime threshold autoregressive
(TAR) model

ye=b1y; ; + 0y, +0e, t=0,1,.., (3)
where
Yeo1 ifye1>0, 0 if yr_1 >0,
Vi = ) and y; ;= .
0 lfyt_] =0 Vi1 lfyt_] =0.

The TAR model was proposed by Tong (1983, 1990) to characterize certain nonlinear features of a process, and it became quite
popular in the non-linear time series literature. In this model, we have

TS 5 3 (A 0 EySt? 0
n Zx[xt = Iwn - 2] VAN
t=1 0 HZH(yt_]) 0 Eg(S™)

where S follows the stationary distribution of the process. However, it is known that the explicit analytic forms for the stationary
distribution and moments of a simple TAR model are difficult to derive and are known only in certain cases where the autore-
gression function has special structures and the error term follows some specific distributions. For example, Andél et al. (1984)
studied model (3) with 0; = —0,, 01 € (0, 1), and e; follows N(0, 1), and Andél and Bartoii (1986) and Loges (2004) considered the
same model with Cauchy and Laplace distributions respectively. Consequently, for TAR models the corrections suggested by very
weak type approximations cannot be obtained in the usual way. To address this problem, we propose to approximate the limit
of >"1_;x¢x;/n and its derivatives by combining the difference quotient method and Monte Carlo simulations. Then, we show that
under mild conditions the obtained confidence intervals are accurate to order op(1/n), where o, is in the sense of (31).

We organize the remainder of this paper as follows. The next section gives brief review of very weak approximation for
adaptive linear models. In Section 3 we describe our method and conduct error analysis. In Section 4 we assess the accuracy of
the proposed method by simulation studies. Section 5 concludes the paper.

(4)

2. Review

It is known that the likelihood function is not affected by the adaptive nature of the design, so the maximum likelihood
estimator of 6 has the form

n -1 n
O = (Z xfx’t> (Z xtyt) ,
t=1 t=1
provided that }"}_; x:x} is positive definite. The usual estimator of 62 is

2 Xy — X;0n)?
op="—"—""".
n-p

Let B, be a p x p matrix for which

n
B;«,B;l = ZX{X;, (5)
t=1
and define
1, A 1, A
Zn= B0~ 0n), To= 5 By(0~ D) (6)

These are served as the first approximate pivots for known and unknown o respectively. The variables Z, and T, have exactly
p-variate standard normal and t distributions respectively, in the absence of an adaptive design. For the case of an adaptive design,
the bias correction is needed. To describe the correction term, we first introduce some notations. Let Py, denote the probability

distribution of the model, and Ey , the expectation with respect to Py ;. Since 0, is invariant and By is equivalent, the distributions
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of Z, and T, do not depend on ¢. So, without loss of generality we take ¢ = 1 for discussion. Hereafter ¢ may be suppressed; for
example, we abbreviate Py and Ey; as Py and E, respectively. Suppose that

Qn = vnB;! - Q) in Py-probability, (7)

where Qg = [g;j(0):1,j = 1,...,p]. Suppose that g;; are differentiable with respect to 0, and let Qg [ql] 0):ij=1,...,p] and
My =[my(0) :i,j=1,...,p] where

dq;(0)

OB jo (8)

and
14 52
m;i(0) = ()i (0)]. 9
i(0) ,;; aekae,[q”‘( )q;(0)] 9)
Let @ denote the standard p-variate normal distribution. For h : RP — R, write
1

q)phth(w)q)p(dw), <D’1’h:/wh(w)q§p(dw) (b= 1), Ph= /(ww’—lp)h(w)¢p(dw) (p x p).

whenever the integrals exist. To find the mean and covariance of Z,, note that if h is a function of quadratic growth, then
1 , 1

Eg[h(Zn)] ~ @ h — ﬁ(tp’l’h) QgI + Htr[(t,li’z’h)M(,], (10)

where 1=(1,...,1)’". Specializing (10) to h(z) = z; and h(z) = zz; gives approximate mean and covariance of Z,:
1

Eg(Zn) ~ —ﬁqzj‘l:un(@). say (11)

and
1
Eg(ZnZp) ~ I + M. (12)

Let Ag=[6;(0):1,j=1,...,p] with
p
5(]1 aQI
5;i(0) = k ) 13
0 g;(ﬁ@,)(agk (13
Let fi, = ,un((%). For the case of known ¢, it can be shown that
~ Ay AG
Eol(Zn — 1) )(Zn — i1)) 1 = Ip + e
Let I'y = I'n(0) be a p x p matrix such that

, A
Il =1+ 22 9

Let f"n = Fn(@n) and define
a1 R
Zn =Ty (Zn - i)
Then, it can be shown that
Eg[h(Z})] ~ @ h. (15)
For the case of unknown g, we start with T, and define the renormalized pivot as
a1 R
Ti=1 (T — f1,). (16)
If h is a function of quadratic growth, then

Eglh(T:)] ~ ®Ph + ﬁ (17)
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where
d’h = ooz p_l P
= [, {30 =P - Jp) n@orian.

