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Consider an adaptive linear model yt = x′
t�+�et , where xt = (xt1, . . . , xtp)

′ may depend on previ-
ous responses.Woodroofe and Coad [1999. Corrected confidence sets for sequentially designed
experiments: examples. In: Ghosh, S. (Ed.), Multivariate Analysis, Design of Experiments, and
Survey Sampling. Marcel Dekker, Inc., New York, pp. 135–161] derived very weak asymptotic
expansions for the distributions of an appropriate pivotal quantity and constructed corrected
confidence sets for �, where the correction terms involve the limit of

∑n
t=1xtx

′
t /n (as n ap-

proaches infinity) and its derivatives with respect to �. However, the analytic form of this limit
and its derivatives may not be tractable in some models. This paper proposes a numerical
method to approximate the correction terms. For the resulting approximate pivot, we show
that under mild conditions the error induced by numerical approximation is op(1/n). Then,
we assess the accuracy of the proposed method by an autoregressive model and a threshold
autoregressive model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider an adaptive linear model of the form

yt = x′
t� + �et , t = 1, 2, . . . , (1)

where e1, e2, . . . are i.i.d. standardnormal randomvariables and�=(�1, . . . ,�p)
′ and�>0areunknownparameters.Here “adaptive”

means that xt = (xt1, . . . , xtp)
′ may depend on previous responses; that is xt = xt(y1, . . . , yt−1). The above model is quite general

and includes time series and control problems as in Lai and Wei (1982), adaptive biased coin designs as in Eisele (1994), among
others.

An adaptive normal linear model with known variance was studied by Woodroofe (1989) and Woodroofe and Coad (1997).
They used a Bayesian approach and Stein's (1981) identity to obtain asymptotic expansions for sampling distributions and
construct corrected confidence sets for � correct to order o(1/n). The case of unknown � was considered by Coad andWoodroofe
(1998) andWoodroofe andCoad (1999), and approximations for confidence setswere evaluated for autoregressive (AR) processes,
Ford–Silvey model, and certain clinical trial examples. It was shown that the maximum likelihood estimators may be severely
biased in thesemodels. This Bayesian approach startswith anapproximatepivot, andemploys Stein's identity toderive asymptotic
expansions for the mean and variance corrections of the pivot. Then, it proceeds in the usual way to obtain the renormalized
pivot, which is used to form corrected confidence sets. The correction terms have simple expressions, which involve the analytic
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forms of the limit of
∑n

t=1xtx
′
t/n (as n approaches infinity) and its derivatives with respect to the parameter �. For example, in

AR(2) models

yt = �1yt−1 + �2yt−2 + �et , t = 0, 1, . . . , (2)

the correction terms depend on the first two moments of the process and the derivatives of these moments, which are tractable.
However, in somemodels the correction termsmay not be available. Consider the following two-regime threshold autoregressive
(TAR) model

yt = �1y
+
t−1 + �2y

−
t−1 + �et , t = 0, 1, . . . , (3)

where

y+
t−1 =

{
yt−1 if yt−1>0,

0 if yt−1 �0
and y−

t−1 =
{
0 if yt−1>0,

yt−1 if yt−1 �0.

The TAR model was proposed by Tong (1983, 1990) to characterize certain nonlinear features of a process, and it became quite
popular in the non-linear time series literature. In this model, we have

1
n

n∑
t=1

xtx′
t =
( 1

n
∑n

t=1(y
+
t−1)

2 0

0 1
n
∑n

t=1(y
−
t−1)

2

)
→
(
E�(S+)2 0

0 E�(S−)2

)
, (4)

where S follows the stationary distribution of the process. However, it is known that the explicit analytic forms for the stationary
distribution and moments of a simple TAR model are difficult to derive and are known only in certain cases where the autore-
gression function has special structures and the error term follows some specific distributions. For example, And�el et al. (1984)
studied model (3) with �1 = −�2, �1 ∈ (0, 1), and et follows N(0, 1), and And�el and Barto�n (1986) and Loges (2004) considered the
samemodel with Cauchy and Laplace distributions respectively. Consequently, for TARmodels the corrections suggested by very
weak type approximations cannot be obtained in the usual way. To address this problem, we propose to approximate the limit
of
∑n

t=1xtx
′
t/n and its derivatives by combining the difference quotient method and Monte Carlo simulations. Then, we show that

under mild conditions the obtained confidence intervals are accurate to order op(1/n), where op is in the sense of (31).
We organize the remainder of this paper as follows. The next section gives brief review of very weak approximation for

adaptive linear models. In Section 3 we describe our method and conduct error analysis. In Section 4 we assess the accuracy of
the proposed method by simulation studies. Section 5 concludes the paper.

2. Review

It is known that the likelihood function is not affected by the adaptive nature of the design, so the maximum likelihood
estimator of � has the form

�̂n =
( n∑
t=1

xtx′
t

)−1 ( n∑
t=1

xtyt

)
,

provided that
∑n

t=1xtx
′
t is positive definite. The usual estimator of �2 is

�̂2
n =
∑n

t=1(yt − x′
t�̂n)

2

n − p
.