The convergence of (15) and (17) are in the very weak sense of Woodroofe (1986, 1989); that is,

[ oz < 81— @O 0 =0 () and [ (PutT < B) - cRBNEO)d0 =0 () (1)

uniformly with respect to Borel sets B < RP for all twice continuously differentiable densities ¢ with compact convex support,
where G) is the spherically symmetric p-variate t distribution with n degrees of freedom. Woodroofe (1989) writes relation
(18)as

Py(T: eB}:Gﬁ(B)-ﬁ-o(%) (19)

very weakly, and argues that (19) is strong enough to support a frequentist interpretation for confidence intervals.
It is easy to use (19) to form corrected confidence sets. By (5) we can take By as a lower triangular matrix, and for convenience

At

we take [, as an upper triangular matrix satisfying f"nl“,., =1Ip + 4, /n. Since 4y is symmetric, I~ Ip + 4; /(2n). Let i, and Tr;
be the i-th components of ji, and T}, respectively, 5,1‘,-1- be the (i,j)-th entry of 4 o and b, be the lower right-hand entry in B,. Then,

an asymptotic level y confidence interval for 0, is {IT}p! = cn}, where ¢y is the 100(1 + 7)/2 quantile of the standard univariate
t-distribution with n degrees of freedom; that is,

P O P
Onp + b, Bp £ b, (1 + o ) X Cp. (20)

The above results can be found in Sections 2-4 of Woodroofe and Coad (1999).

3. Proposed method

Recall from (8), (14), and (16) that the approximate mean and variance of T, involve q}‘;(én) and 5,-]-(@,,) defined in (8) and
(13), which are the partial derivatives of q; with respect to 0 evaluated at Op. Throughout this section we denote dq;;(0)/00;, as
qijx(0). To tackle the problem that the analytic forms of q;;(0) are not tractable, we propose to approximate qij‘k(én) by numerical

methods. In Section 3.1 we describe the approximation procedure and in Section 3.2 we show that the proposed pivot T,JE in (27)
differs from T;; by op(1/n).

3.1. Approximation procedure

Our approximation consists of two parts: difference quotient and Monte Carlo simulations. First, the difference quotient
method suggests

, (21)

g » . qii(On +ney) — qii(On)
(0n) ~
20,

i ( On) = p

where 7 is a small positive number and the set {¢; : j =1, ..., p} forms an orthonormal basis of RP. Note that by the Mean Value
Theorem the right side of (21) can be expressed as

qif(On + ner) — q;i(0n) _ 0q;j

n 00y

(0n) = g;ix(0p), (22)
where 0, lies between @,«, and 9,1 + ney. Next, consider q,-j(@n + ney) and q,-j(@)n) in the numerator of (21). Suppose that

xexp — A(0) =[a(0) : i,j=1,...,p] >

S|i=
M=

t=1

in Py-probability. Define the p(p + 1)/2-dimensional vectors a(0) = {a;(0) : 1 <I=r=p} and a™(0) = {aﬂ”)(ﬁ) 1=I=r=p),

where 0 € Q and agﬂ) are empirical approximations of a; based on a Monte Carlo simulated sample of size m. By the relation of B,
and Qg in (7) and the definition of B, in (5), it is not difficult to see that each entry of By is a function of {3} _; XXy : 1 =i=<j=p}
and q;;(0)'s are functions of a(0); that is,

qi(0) = hyj(a(0)) (24)
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for some known functions hy; : RPP+2 R We have noted that the explicit analytic form for the a(f) may not be available.
Therefore, we propose to approximate a(0) by a Monte Carlo simulation a™)(0), and approximate qij(0) = hy(a(0)) by h,-j(a(m)(e)).

Then, by (21) and (22), the resulting estimate of q,-j'k((;n) is

hi(a™ (0 + ner)) — hi(@™(0n))

p (25)

‘jij,k =

Note that §j;x depends on the choice of  and m, but the dependence is suppressed in the notation for convenience. Denote the
corresponding approximations to Qg, Ay, pp and I'y as Qg, Zlg, i, and Is. So, we have

3 1 - S Ay
ﬂn:_ﬁQt;l and Inly=1lp+ 7. (26)

From these we proceed to obtain the renormalized pivot as
T =T (Ta — 1) (27)

As an illustration of the above procedure, we consider the approximation of qzz,l(an) in the TAR model (3). Let S denote a
random variable that follows the stationary distribution of the model. Then, by (4) and (23) we have

1 Eo(S*Y 0 ann(0) 0
— > = =A(0),
n ;thr ( 0 50(5_)2> ( 0 022(9)> A)

and by (5) and (7) the inverse of A(0) is exactly Q;Qg- So, Qg can be expressed as

(Eg(sH)?)™12 0
= R 28
@ ( 0 (Eg(S- )2)”2> 28)

and we can write q52(0) = [a22(0)]’1/2, where ay;(0) = Ey(S~ )2. To approximate CIzz,1(9n). first by the difference quotient in (21)
we have

a22(0n) _ 422(0n +(1,0)) = 622(0n) _ [a22(0n + (1,001 — [aza ()]~

0p) =
q22,1(0n) 20, p p

’

where
a22(0n +(1,0) =By, . ,(S7)* and azp(0n) = Eg, (57).

Next, we simulate two stationary series Wy; and W; of length m w1th underlymg parameters 0, and 0, + (;7, O) respectively, and
approximate a22(9n+(17. Y)and a22(9n)bythe empirical moments a22 (9n+(n, V)= (W, ) /mand a22 (Gn) Zfil(Wﬁ.)z/m,
respectively. Then, the resulting approximate to ¢z 1 (6n) is

Lo -2 > (1vm 12\ V2
—>i(W3) — (w2t (W)
4221 = (mz D > ; ( ==t ) . (29)

In practice, the gjjy in (25) can be obtained without knowing the function form of h;;. To see how, first observe that from (5),
(7), and (23) we have
A71(0) = Q)Qy. (30)
Next, define the p x p matrix A™(¢,) = [a(m) ®p) ¢ i,j=1,...,p], where ¢, = 0, or Oy + new k=1,...,p. So, Qg satisfies
A1(D,)= Q(’?) Qp, and it can be estimated by the Cholesky decomposition of [A(m)((j)n)]’l. Denote the obtained estimates as Qg”).

Then, from these Qém) matrices we obtain qij,k(@n) by difference quotient method.

3.2. Error analysis

Throughout this section, we assume that the true parameter 0y is an interior point of the parameter space €. The op(1), Op(1)
and 2 (convergence in p-probability) hereafter are with respect to some probability measure p, where p can be Py, Por Py
(defined before Lemma 3.2). Next, let B,(w; d) denote the r-dimensional open ball with radius d centered at w, and let B.(w; d)



302 S.-C. Chen et al. / Journal of Statistical Planning and Inference 140 (2010) 297 - 309

denote the closure of it. Now, we will analyze the errors induced from approximating Qij,k(@n) by gjjx. and we will show that T,I
defined in (27) differs from T;; in (16) by op(1/n); that is,

T =T; +op(n"). (31)
To begin, note that by adding and subtracting q,'j‘k(HZ) defined in (22) to the difference q,'j‘k(én) — Gjjx yields

ik On) — i =[G On) — QO] + (@ (03) — Gyige) = (D + (1), say, (32)

where the error (I) is from approximating the derivative by difference quotient, while (II) is from approximating the moments
{a;} by Monte Carlo simulations {aﬂ”)}.
The following lemma deals with the order of (I).

Lemma 3.1. Suppose that 0, 2 0o and that 82qij/00f is continuous in €. Then, (I) = Op(#).

Proof. To start, note that by (22) 0, and 0, differ only in the k th component, and that 10n — 05l = |9nk — Oyl =n. Next, write

A 2
aqi(0n)  0qi(05) Py
qéfék”) - qgék“) = aqgéo(()nk — Oni), (33)

(0=

where (33) follows from the Mean Value Theorem, and { lies between 0, and 0. Since 0y is an interior point of ©, it implies that
there exist ¢ > # > 0 such that the ball By(0p; &) = {w : [|[w — Op|| = ¢} lies in the parameter space €. So,

1 = 0ol = 11 = Onll + 1105 — Ooll =< 1100 — 0311 + 1105 — 0o <1 + 1105 — Opll <&,
provided that n is large enough. Then,

52Qij(W)
0%

33)= sup

wi|w—0p|| <¢

} 1= 0p(n), (34)

by continuity of 62q,vj/60ﬁ and compactness of By(0p; &). O
For (II), by (22), (24), and (25), we have

_ Jay

n= 90,

o o1 ; ; ; ;

(07) = Gij = — ([hy(a(Bn + ney)) — hy(@™(On + ne))] - [hy(a(Bn)) — hy(@™(0n))]). (35)
n

In the next lemma we consider the order of a;(®,) — ag")(@n), where @, = 0 or 0 + ney for k=1, ..., p. Since a;(¢) is some

expectation and an')(go) is an empirical approximation, we can write

] m
Ay (0) ~ ap(@) = - 3" Wi — EW,,
i=1

where EW, = a,(¢) and {W; ,}" | is a simulated sample of W,,. Recall in Section 2 that Py denotes the probability distribution of

data {(x¢,yr)}{_, from the model (1). In the lemma below we let P denote the probability distribution of {Wip), and Py denote
the joint probability distribution of {(xt, y¢)}{_; and Wig, P

Lemma 3.2. Suppose thaty =1, — 0, ¢, £ 0o, and there exist 6 > 0, o > 0, and mg > 0 such that

2
m
sup E 1 > Wi, —EW, | = % (36)
oeBy(0o:0) \ M i m

for all m > my. Then,

.l m
= > Wi, — EW, = O0p(1/v/m).
i=1
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Proof. Given ¢ > 0, it suffices to show that there exist some ¢y > 0 and ng > 0 such that