Let Bn be a p × p matrix for which

BnB′
n =

n∑
t=1

xtx′
t , (5)

and define

Zn = 1
�
B′
n(� − �̂n), Tn = 1

�̂n
B′
n(� − �̂n). (6)

These are served as the first approximate pivots for known and unknown � respectively. The variables Zn and Tn have exactly
p-variate standard normal and t distributions respectively, in the absence of an adaptive design. For the case of an adaptive design,
the bias correction is needed. To describe the correction term, we first introduce some notations. Let P�,� denote the probability

distribution of themodel, and E�,� the expectation with respect to P�,�. Since �̂n is invariant and Bn is equivalent, the distributions
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of Zn and Tn do not depend on �. So, without loss of generality we take � = 1 for discussion. Hereafter � may be suppressed; for
example, we abbreviate P�,1 and E�,1 as P� and E�, respectively. Suppose that

Qn ≡ √
nB−1

n → Q� in P�-probability, (7)

where Q� = [qij(�): i, j = 1, . . . ,p]. Suppose that qij are differentiable with respect to �, and let Q#
� = [q#ij (�) : i, j = 1, . . . ,p] and

M� = [mij(�) : i, j = 1, . . . , p] where

q#ij (�) = �qij(�)
��j

(8)

and

mij(�) =
p∑

k=1

p∑
l=1

�2

��k��l
[qik(�)qjl(�)]. (9)

Let �p denote the standard p-variate normal distribution. For h :Rp →R, write

�ph =
∫

h(w)�p(dw), �p
1h =

∫
wh(w)�p(dw) (p × 1), �p

2h = 1
2

∫
(ww′ − Ip)h(w)�p(dw) (p × p),

whenever the integrals exist. To find the mean and covariance of Zn, note that if h is a function of quadratic growth, then

E�[h(Zn)] ≈ �ph − 1√
n
(�p

1h)
′Q#

� 1 + 1
n
tr[(�p

2h)M�], (10)

where 1 = (1, . . . , 1)′. Specializing (10) to h(z) = zi and h(z) = zizj gives approximate mean and covariance of Zn:

E�(Zn) ≈ − 1√
n
Q#

� 1 = �n(�), say (11)

and

E�(ZnZ
′
n) ≈ Ip + 1

n
M�. (12)

Let �� = [�ij(�) : i, j = 1, . . . , p] with

�ij(�) =
p∑

k=1

p∑
l=1

(
�qik
��l

)(
�qjl
��k

)
. (13)

Let �̂n = �n(�̂n). For the case of known �, it can be shown that

E�[(Zn − �̂n)(Zn − �̂n)
′] ≈ Ip + ��

n
.

Let �n = �n(�) be a p × pmatrix such that

�n�′
n = Ip + ��

n
. (14)

Let �̂n = �n(�̂n) and define

Z∗
n = �̂

−1
n (Zn − �̂n).

Then, it can be shown that

E�[h(Z
∗
n)] ≈ �ph. (15)

For the case of unknown �, we start with Tn and define the renormalized pivot as

T∗
n = �̂

−1
n (Tn − �̂n). (16)

If h is a function of quadratic growth, then

E�[h(T
∗
n)] ≈ �ph + �p

4h
n

, (17)
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where

�p
4h =

∫
Rp

{
1
4
[‖z‖2 − p]2 − 1

2
p
}
h(z)�p{dz}.

The convergence of (15) and (17) are in the very weak sense of Woodroofe (1986, 1989); that is,∫
	
[P�{Z∗

n ∈ B} − �p(B)]
(�)d� = o
(
1
n

)
and

∫
	
[P�{T∗

n ∈ B} − Gp
n(B)]
(�)d� = o

(
1
n

)
(18)

uniformly with respect to Borel sets B ⊆ Rp for all twice continuously differentiable densities 
 with compact convex support,
where Gp

n is the spherically symmetric p-variate t distribution with n degrees of freedom. Woodroofe (1989) writes relation
(18) as

P�{T∗
n ∈ B} = Gp

n(B) + o
(
1
n

)
(19)

very weakly, and argues that (19) is strong enough to support a frequentist interpretation for confidence intervals.
It is easy to use (19) to form corrected confidence sets. By (5) we can take Bn as a lower triangular matrix, and for convenience

we take �̂n as an upper triangular matrix satisfying �̂n�̂
′
n = Ip + ��̂n

/n. Since �� is symmetric, �̂n ≈ Ip + ��̂n
/(2n). Let �̂ni and T∗

ni

be the i-th components of �̂n and T∗
n respectively, �̂n,ij be the (i, j)-th entry of��̂n

, and bn be the lower right-hand entry in Bn. Then,
an asymptotic level � confidence interval for �p is {|T∗

np| � cn}, where cn is the 100(1 + �)/2 quantile of the standard univariate
t-distribution with n degrees of freedom; that is,

�̂np + �̂n

bn
�̂np ± �̂n

bn

(
1 + �̂n,pp

2n

)
× cn. (20)

The above results can be found in Sections 2–4 of Woodroofe and Coad (1999).

3. Proposed method

Recall from (8), (14), and (16) that the approximate mean and variance of Tn involve q#ij (�̂n) and �ij(�̂n) defined in (8) and

(13), which are the partial derivatives of qij with respect to � evaluated at �̂n. Throughout this section we denote �qij(�)/��k as

qij,k(�). To tackle the problem that the analytic forms of qij,k(�) are not tractable, we propose to approximate qij,k(�̂n) by numerical

methods. In Section 3.1 we describe the approximation procedure and in Section 3.2 we show that the proposed pivot T†n in (27)
differs from T∗

n by op(1/n).

3.1. Approximation procedure

Our approximation consists of two parts: difference quotient and Monte Carlo simulations. First, the difference quotient
method suggests

qij,k(�̂n) ≡ �qij
��k

(�̂n) ≈ qij(�̂n + �ek) − qij(�̂n)
�

, (21)

where � is a small positive number and the set {ej : j = 1, . . . , p} forms an orthonormal basis ofRp. Note that by the Mean Value
Theorem the right side of (21) can be expressed as

qij(�̂n + �ek) − qij(�̂n)
�

= �qij
��k

(�∗
n) ≡ qij,k(�

∗
n), (22)

where �∗
n lies between �̂n and �̂n + �ek. Next, consider qij(�̂n + �ek) and qij(�̂n) in the numerator of (21). Suppose that

1
n

n∑
t=1

xtx′
t → A(�) = [aij(�) : i, j = 1, . . . ,p] (23)

in P�-probability. Define the p(p + 1)/2-dimensional vectors a(�) = {alr(�) : 1� l� r�p} and a(m)(�) = {a(m)
lr (�) : 1� l� r�p},

where � ∈ 	 and a(m)
lr are empirical approximations of alr based on aMonte Carlo simulated sample of sizem. By the relation of Bn

and Q� in (7) and the definition of Bn in (5), it is not difficult to see that each entry of Bn is a function of {∑n
k=1xkixkj : 1� i� j�p}

and qij(�)'s are functions of a(�); that is,

qij(�) = hij(a(�)) (24)
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for some known functions hij : R
p(p+1)/2 → R. We have noted that the explicit analytic form for the a(�) may not be available.