= 1
P@O(E

for all n > no. To begin, choose ng such that Py, (/¢ — Ooll > 6) < &/2 ¥n > ng, and let ¢ = y/2a/e. Then, for n > np
1 n C1 ~
Py, ('m ;Wi@n - > Jﬁ) =Ey, [ ( ” S Wi EW¢H\>C1/JE}I(’/)”)]
m
— > W, —EW,
i=1

~ = 1 C1
= Py, (I19n — bl > 0) + /Bp(oo;a)P ( - > ﬁ) dFy, (), (37)

where the first expectation in (37) is with respect to the distribution of 0, when the underlying true parameter is 0y, the
second expectation in (37) is with respect to the conditional distribution of Wig, }i, given the value of ¢, and Fy, denotes the
probability distribution of ¢,. By (36) and Markov inequality we have

peby(0o:) \|™ i) Ta mTy

So, (37) =¢&/2 + ¢/2 = &. This completes the proof. []

m
D Wip, —EW,, > ﬁ) =¢

i=1

S
=

m

> Wiy —EW,
i=1

Lemma 3.3. Suppose that the conditions in Lemma 3.2 hold, and that h;; is continuously differentiable with respect to aj. over the
compact ball Bp(pﬂ)/z(a(@()); ¢) for some & > 0. Then, (II) = Op(1/(v/m)).

The proof follows easily by first writing

ohy(&)

o 1a(fn) = a™(@,)],
aj

hij(a(qbn)) - hij(a(m)(@n)) = Z

I=r

where & ={&,,1=I=r=p)lies between the line segment joining a(¢,) and a'™(&,, ). Then, the result follows by Lemma 3.2 and
the assumption that hy; is continuously differentiable.

To illustrate the verification of these lemmas, we consider approximating q22,1(9n) by 221 in the TAR model (3). It is not
difficult to see that ¢y, is twice continuously differentiable. Therefore, Lemma 3.1 is satisfied. Next, consider q21(0};) — §22.1-
From (28) and (35),

422,1(0) = G221 = %{[hzz(a(an +11e1)) — hoa(a™ (O + ner))l — [haz(a(0n)) — haa(a™(0n))])

1 A _ A _ A _
= Hla22(0n +nen) ™2 — (a0 -+ nen )12} = {lax (012 - a5/ 012 ], (38)
where the last line follows because
ha2(a) = hya(arn, iz, az2) = az, (0).

By (3)and (28), itis easy to see that there exists v > 0 such that az (0o )=Ep, (S~ ¥ > v, and that hyy(a) is continuously differentiable

on Bz(a(0p); €) for 0 < & < v. Finally, if the expectation FZ(Z}L W o/m — EW(p) in (36) of Lemma 3.2 is bounded by C(¢)/m, where
C(¢) is some continuous function of ¢, then the supremum of C(¢) over a compact region EP(HO: 0) is bounded by some o > 0
and we have (36).

Now, from (27) we can write

Th= Ty (T = ) = T Ty 4 T (g — ).
So,

T —Tr = (T o = )T+ T3y — fi)-
By (8), (11), and (26),

mn,i - ﬁn,i' = =

p
Z qy qlJJ
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and by (32) and Lemmas 3.1-3.3, we have

- ~ 1
qu(()n) —Gijj) = Op(n) + Op (m) .
Similarly, we can show that
In-T Lo —am=1o 0, (!
14n— nH:ﬁ” 0, HHZH p(17) + Op nvm)l

Then, we have the following result.

Proposition 3.4. Suppose that the conditions in Lemmas 3.1-3.3 hold and that y and m are chosen so that = 0(1/n) and m = O(n*).
Then, (31) holds.

Proof. Since i = 0(1/n) and m = O(n*), we have
1

iy — ity = ﬁ[Op(’7) +0p(1/(nv/m)] = 0p(1/n),  I1T'n — Il = %[Op(f’l) + 0p(1/(v/m))] = 0p(1/n).

Next (26) implies I'y = Op(1). Hence Pl - I =T (' — Tn) = 0p(1/n), and I (f1, — ft,) = 0p(1/n). So, Th — Ti = (I3 ' Iy —
I)T: + Ty — fin) = 0p(1/n). O

Recall that T} is asymptotically t, to order o(1/n) in the sense of (18) and that by (31) T,]: differs from T;; by order op(1/n). So,

similar to (20), an asymptotic level y confidence interval for 0, is {|T,];p| = cp}, where cp, is the 100(1 + y)/2 quantile of the standard
univariate t-distribution with n degrees of freedom; that is,

s Gn. | On Onpp
an + E:unp + E (1 + n ) X Cp. (39)

Note that the above interval differs from (20) derived by T;; only in the estimates of y,, and Opp-
4. Experiments

In this section we assess the accuracy of the proposed method for an AR(2) example and a TAR(1) model. The AR(2) model has
been studied by Woodroofe and Coad (1999) and Weng and Woodroofe (2006). We include this example to see how close the
proposed numerical approach is to the analytic method by comparing the coverage probabilities using the T} in (16) and the T,E
in (27). For the TAR(1) model, T; cannot be used. So, we compare Tz with bootstrap methods.

4.1. An AR(2) example

Consider the AR(2) model in (2). The parameter space Q2 is determined by the inequalities: 01 + 0, <1, 0; — 0, > — 1, and
0, > — 1, see, for example, Brockwell and Davis [3, Chapter 8]. For corrected confidence sets of parameters in AR(2) using very
weak type approximation, Woodroofe and Coad (1999) studied the case with fixed initial values yo = y_1 = 0, while Weng and
Woodroofe (2006) considered the stationary case, where yy and y_; were assumed to follow the limiting distribution of the
process. The former paper showed that for n = 25 and 50, the simulated and nominal values of the coverage probability agree
well, except for 0, near the vertices of the triangle 2; the latter showed that for n=10, 20, 50, the simulated coverage probabilities
and tail probabilities of renormalized approximate pivot are much closer to the nominal values than the uncorrected one. Here
we assume yo = y_1 = 0. Clearly, this model is of the form of (1) with x; = (yr_1,y¢—2)’, and the limit of Y"}_;x:x}/n can be easily
obtained. Below we discuss confidence intervals for 6, only. The treatment for 6; is similar and hence omitted.

By (23), the A(#) matrix in this model is

n / E,W?2 EyW1W;
om0 »A(0>=< w1 ]22) (40)
n EgW1W,  EgW3

where {(W;}2__ follows the stationary AR(2) process (2), and the analytic form of A(0) is easy to derive. Let Qy be a lower
triangular matrix satisfying Q;Qy =A-1(0) as in (30), then

]_QZ_M 0
1-63

011+ 0) 1_
J1 - 02 ’

Q=
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Table 1
(a) AR(2) model (n = 30, replicates = 10,000) (nominal Coverage = 95%; c, = 2.042; =+ is the range within 1.96 standard deviations); (b) AR(2) model (n = 50,
replicates = 10,000) (nominal Coverage = 95%; ¢, = 2.008; =+ is the range within 1.96 standard deviations).

(01 0;) Eo(Tn2) Eo(T2,) Py(Tz = 1) Py(Tra = — ) Py(ITra| = C7)
Eq(T3) Eg(T;3) Py(T, =) Py(T5 = —ca) Py T35 1 =)
- - 2 - - . -
Ey(Th) Ey(T};) Po(T}, = 1) Py(T}, = — ca) Po(IThl =cn)
(a)
(0.0 —0.5) 0.014 0.979 0.021 0.021 0.958
0.013 1.089 0.026 0.026 0.948
0.013 1.088 0.026 0.026 0.948
(0.00.0) 0.180 1.018 0.033 0.011 0.956
0.013 1.085 0.029 0.022 0.949
0.013 1.085 0.028 0.021 0.950
(0.00.5) 0.375 1.106 0.048 0.007 0.945
0.009 1.068 0.029 0.019 0.953
0.010 1.067 0.029 0.018 0.953
(0.5 —0.5) 0.016 0.970 0.020 0.019 0.961
0.014 1.078 0.024 0.024 0.952
0.014 1.077 0.024 0.024 0.952
(0.5 —0.2) 0.114 0.972 0.027 0.014 0.959
0.011 1.058 0.027 0.023 0.950
0.011 1.057 0.027 0.023 0.950
(0.50.0) 0.177 0.983 0.031 0.011 0.958
0.010 1.048 0.027 0.021 0.952
0.010 1.047 0.027 0.021 0.952
E= +0.020 1.07 £ 0.032 0.025 £+ 0.003 0.025 £+ 0.003 0.95 + 0.004
(b)
(0.0 —0.5) 0.017 0.986 0.023 0.022 0.955
0.017 1.053 0.027 0.025 0.949
0.016 1.052 0.027 0.025 0.949
(0.0 0.0) 0.141 1.007 0.030 0.016 0.954
0.007 1.046 0.026 0.026 0.948
0.007 1.046 0.026 0.025 0.949
(0.00.5) 0.294 1.062 0.042 0.012 0.947
—0.006 1.037 0.026 0.024 0.951
—0.004 1.037 0.026 0.024 0.951
(0.5 —0.5) 0.001 0.977 0.021 0.021 0.959
—0.000 1.042 0.024 0.024 0.952
—0.001 1.042 0.024 0.024 0.952
(0.5 —0.2) 0.076 0.990 0.025 0.020 0.955
—0.007 1.045 0.024 0.028 0.948
—0.007 1.045 0.024 0.028 0.948
(0.5 0.0) 0.127 0.999 0.027 0.018 0.955
—0.008 1.042 0.024 0.027 0.949
—0.008 1.042 0.024 0.027 0.949
EE +0.020 1.04 £ 0.030 0.025 £ 0.003 0.025 + 0.003 0.95 4+ 0.004

From this, the earlier two papers derived dq;;/00y analytically, and from which the mean and variance corrections are readily
available.

To implement the proposed numerical method in the present paper, for each of the parameter values in {9,7, @n +neq, én +neyzl,
we generate an AR(2) series of size m, and use simulated moments to approximate each entry in the matrices A(@n) and A( én +ney),
k =1,2. Then, the derivatives qij‘k(@n) are approximated as described following Eq. (30).