Therefore, we propose to approximate a(�) by a Monte Carlo simulation a(m)(�), and approximate qij(�)= hij(a(�)) by hij(a(m)(�)).

Then, by (21) and (22), the resulting estimate of qij,k(�̂n) is

q̃ij,k = hij(a(m)(�̂n + �ek)) − hij(a(m)(�̂n))
�

. (25)

Note that q̃ij,k depends on the choice of � and m, but the dependence is suppressed in the notation for convenience. Denote the

corresponding approximations to Q#
� , ��, �n and �n as Q̃#

� , �̃�, �̃n and �̃n. So, we have

�̃n = − 1√
n
Q̃#

�1 and �̃n�̃′
n = Ip + �̃�

n
. (26)

From these we proceed to obtain the renormalized pivot as

T†n = �̃−1
n (Tn − �̃n). (27)

As an illustration of the above procedure, we consider the approximation of q22,1(�̂n) in the TAR model (3). Let S denote a
random variable that follows the stationary distribution of the model. Then, by (4) and (23) we have

1
n

n∑
t=1

xtx′
t →

(
E�(S+)2 0

0 E�(S−)2

)
=
(
a11(�) 0

0 a22(�)

)
= A(�),

and by (5) and (7) the inverse of A(�) is exactly Q ′
�Q�. So, Q� can be expressed as

Q� =
(
(E�(S+)2)−1/2 0

0 (E�(S−)2)−1/2

)
, (28)

and we can write q22(�) = [a22(�)]
−1/2, where a22(�) = E�(S−)2. To approximate q22,1(�̂n), first by the difference quotient in (21)

we have

q22,1(�̂n) ≡ �q22(�̂n)

��1
≈ q22(�̂n + (�, 0)′) − q22(�̂n)

�
= [a22(�̂n + (�, 0)′)]−1/2 − [a22(�̂n)]

−1/2

�
,

where

a22(�̂n + (�, 0)′) = E�̂n+(�,0)′ (S
−)2 and a22(�̂n) = E�̂n

(S−)2.

Next, we simulate two stationary seriesW1i andW2i of lengthmwith underlying parameters �̂n and �̂n + (�, 0)′, respectively, and
approximatea22(�̂n+(�, 0)′) anda22(�̂n) by theempiricalmomentsa(m)

22 (�̂n+(�, 0)′) ≡∑m
i=1(W

−
2i)

2/m anda(m)
22 (�̂n) ≡∑m

i=1(W
−
1i)

2/m,

respectively. Then, the resulting approximate to q22,1(�̂n) is

q̃22,1 =

(
1
m
∑m

i=1(W
−
2i)

2
)−1/2

−
(

1
m
∑m

i=1(W
−
1i)

2
)−1/2

�
. (29)

In practice, the q̃ij,k in (25) can be obtained without knowing the function form of hij. To see how, first observe that from (5),
(7), and (23) we have

A−1(�) = Q ′
�Q�. (30)

Next, define the p × p matrix A(m)(̂n) = [a(m)
ij (̂n) : i, j = 1, . . . ,p], where ̂n = �̂n or �̂n + �ek, k = 1, . . . , p. So, Q̂n

satisfies

A−1(̂n)=Q ′
̂n

Q̂n
and it can be estimated by the Cholesky decomposition of [A(m)(̂n)]

−1. Denote the obtained estimates as Q (m)
̂n

.

Then, from these Q (m)
̂n

matrices we obtain qij,k(�̂n) by difference quotient method.

3.2. Error analysis

Throughout this section, we assume that the true parameter �0 is an interior point of the parameter space 	. The op(1), Op(1)

and
p→ (convergence in p-probability) hereafter are with respect to some probability measure p, where p can be P�0

, P̄ or P̄�

(defined before Lemma 3.2). Next, let Br(w; d) denote the r-dimensional open ball with radius d centered at w, and let B̄r(w; d)
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denote the closure of it. Now, we will analyze the errors induced from approximating qij,k(�̂n) by q̃ij,k, and we will show that T†n
defined in (27) differs from T∗

n in (16) by op(1/n); that is,

T†n = T∗
n + op(n−1). (31)

To begin, note that by adding and subtracting qij,k(�
∗
n) defined in (22) to the difference qij,k(�̂n) − q̃ij,k yields

qij,k(�̂n) − q̃ij,k = [qij,k(�̂n) − qij,k(�
∗
n)] + [qij,k(�

∗
n) − q̃ij,k] = (I) + (II), say, (32)

where the error (I) is from approximating the derivative by difference quotient, while (II) is from approximating the moments
{alr} by Monte Carlo simulations {a(m)

lr }.
The following lemma deals with the order of (I).

Lemma 3.1. Suppose that �̂n
p→�0 and that �2

qij/��2
k is continuous in 	. Then, (I) = Op(�).