The selected slope parameters are the same as those in Weng and Woodroofe (2006). The values of # in (21) and m, the sample
size of Monte Carlo simulation, should be determined. In the experiment, we chose (7, m) = (0.001, 1000) and (0.0005, 5000). As
the results are close, we only report the case (#,m) = (0.001, 1000). Tables 1a and b show the simulated values of Py(T};, = cn),

Py(T;, = —cn)and Py(|T;,| = cn), for 6 =1 and n =30 and 50; and similarly for T;Z. Here c;, is the 2.5th percentile of the standard
univariate t-distribution with n degrees of freedom. The notation =+ in the last row indicates 1.96 standard deviations; for example,
for n = 50, £0.020 is obtained by E(tso) £ 1.96 x [Var(tso)/10,000]"/2, 1.25 + 0.042 is by E(t,) + 1.96 x [Var(tZ,)/10,000]"?, etc.

The results show that all the coverage probabilities of I_)Q(T;rz =cp), PQ(T;EZ = —¢p)and 139(|T:2| =) are within 1.96 standard
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deviations, where Py denotes the joint probability distribution of the data and the simulated sample. Moreover, all of the coverage
probabilities for (39) are within 0.001 of those for (20).

4.2. ATAR(1) example

Consider the TAR model in (3). For {y;} to be ergodic, the parameter space is determined by the inequalities: 01 < 1,0, <1,
and 010, <1; see, for example, Petruccelli and Woolford (1984) and Chen and Tsay (1991). Recall the Qy matrix in (28):
qi = (Eg(S*)Z)’l/Z, 12 =q21 =0 and g3 = (Eg(S*)Z)’]/Z. So, 6;(0) and p,(0) in (11) and (13) have simpler forms: p,(0) =
(—q¥,(0)/V/n, —g%,(0)/v/n) and d; = q;;(0)g;;:(0).

(b])?»elow(;/)ve briefly describe the procedures of bootstrap methods. For parametric bootstrap, we form a bootstrap sample
¥’ ....yn ) by

W =0 + 00y + o, (41)
where yE)b) =0,t=1,...,n,and {s(]b), ey s%b)} is arandom sample from standard normal distribution. Then, the bootstrap percentile

and bootstrap-t intervals are constructed based on B bootstrap samples. That is, the approximate level y confidence interval for
0;,i=1,2 by the bootstrap-t is

0,’ =+ SiCn,
where
- 1 A(b) 1 B Ab) [ N2
0i=§20,' v Si= mzw,' -0,
b=1 b=1

and ¢y, is the 100(1 + y)/2 quantile of the standard univariate t-distribution with n degrees of freedom, and that by the bootstrap
percentile is

(Biac» Ociucyn)s

where é(u) is the j th order statistic of {@EU, ....958)}, I(y)=1B-(1—7)2] and u(y)= [B-(1+7)/2], and |a] denotes the largest
integer less than or equal to a. The procedures of non-parametric bootstrap are the same as the parametric one except that the
sgb) in (41) are obtained by bootstrapping the residuals. In the experiment we set B = 1000.

In related work, Enders et al. (2007) compared the coverage probabilities in TAR models by the normal approximation and
bootstrap methods. They reported the actual coverage attained and a measure of the symmetry of the intervals. The symmetry
measure was constructed as follows. For the ideal 90% confidence interval, we expect the true parameter to fall below the lower
bound of the interval five percent of the time and above the upper bound of the interval five percent of the time. Let A; denote
the actual percent of time that the parameter falls above the upper bound and A, denote the actual percent of time it falls below
the lower bound. Then the symmetry is set as the value [(A; — 5)* + (A3 — 5) ]1/ 2. For the 95% confidence interval, the symmetry
measure can be defined similarly.

In simulating TAR processes, it is possible that the constructed series never crosses the true threshold, especially when the
slope parameter is close to 1. In such cases, the X} X;, is not positive definite and it is impossible to fit a TAR model. In Enders et al.
(2007), if a simulated series did not contain at least three points on each side of the threshold, it was discarded and replaced with
another simulated sample. They applied this rule also for bootstrap simulation. Instead of removing such series, an alternative
approach is to regularize the information matrix X, X, by adding a small positive quantity in the diagonal elements of the matrix,
which amounts to put a tiny proportion of observations to both regimes. The idea of regularizing the information matrix is not
new; see, for example, Vuchkov (1977). In unreported experiments we found that the results of the two approaches are similar;
and since the regularizing approach makes more efficient use of the sample, we take this approach (and set the small positive
quantity as 0.001) in the experiments below.