Proof. To start, note that by (22) �̂n and �∗
n differ only in the k th component, and that ‖�̂n − �∗

n‖ = |�̂nk − �∗
nk| ��. Next, write

(I) = �qij(�̂n)

��k
− �qij(�

∗
n)

��k
= �2

qij(�)

��2
k

(�̂nk − �∗
nk), (33)

where (33) follows from the Mean Value Theorem, and � lies between �̂n and �∗
n. Since �0 is an interior point of 	, it implies that

there exist �>�>0 such that the ball B̄p(�0; �) ≡ {w : ‖w − �0‖ � �} lies in the parameter space 	. So,

‖� − �0‖ � ‖� − �̂n‖ + ‖�̂n − �0‖ � ‖�̂n − �∗
n‖ + ‖�̂n − �0‖ �� + ‖�̂n − �0‖< �,

provided that n is large enough. Then,

(33)� sup
w:‖w−�0‖ � �

⎡
⎣�2

qij(w)

��2
k

⎤
⎦� = Op(�), (34)

by continuity of �2
qij/��2

k and compactness of B̄p(�0; �). �

For (II), by (22), (24), and (25), we have

(II) = �qij
��k

(�∗
n) − q̃ij,k = 1

�
{[hij(a(�̂n + �ek)) − hij(a

(m)(�̂n + �ek))] − [hij(a(�̂n)) − hij(a
(m)(�̂n))]}. (35)

In the next lemma we consider the order of alr(̂n) − a(m)
lr (̂n), where ̂n = �̂n or �̂n + �ek for k = 1, . . . , p. Since alr() is some

expectation and a(m)
lr () is an empirical approximation, we can write

a(m)
lr () − alr() = 1

m

m∑
i=1

Wi, − EW,

where EW = alr() and {Wi,}mi=1 is a simulated sample ofW. Recall in Section 2 that P� denotes the probability distribution of
data {(xt , yt)}nt=1 from the model (1). In the lemma below we let P̄ denote the probability distribution of {Wi,}mi=1 and P̄� denote
the joint probability distribution of {(xt , yt)}nt=1 and {Wi,̂n

}mi=1.

Lemma 3.2. Suppose that � = �n → 0, ̂n
p→�0, and there exist �>0, �>0, andm0>0 such that

sup
∈B̄p(�0;�)

Ē

⎛
⎝ 1
m

m∑
i=1

Wi, − EW

⎞
⎠

2

�
�0

m
(36)

for all m>m0. Then,

1
m

m∑
i=1

Wi,̂n
− EŴn

= Op(1/
√
m).
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Proof. Given �>0, it suffices to show that there exist some c1>0 and n0>0 such that

P̄�0

⎛
⎝
∣∣∣∣∣∣
1
m

m∑
i=1

Wi,̂n
− EŴn

∣∣∣∣∣∣>
c1√
m

⎞
⎠ � �

for all n>n0. To begin, choose n0 such that P�0
(‖̂n − �0‖>�)� �/2 ∀n>n0, and let c1 �

√
2�0/�. Then, for n>n0

P̄�0

⎛
⎝
∣∣∣∣∣∣
1
m

m∑
i=1

Wi,̂n
− EŴn

∣∣∣∣∣∣>
c1√
m

⎞
⎠= E�0

[
E
(
1{∣∣∣ 1m∑m

i=1Wi,̂n
−EŴn

∣∣∣>c1/
√
m
}|̂n

)]

� P�0
(‖̂n − �0‖>�) +

∫
B̄p(�0;�)

P̄

⎛
⎝
∣∣∣∣∣∣
1
m

m∑
i=1

Wi, − EW

∣∣∣∣∣∣>
c1√
m

⎞
⎠ dF̂n

(), (37)

where the first expectation in (37) is with respect to the distribution of �̂n when the underlying true parameter is �0, the
second expectation in (37) is with respect to the conditional distribution of {Wi,̂n

}mi=1 given the value of ̂n, and F̂n
denotes the

probability distribution of ̂n. By (36) and Markov inequality we have

sup
∈B̄p(�0;�)

P̄

⎛
⎝
∣∣∣∣∣∣
1
m

m∑
i=1

Wi, − EW

∣∣∣∣∣∣>
c1√
m

⎞
⎠ �

m

c21
· �0

m
�

�
2
.

So, (37) � �/2 + �/2 = �. This completes the proof. �

Lemma 3.3. Suppose that the conditions in Lemma 3.2 hold, and that hij is continuously differentiable with respect to alr over the
compact ball B̄p(p+1)/2(a(�0); �) for some �>0. Then, (II) = Op(1/(�

√
m)).

The proof follows easily by first writing

hij(a(̂n)) − hij(a
(m)(̂n)) =

∑
l� r

�hij(
)
�alr

[alr(̂n) − a(m)
lr (̂n)],

where 
= {
lr , 1� l� r�p} lies between the line segment joining a(̂n) and a(m)(̂n). Then, the result follows by Lemma 3.2 and
the assumption that hij is continuously differentiable.

To illustrate the verification of these lemmas, we consider approximating q22,1(�̂n) by q̃22,1 in the TAR model (3). It is not
difficult to see that q22 is twice continuously differentiable. Therefore, Lemma 3.1 is satisfied. Next, consider q22,1(�

∗
n) − q̃22,1.

From (28) and (35),

q22,1(�
∗
n) − q̃22,1 = 1

�
{[h22(a(�̂n + �e1)) − h22(a(m)(�̂n + �e1))] − [h22(a(�̂n)) − h22(a(m)(�̂n))]}

= 1
�

{{
[a22(�̂n + �e1)]

−1/2 − [a(m)
22 (�̂n + �e1)]

−1/2
}

−
{
[a22(�̂n)]

−1/2 − [a(m)
22 (�̂n)]

−1/2
}}

, (38)

where the last line follows because

h22(a) = h22(a11, a12, a22) = a−1/2
22 (�).

By (3) and (28), it is easy to see that there exists �>0 such that a22(�0)=E�0
(S−)2> �, and that h22(a) is continuously differentiable

on B̄3(a(�0); �) for 0< �< �. Finally, if the expectation Ē
(∑m

i=1Wi,/m − EW
)2 in (36) of Lemma 3.2 is bounded by C()/m, where

C() is some continuous function of , then the supremum of C() over a compact region B̄p(�0;�) is bounded by some �0>0
and we have (36).

Now, from (27) we can write

T†n = �̃−1
n (Tn − �̃n) = �̃−1

n �̂nT∗
n + �̃−1

n (�̂n − �̃n).

So,

T†n − T∗
n = (�̃−1

n �̂n − Ip)T∗
n + �̃−1

n (�̂n − �̃n).

By (8), (11), and (26),

|�̂n,i − �̃n,i| = 1√
n

∣∣∣∣∣∣
p∑

j=1

(q#ij (�̂n) − q̃ij,j)

∣∣∣∣∣∣ ,
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and by (32) and Lemmas 3.1–3.3, we have

|q#ij (�̂n) − q̃ij,j)| = Op(�) + Op

(
1

�
√
m

)
.

Similarly, we can show that

‖�̂n − �̃n‖ = 1
2n

‖��̂n
− �̃�‖ = 1

n

[
Op(�) + Op

(
1

�
√
m

)]
.

Then, we have the following result.

Proposition 3.4. Suppose that the conditions in Lemmas 3.1–3.3 hold and that � and m are chosen so that � =O(1/n) andm=O(n4).
Then, (31) holds.

Proof. Since � = O(1/n) and m = O(n4), we have

‖�̂n − �̃n‖ = 1√
n
[Op(�) + Op(1/(�

√
m))] = op(1/n), ‖�̂n − �̃n‖ = 1

n
[Op(�) + Op(1/(�

√
m))] = op(1/n).

Next (26) implies �̃n = Op(1). Hence �̃
−1
n �̂n − Ip = �̃−1

n (�̂n − �̃n) = op(1/n), and �̃−1
n (�̂n − �̃n) = op(1/n). So, T

†
n − T∗

n = (�̃−1
n �̂n −

Ip)T∗
n + �̃−1

n (�̂n − �̃n) = op(1/n). �

Recall that T∗
n is asymptotically tn to order o(1/n) in the sense of (18) and that by (31) T†n differs from T∗

n by order op(1/n). So,
similar to (20), an asymptotic level � confidence interval for �p is {|T†np| � cn}, where cn is the 100(1+�)/2 quantile of the standard
univariate t-distribution with n degrees of freedom; that is,

�̂np + �̂n

bn
�̃np ± �̂n

bn

(
1 + �̃n,pp

2n

)
× cn. (39)

Note that the above interval differs from (20) derived by T∗
n only in the estimates of �np and �pp.

4. Experiments

In this section we assess the accuracy of the proposedmethod for an AR(2) example and a TAR(1) model. The AR(2) model has
been studied by Woodroofe and Coad (1999) and Weng and Woodroofe (2006). We include this example to see how close the
proposed numerical approach is to the analytic method by comparing the coverage probabilities using the T∗

n in (16) and the T†n
in (27). For the TAR(1) model, T∗

n cannot be used. So, we compare T†n with bootstrap methods.

4.1. An AR(2) example

Consider the AR(2) model in (2). The parameter space 	 is determined by the inequalities: �1 + �2<1, �1 − �2> − 1, and
�2> − 1; see, for example, Brockwell and Davis [3, Chapter 8]. For corrected confidence sets of parameters in AR(2) using very
weak type approximation, Woodroofe and Coad (1999) studied the case with fixed initial values y0 = y−1 = 0, while Weng and
Woodroofe (2006) considered the stationary case, where y0 and y−1 were assumed to follow the limiting distribution of the
process. The former paper showed that for n = 25 and 50, the simulated and nominal values of the coverage probability agree
well, except for �2 near the vertices of the triangle	; the latter showed that for n=10, 20, 50, the simulated coverage probabilities
and tail probabilities of renormalized approximate pivot are much closer to the nominal values than the uncorrected one. Here
we assume y0 = y−1 = 0. Clearly, this model is of the form of (1) with xt = (yt−1, yt−2)

′, and the limit of
∑n

t=1xtx
′
t/n can be easily

obtained. Below we discuss confidence intervals for �2 only. The treatment for �1 is similar and hence omitted.
By (23), the A(�) matrix in this model is∑n

t=1xtx
′
t

n
→ A(�) =

(
E�W

2
1 E�W1W2

E�W1W2 E�W
2
2

)
, (40)

where {Wt}∞t=−∞ follows the stationary AR(2) process (2), and the analytic form of A(�) is easy to derive. Let Q� be a lower
triangular matrix satisfying Q ′

�Q� = A−1(�) as in (30), then

Q� =

⎛
⎜⎜⎜⎜⎜⎝

√√√√1 − �2
2 − �2

1(1 + �2)
2

1 − �2
2

0

−�1(1 + �2)√
1 − �2

2

√
1 − �2

2

⎞
⎟⎟⎟⎟⎟⎠ .
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Table 1
(a) AR(2) model (n = 30, replicates = 10, 000) (nominal Coverage = 95%; cn = 2.042; ± is the range within 1.96 standard deviations); (b) AR(2) model (n = 50,
replicates = 10, 000) (nominal Coverage = 95%; cn = 2.008; ± is the range within 1.96 standard deviations).

(�1 �2) E�(Tn2) E�(T2
n2) P�(Tn2 � cn) P�(Tn2 � − cn) P�(|Tn2| � cn)

E�(T∗
n2) E�(T∗2

n2 ) P�(T∗
n2 � cn) P�(T∗

n2 � − cn) P�(|T∗
n2| � cn)

Ē�(T
†
n2) Ē�(T

†2

n2 ) P̄�(T
†
n2 � cn) P̄�(T

†
n2 � − cn) P̄�(|T†

n2| � cn)

(a)
(0.0 − 0.5) 0.014 0.979 0.021 0.021 0.958

0.013 1.089 0.026 0.026 0.948
0.013 1.088 0.026 0.026 0.948

(0.0 0.0) 0.180 1.018 0.033 0.011 0.956
0.013 1.085 0.029 0.022 0.949
0.013 1.085 0.028 0.021 0.950

(0.0 0.5) 0.375 1.106 0.048 0.007 0.945
0.009 1.068 0.029 0.019 0.953
0.010 1.067 0.029 0.018 0.953