We conduct simulation study with (01, 0,) =(0.3,0.3), (0.3, 0.6), (0.3, 0.9), (0.3, 0.95), (0.6, 0.6), (0.6, 0.9), (0.6, 0.95), (0.9, 0.9),
(0.9, 0.95), (0.95, 0.95). These parameter values are the same as in Table 2 of Enders et al. (2007). As T,z depends on the choice of
(1, m), we conducted simulation with (1, m) = (0.001, 1000) and (0.0005, 5000) and found that T,JE is not sensitive to these values.
So, for the rest of the experiments we take (1, m)=(0.001, 1000). To compare with Table 2 of Enders et al. (2007), for each selected
parameter value, we generate 10,000 realizations of y1, ...,y for n = 100. The initial value yy was set to be 0 and &;'s were drawn
from the standard normal distribution. For each realization, the model was fitted using maximum likelihood estimate (MLE),
equivalent to least squares estimate in this case. The estimates were used to construct the 90% confidence intervals for 07 and
0, using the uncorrected pivot T, in (6) and the corrected pivot T,]; (27), and to generate 1000 bootstrap samples to form the
bootstrap percentile and bootstrap-t intervals.

Table 2a gives simulated coverage probabilities and the symmetry measures (in parentheses). In this table, the terms boot-t and
boot-p represent bootstrap-t and bootstrap percentile, respectively; and the (n) stands for nonparametric and (p) for parametric.
We made several observations. First, it is not difficult to check that the normal approximation in Enders et al. (2007) (based on
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Table 2a
TAR(1) model (n = 100, replicates = 10,000) (nominal Coverage = 90%; c, = 1.6602).
(01 6y) Uncorrected Corrected Boot-t(n) Boot-t(p) Boot-p(n) Boot-p(p)
(0.300.30) 0.903 0.899 0.899 0.897 0.889 0.881 0.908 0.908 0.872 0.870 0.892 0.893
(1.41) (0.93) (0.18) (0.28) (3.38) (3.50) (3.83) (3.55) (5.80) (5.81) (5.88) (5.62)
(0.300.60) 0.901 0.899 0.899 0.896 0.896 0.883 0.908 0.906 0.871 0.852 0.885 0.875
(1.85) (1.57) (0.41) (0.29) (4.17) (4.84) (4.46) (5.25) (7.14) (8.60) (7.00) (8.31)
(0.300.90) 0.900 0.893 0.900 0.896 0.939 0.887 0.927 0.899 0.851 0.790 0.859 0.796
(2.36) (3.28) (0.45) (0.38) (4.33) (6.66) (5.12) (7.08) (10.4) (16.1) (10.1) (16.2)
(0.300.95) 0.904 0.890 0.905 0.898 0.965 0.890 0.948 0.894 0.834 0.754 0.835 0.750
(2.59) (4.16) (0.43) (0.54) (4.97) (7.05) (4.91) (7.30) (12.3) (19.8) (12.4) (20.5)
(0.60 0.60) 0.897 0.900 0.897 0.899 0.891 0.888 0.907 0.908 0.844 0.845 0.862 0.863
(2.55) (1.84) (0.46) (0.09) (5.25) (5.42) (5.90) (5.62) (10.3) (10.1) (9.78) (9.64)
(0.60 0.90) 0.898 0.891 0.900 0.898 0.938 0.894 0.927 0.901 0.813 0.772 0.822 0.778
(3.07) (3.69) (0.59) (0.43) (4.56) (6.65) (5.43) (6.98) (14.3) (18.0) (13.7) (17.9)
(0.600.95) 0.899 0.887 0.902 0.900 0.963 0.894 0.948 0.899 0.783 0.733 0.787 0.730

(3.14) (4.43) (0.43) (0.61) (5.02) (6.81) (4.96) (7.00) (17.2) (21.9) (17.0) (22.4)

(0.90 0.90) 0.888 0.887 0.901 0.903 0.942 0.939 0.929 0.928 0.712 0.707 0.717 0.716
(4.70) (4.50) (0.99) (0.72) (4.80) (4.67) (5.42) (5.46) (24.1) (24.5) (23.8) (23.9)

(0.90 0.95) 0.887 0.882 0.904 0.905 0.966 0.941 0.952 0.930 0.661 0.659 0.670 0.659
(4.90) (5.30) (1.07) (1.16) (5.08) (4.63) (5.00) (5.28) (29.1) (29.2) (28.4) (29.4)

(0.950.95) 0.880 0.877 0.906 0.909 0.964 0.966 0.953 0.949 0.606 0.609 0.612 0.614
(5.97) (6.03) (1.19) (1.44) (4.95) (5.01) (4.96) (4.91) (34.5) (34.2) (34.1) (33.8)

Table 2b
TAR(1) model (n = 50, replicates = 10,000) (nominal Coverage = 95%; c, = 2.0086; + is the range within 1.96 standard deviations).