(0.5 − 0.5) 0.016 0.970 0.020 0.019 0.961
0.014 1.078 0.024 0.024 0.952
0.014 1.077 0.024 0.024 0.952

(0.5 − 0.2) 0.114 0.972 0.027 0.014 0.959
0.011 1.058 0.027 0.023 0.950
0.011 1.057 0.027 0.023 0.950

(0.5 0.0) 0.177 0.983 0.031 0.011 0.958
0.010 1.048 0.027 0.021 0.952
0.010 1.047 0.027 0.021 0.952

± ±0.020 1.07 ± 0.032 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004

(b)
(0.0 − 0.5) 0.017 0.986 0.023 0.022 0.955

0.017 1.053 0.027 0.025 0.949
0.016 1.052 0.027 0.025 0.949

(0.0 0.0) 0.141 1.007 0.030 0.016 0.954
0.007 1.046 0.026 0.026 0.948
0.007 1.046 0.026 0.025 0.949

(0.0 0.5) 0.294 1.062 0.042 0.012 0.947
−0.006 1.037 0.026 0.024 0.951
−0.004 1.037 0.026 0.024 0.951

(0.5 − 0.5) 0.001 0.977 0.021 0.021 0.959
−0.000 1.042 0.024 0.024 0.952
−0.001 1.042 0.024 0.024 0.952

(0.5 − 0.2) 0.076 0.990 0.025 0.020 0.955
−0.007 1.045 0.024 0.028 0.948
−0.007 1.045 0.024 0.028 0.948

(0.5 0.0) 0.127 0.999 0.027 0.018 0.955
−0.008 1.042 0.024 0.027 0.949
−0.008 1.042 0.024 0.027 0.949

± ±0.020 1.04 ± 0.030 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004

From this, the earlier two papers derived �qij/��k analytically, and from which the mean and variance corrections are readily
available.

To implement the proposed numerical method in the present paper, for each of the parameter values in {�̂n, �̂n +�e1, �̂n +�e2},
we generate an AR(2) series of sizem, and use simulatedmoments to approximate each entry in thematrices A(�̂n) andA(�̂n+�ek),
k = 1, 2. Then, the derivatives qij,k(�̂n) are approximated as described following Eq. (30).

The selected slope parameters are the same as those inWeng andWoodroofe (2006). The values of � in (21) andm, the sample
size of Monte Carlo simulation, should be determined. In the experiment, we chose (�,m) = (0.001, 1000) and (0.0005, 5000). As
the results are close, we only report the case (�,m) = (0.001, 1000). Tables 1a and b show the simulated values of P�(T∗

n2 � cn),

P�(T∗
n2 � − cn) and P�(|T∗

n2| � cn), for � = 1 and n= 30 and 50; and similarly for T†n2. Here cn is the 2.5th percentile of the standard
univariate t-distributionwith ndegrees of freedom. The notation± in the last row indicates 1.96 standard deviations; for example,
for n = 50, ±0.020 is obtained by E(t50) ± 1.96 × [Var(t50)/10, 000]

1/2, 1.25 ± 0.042 is by E(t250) ± 1.96 × [Var(t250)/10, 000]
1/2, etc.

The results show that all the coverage probabilities of P̄�(T
†
n2 � cn), P̄�(T

†
n2 � − cn) and P̄�(|T†n2| � cn) are within 1.96 standard
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deviations, where P̄� denotes the joint probability distribution of the data and the simulated sample. Moreover, all of the coverage
probabilities for (39) are within 0.001 of those for (20).

4.2. A TAR(1) example

Consider the TAR model in (3). For {yt} to be ergodic, the parameter space is determined by the inequalities: �1<1,�2<1,
and �1�2<1; see, for example, Petruccelli and Woolford (1984) and Chen and Tsay (1991). Recall the Q� matrix in (28):
q11 = (E�(S+)2)−1/2, q12 = q21 = 0 and q22 = (E�(S−)2)−1/2. So, �ij(�) and �n(�) in (11) and (13) have simpler forms: �n(�) =
(−q#11(�)/

√
n,−q#22(�)/

√
n)′ and �ij = qii,j(�)qjj,i(�).

Below we briefly describe the procedures of bootstrap methods. For parametric bootstrap, we form a bootstrap sample
{y(b)1 , . . . , y(b)n } by

y(b)t = �̂n1(y
(b)
t−1)

+ + �̂n2(y
(b)
t−1)

− + �(b)t , (41)

where y(b)0 =0, t=1, . . . ,n, and {�(b)1 , . . . , �(b)n } is a random sample from standard normal distribution. Then, the bootstrap percentile
and bootstrap-t intervals are constructed based on B bootstrap samples. That is, the approximate level � confidence interval for
�i, i = 1, 2 by the bootstrap-t is

�̄i ± sicn,

where

�̄i =
1
B

B∑
b=1

�̂(b)
i , si =

√√√√ 1
B − 1

B∑
b=1

(�̂(b)
i − �̄i)

2,

and cn is the 100(1 + �)/2 quantile of the standard univariate t-distribution with n degrees of freedom, and that by the bootstrap
percentile is

(�̂(i,l(�)), �̂(i,u(�))),

where �̂(i,j) is the j th order statistic of {�̂(1)
i , . . . , �̂(B)

i }, l(�) = B · (1 − �)/2� and u(�) = B · (1 + �)/2�, and a� denotes the largest
integer less than or equal to a. The procedures of non-parametric bootstrap are the same as the parametric one except that the
�(b)t in (41) are obtained by bootstrapping the residuals. In the experiment we set B = 1000.

In related work, Enders et al. (2007) compared the coverage probabilities in TAR models by the normal approximation and
bootstrap methods. They reported the actual coverage attained and a measure of the symmetry of the intervals. The symmetry
measure was constructed as follows. For the ideal 90% confidence interval, we expect the true parameter to fall below the lower
bound of the interval five percent of the time and above the upper bound of the interval five percent of the time. Let A1 denote
the actual percent of time that the parameter falls above the upper bound and A2 denote the actual percent of time it falls below
the lower bound. Then the symmetry is set as the value [(A1 − 5)2 + (A2 − 5)2]1/2. For the 95% confidence interval, the symmetry
measure can be defined similarly.