(1,m) = (0.001,1000)
(01 0y) Upper Lower Cl Symm Upper Lower CI Symm
Tnl Tnl Tnl Tnl TnZ Tn2 TnZ Tn2
T i T T T T Th Th
(0.300.30) 0.028 0.015 0.956 1.02 0.031 0.020 0.950 0.79
0.025 0.023 0.952 0.20 0.026 0.027 0.947 0.20
(0.30 0.60) 0.030 0.015 0.954 1.12 0.035 0.016 0.949 1.35
0.026 0.022 0.952 0.30 0.027 0.026 0.947 0.22
(0.300.90) 0.037 0.012 0.951 1.80 0.044 0.011 0.945 241
0.027 0.021 0.951 0.45 0.029 0.018 0.954 0.80
(0.300.95) 0.037 0.011 0.952 1.87 0.047 0.010 0.943 2.71
0.026 0.022 0.952 0.31 0.029 0.015 0.957 1.06
(0.60 0.60) 0.033 0.012 0.954 1.52 0.036 0.015 0.949 1.46
0.025 0.021 0.953 037 0.027 0.024 0.949 0.23
(0.60 0.90) 0.040 0.010 0.950 2.09 0.042 0.011 0.947 2.25
0.027 0.019 0.954 0.62 0.029 0.016 0.955 0.96
(0.60 0.95) 0.042 0.009 0.949 233 0.047 0.009 0.943 2.72
0.027 0.021 0.953 0.48 0.030 0.014 0.956 1.16
(0.90 0.90) 0.047 0.008 0.945 2.78 0.043 0.009 0.948 2.40
0.027 0.015 0.957 1.00 0.026 0.015 0.959 1.04
(0.900.95) 0.048 0.007 0.945 2.87 0.048 0.009 0.944 2.79
0.028 0.017 0.955 0.85 0.026 0.014 0.960 1.09
(0.950.95) 0.051 0.008 0.941 3.11 0.046 0.008 0.946 2.68
0.029 0.019 0.952 0.72 0.023 0.013 0.964 1.25
ES 0.025 + 0.003 0.025 + 0.003 0.95 + 0.004 0.025 + 0.003 0.025 + 0.003 0.95 + 0.004

least squares t-statistic) is exactly our uncorrected pivot; and indeed our experimental results for the uncorrected pivot agree
with theirs in both the coverage probabilities and the measure of symmetry. For the corrected pivot T,i, we note that when the

true parameter is near 1 and n is small, it is quite often to get @)m» > 1, which is not in the assumed parameter space; therefore,
the correction terms fi, and 4, in (26) (to be obtained by simulated samples with underlying parameter 0, and 0, + ne; ) are not
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Table 2¢
TAR(1) model (replicates = 10,000).

(n,m)=(0.001,1000)

n=>50 n=100
01 07) #{n; =0 or n, =0} #(0 > 1} #(0n > 1) #{n; =0orn, =0} #(0, > 1) #{0p > 1}
(0.300.30) 0 0 0 0 0 0
(0.30 0.60) 0 0 0 0 0 0
(0.300.90) 36 5 66 0 0 1
(0.300.95) 211 11 382 25 1 47
(0.60 0.60) 0 1 1 0 0 0
(0.600.90) 36 14 89 0 1 3
(0.600.95) 211 19 420 25 2 57
(0.900.90) 80 157 176 0 15 15
(0.900.95) 255 166 503 25 31 110
(0.950.95) 418 464 490 48 123 148

available. There are no standard ways to handle these samples. We simply set @ni = 0.95 and then run Monte Carlo simulation
to get the correction terms. The obtained results show that the corrected pivot is more symmetric and the overall coverage
probabilities are closer to the nominal value than the uncorrected one. For bootstrap methods, we observe that overall the
coverage probabilities by bootstrap-t are closer to the nominal value than that by bootstrap percentile, and that the coverage
probabilities by bootstrap percentile are far below the nominal value when the parameters are closer to 1. These agree with the
findings in Enders et al. (2007). However, our bootstrap-t are more conservative than theirs when the parameter is close to 1.
This may be due to different treatments for cases such as @m > 1 or unbalanced numbers of observations in both regimes. We
also conduct simulation for T,; and TL with n = 50 and nominal level 0.95. The results are in Table 2b, where the term symm
denotes the symmetry measure, and the terms upper, lower, and CI represent simulated upper 0.025, lower 0.025, and the 95%
coverage probabilities, respectively. This table shows that T,; has much larger upper tail than lower tail, indicating that (9,,,— tends
to be biased downwards at current 0 values. In contrast, the two tails of T,Tu. are more balanced. Note that here ¢, denotes the
2.5th or 5th percentile of the standard univariate t-distribution with n degrees of freedom.

Finally, we provide in Table 2c the number of samples where one of the regimes contains no observations, and the number of
samples where Oni > 1. In this table, n; and n, denote the numbers of observations in regimes 1 and 2, and the sample sizes are
set as n =50 and 100. Obviously, the proportions of such samples are higher when the sample size is smaller and the parameter
values are close to 1.

5. Conclusion

We have studied the very weak type approximation to obtain corrected confidence sets for the parameters by approximating
the mean and variance corrections numerically; and we have shown that the confidence sets are accurate to op(1/n) in the sense
of (31). This numerical approximation involves two tuning quantities # and m. Our experiments showed that these two quantities
are easy to tune and the experiment results are not sensitive to the choice of them. The proposed approach was applied to AR(2)
and TAR(1) models and the results are mostly satisfactory, except that special concerns are needed when the parameter values
are close to 1. In the future, it would be of interest to extend this approach to general TAR models and some adaptive nonlinear
models.
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