In simulating TAR processes, it is possible that the constructed series never crosses the true threshold, especially when the
slope parameter is close to 1. In such cases, the X′

nXn is not positive definite and it is impossible to fit a TARmodel. In Enders et al.
(2007), if a simulated series did not contain at least three points on each side of the threshold, it was discarded and replaced with
another simulated sample. They applied this rule also for bootstrap simulation. Instead of removing such series, an alternative
approach is to regularize the information matrix X′

nXn by adding a small positive quantity in the diagonal elements of the matrix,
which amounts to put a tiny proportion of observations to both regimes. The idea of regularizing the information matrix is not
new; see, for example, Vuchkov (1977). In unreported experiments we found that the results of the two approaches are similar;
and since the regularizing approach makes more efficient use of the sample, we take this approach (and set the small positive
quantity as 0.001) in the experiments below.

We conduct simulation study with (�1,�2)= (0.3, 0.3), (0.3, 0.6), (0.3, 0.9), (0.3, 0.95), (0.6, 0.6), (0.6, 0.9), (0.6, 0.95), (0.9, 0.9),
(0.9, 0.95), (0.95, 0.95). These parameter values are the same as in Table 2 of Enders et al. (2007). As T†n depends on the choice of
(�,m), we conducted simulation with (�,m) = (0.001, 1000) and (0.0005, 5000) and found that T†n is not sensitive to these values.
So, for the rest of the experiments we take (�,m)= (0.001, 1000). To compare with Table 2 of Enders et al. (2007), for each selected
parameter value, we generate 10,000 realizations of y1, . . . , yn for n= 100. The initial value y0 was set to be 0 and �t 's were drawn
from the standard normal distribution. For each realization, the model was fitted using maximum likelihood estimate (MLE),
equivalent to least squares estimate in this case. The estimates were used to construct the 90% confidence intervals for �1 and
�2 using the uncorrected pivot Tn in (6) and the corrected pivot T†n (27), and to generate 1000 bootstrap samples to form the
bootstrap percentile and bootstrap-t intervals.

Table 2a gives simulated coverageprobabilities and the symmetrymeasures (in parentheses). In this table, the termsboot-t and
boot-p represent bootstrap-t and bootstrap percentile, respectively; and the (n) stands for nonparametric and (p) for parametric.
We made several observations. First, it is not difficult to check that the normal approximation in Enders et al. (2007) (based on
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Table 2a
TAR(1) model (n = 100, replicates = 10, 000) (nominal Coverage = 90%; cn = 1.6602).

(�1 �2) Uncorrected Corrected Boot-t(n) Boot-t(p) Boot-p(n) Boot-p(p)

(0.30 0.30) 0.903 0.899 0.899 0.897 0.889 0.881 0.908 0.908 0.872 0.870 0.892 0.893
(1.41) (0.93) (0.18) (0.28) (3.38) (3.50) (3.83) (3.55) (5.80) (5.81) (5.88) (5.62)

(0.30 0.60) 0.901 0.899 0.899 0.896 0.896 0.883 0.908 0.906 0.871 0.852 0.885 0.875
(1.85) (1.57) (0.41) (0.29) (4.17) (4.84) (4.46) (5.25) (7.14) (8.60) (7.00) (8.31)

(0.30 0.90) 0.900 0.893 0.900 0.896 0.939 0.887 0.927 0.899 0.851 0.790 0.859 0.796
(2.36) (3.28) (0.45) (0.38) (4.33) (6.66) (5.12) (7.08) (10.4) (16.1) (10.1) (16.2)

(0.30 0.95) 0.904 0.890 0.905 0.898 0.965 0.890 0.948 0.894 0.834 0.754 0.835 0.750
(2.59) (4.16) (0.43) (0.54) (4.97) (7.05) (4.91) (7.30) (12.3) (19.8) (12.4) (20.5)

(0.60 0.60) 0.897 0.900 0.897 0.899 0.891 0.888 0.907 0.908 0.844 0.845 0.862 0.863
(2.55) (1.84) (0.46) (0.09) (5.25) (5.42) (5.90) (5.62) (10.3) (10.1) (9.78) (9.64)

(0.60 0.90) 0.898 0.891 0.900 0.898 0.938 0.894 0.927 0.901 0.813 0.772 0.822 0.778
(3.07) (3.69) (0.59) (0.43) (4.56) (6.65) (5.43) (6.98) (14.3) (18.0) (13.7) (17.9)

(0.60 0.95) 0.899 0.887 0.902 0.900 0.963 0.894 0.948 0.899 0.783 0.733 0.787 0.730
(3.14) (4.43) (0.43) (0.61) (5.02) (6.81) (4.96) (7.00) (17.2) (21.9) (17.0) (22.4)

(0.90 0.90) 0.888 0.887 0.901 0.903 0.942 0.939 0.929 0.928 0.712 0.707 0.717 0.716
(4.70) (4.50) (0.99) (0.72) (4.80) (4.67) (5.42) (5.46) (24.1) (24.5) (23.8) (23.9)

(0.90 0.95) 0.887 0.882 0.904 0.905 0.966 0.941 0.952 0.930 0.661 0.659 0.670 0.659
(4.90) (5.30) (1.07) (1.16) (5.08) (4.63) (5.00) (5.28) (29.1) (29.2) (28.4) (29.4)

(0.950.95) 0.880 0.877 0.906 0.909 0.964 0.966 0.953 0.949 0.606 0.609 0.612 0.614
(5.97) (6.03) (1.19) (1.44) (4.95) (5.01) (4.96) (4.91) (34.5) (34.2) (34.1) (33.8)

Table 2b
TAR(1) model (n = 50, replicates = 10, 000) (nominal Coverage = 95%; cn = 2.0086; ± is the range within 1.96 standard deviations).

(�,m) = (0.001, 1000)
(�1 �2) Upper Lower CI Symm Upper Lower CI Symm

Tn1 Tn1 Tn1 Tn1 Tn2 Tn2 Tn2 Tn2

T†
n1 T†

n1 T†
n1 T†

n1 T†
n2 T†

n2 T†
n2 T†

n2

(0.30 0.30) 0.028 0.015 0.956 1.02 0.031 0.020 0.950 0.79
0.025 0.023 0.952 0.20 0.026 0.027 0.947 0.20

(0.30 0.60) 0.030 0.015 0.954 1.12 0.035 0.016 0.949 1.35
0.026 0.022 0.952 0.30 0.027 0.026 0.947 0.22

(0.30 0.90) 0.037 0.012 0.951 1.80 0.044 0.011 0.945 2.41
0.027 0.021 0.951 0.45 0.029 0.018 0.954 0.80

(0.30 0.95) 0.037 0.011 0.952 1.87 0.047 0.010 0.943 2.71
0.026 0.022 0.952 0.31 0.029 0.015 0.957 1.06

(0.60 0.60) 0.033 0.012 0.954 1.52 0.036 0.015 0.949 1.46
0.025 0.021 0.953 0.37 0.027 0.024 0.949 0.23

(0.60 0.90) 0.040 0.010 0.950 2.09 0.042 0.011 0.947 2.25
0.027 0.019 0.954 0.62 0.029 0.016 0.955 0.96

(0.60 0.95) 0.042 0.009 0.949 2.33 0.047 0.009 0.943 2.72
0.027 0.021 0.953 0.48 0.030 0.014 0.956 1.16

(0.90 0.90) 0.047 0.008 0.945 2.78 0.043 0.009 0.948 2.40
0.027 0.015 0.957 1.00 0.026 0.015 0.959 1.04

(0.90 0.95) 0.048 0.007 0.945 2.87 0.048 0.009 0.944 2.79
0.028 0.017 0.955 0.85 0.026 0.014 0.960 1.09

(0.95 0.95) 0.051 0.008 0.941 3.11 0.046 0.008 0.946 2.68
0.029 0.019 0.952 0.72 0.023 0.013 0.964 1.25

± 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004 0.025 ± 0.003 0.025 ± 0.003 0.95 ± 0.004

least squares t-statistic) is exactly our uncorrected pivot; and indeed our experimental results for the uncorrected pivot agree
with theirs in both the coverage probabilities and the measure of symmetry. For the corrected pivot T†n, we note that when the
true parameter is near 1 and n is small, it is quite often to get �̂ni >1, which is not in the assumed parameter space; therefore,
the correction terms �̃n and �̃� in (26) (to be obtained by simulated samples with underlying parameter �̂n and �̂n + �ek) are not
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Table 2c
TAR(1) model (replicates = 10, 000).

(�,m) = (0.001, 1000)
n = 50 n = 100

(�1 �2) #{n1 = 0 or n2 = 0} #{�̂n1 >1} #{�̂n2 >1} #{n1 = 0 or n2 = 0} #{�̂n1 >1} #{�̂n2 >1}
(0.30 0.30) 0 0 0 0 0 0
(0.30 0.60) 0 0 0 0 0 0
(0.30 0.90) 36 5 66 0 0 1
(0.30 0.95) 211 11 382 25 1 47
(0.60 0.60) 0 1 1 0 0 0
(0.60 0.90) 36 14 89 0 1 3
(0.60 0.95) 211 19 420 25 2 57
(0.90 0.90) 80 157 176 0 15 15
(0.90 0.95) 255 166 503 25 31 110
(0.95 0.95) 418 464 490 48 123 148

available. There are no standard ways to handle these samples. We simply set �̂ni = 0.95 and then run Monte Carlo simulation
to get the correction terms. The obtained results show that the corrected pivot is more symmetric and the overall coverage
probabilities are closer to the nominal value than the uncorrected one. For bootstrap methods, we observe that overall the
coverage probabilities by bootstrap-t are closer to the nominal value than that by bootstrap percentile, and that the coverage
probabilities by bootstrap percentile are far below the nominal value when the parameters are closer to 1. These agree with the
findings in Enders et al. (2007). However, our bootstrap-t are more conservative than theirs when the parameter is close to 1.
This may be due to different treatments for cases such as �̂ni >1 or unbalanced numbers of observations in both regimes. We
also conduct simulation for Tni and T†ni with n = 50 and nominal level 0.95. The results are in Table 2b, where the term symm
denotes the symmetry measure, and the terms upper, lower, and CI represent simulated upper 0.025, lower 0.025, and the 95%
coverage probabilities, respectively. This table shows that Tni has much larger upper tail than lower tail, indicating that �̂ni tends
to be biased downwards at current � values. In contrast, the two tails of T†ni are more balanced. Note that here cn denotes the
2.5th or 5th percentile of the standard univariate t-distribution with n degrees of freedom.

Finally, we provide in Table 2c the number of samples where one of the regimes contains no observations, and the number of
samples where �̂ni >1. In this table, n1 and n2 denote the numbers of observations in regimes 1 and 2, and the sample sizes are
set as n = 50 and 100. Obviously, the proportions of such samples are higher when the sample size is smaller and the parameter
values are close to 1.

5. Conclusion

We have studied the very weak type approximation to obtain corrected confidence sets for the parameters by approximating
the mean and variance corrections numerically; and we have shown that the confidence sets are accurate to op(1/n) in the sense
of (31). This numerical approximation involves two tuning quantities � andm. Our experiments showed that these two quantities
are easy to tune and the experiment results are not sensitive to the choice of them. The proposed approach was applied to AR(2)
and TAR(1) models and the results are mostly satisfactory, except that special concerns are needed when the parameter values
are close to 1. In the future, it would be of interest to extend this approach to general TAR models and some adaptive nonlinear
models.
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