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Abstract: Corrected confidence intervals are developed for the mean of the
second component of a bivariate normal process when the first component is
being monitored sequentially. This is accomplished by constructing a first ap-
proximation to a pivotal quantity, and then using very weak expansions to
determine the correction terms. The asymptotic sampling distribution of the
renormalised pivotal quantity is established in both the case where the covari-
ance matrix is known and when it is unknown. The resulting approximations
have a simple form and the results of a simulation study of two well-known
sequential tests show that they are very accurate. The practical usefulness of
the approach is illustrated by a real example of bivariate data. Detailed proofs
of the main results are provided.

1. Introduction

Suppose that a sequential test is carried out to compare two treatments. Then,
following the test, there is interest in making valid inferences about the different
parameters. For example, the primary parameter will typically be some measure
of the treatment difference and there may be several secondary parameters too.
These could be the individual treatment effects or the effects of baseline covariates,
such as age, gender, disease stage, and so on. However, the use of a sequential de-
sign leads to the usual maximum likelihood estimators being biased and associated
confidence intervals having incorrect coverage probabilities. One approach to the
estimation problem is to study the approximate bias and sampling distributions of
the maximum likelihood estimators.

Until recently, much of the research on estimation following sequential tests fo-
cussed on primary parameters. For example, an approach based on approximately
pivotal quantities was developed by Woodroofe [24] in the context of a single stream
of normally distributed observations. Here, interest lay in providing an approximate
confidence interval for a mean. The work in the present paper extends this approach
in several respects. We consider bivariate normal data, where interest lies in esti-
mating the mean of the second component of the process when the first is being
monitored sequentially. Further, we consider the case of an unknown covariance
matrix for the process.
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One of the first papers to address the problem of estimation of secondary para-
meters following a sequential test was [19]. For large samples, he showed how the
bias of the estimator of the secondary parameter is related to that of the primary
parameter, and then showed how a bias-adjusted estimator of the secondary para-
meter could be constructed. Gorfine has shown [7] how a theorem of Yakir [27] may
be used to define an unbiased estimator of the secondary parameter. Related work
has been carried out by Liu and Hall [11]. More recently, Hall and Yakir [9] develop
tests and confidence procedures in a very general context.

Several authors have developed methods for the construction of confidence in-
tervals based on approximately pivotal quantities. Whitehead, Todd and Hall show
[21] how approximate confidence intervals may be obtained for a bivariate normal
process when the covariance matrix is known and then show how these may be
applied to problems in which approximate bivariate normality can be assumed. Liu
considers [12] a similar problem and shows how the appropriate corrections may
be obtained using moment expansions, though the method developed appears to
be somewhat restricted. In the present paper, we consider both the known and the
unknown covariance matrix cases.

The approximately pivotal quantities are constructed by considering the bivari-
ate version of the signed root transformation, and then using a version of Stein’s [15]
identity and very weak expansions to determine the correction terms. The results
in the known covariance matrix case are obtained by applying those of Weng and
Woodroofe [17] for the two-parameter exponential family. In the unknown covari-
ance matrix case, similar ideas to those used by Weng and Woodroofe [18] in the
context of stationary autoregressive processes are used to establish the asymptotic
sampling distribution of the renormalised pivotal quantity. The resulting correction
terms have a simple form and complement the results of Whitehead [19].

In Section 2, the correction terms for the usual approximately pivotal quantity
in the known covariance matrix case are determined using results for the two-
parameter exponential family and it is shown how these may be used to construct
corrected confidence intervals for the secondary parameter. The case of an unknown
covariance matrix is then considered in Section 3, and the asymptotic sampling
distribution of the renormalised pivotal quantity is obtained. The results of a sim-
ulation study of two well-known sequential tests are reported in Section 4 and a
real example of bivariate data is used to illustrate the approach in Section 5. Some
remarks and an indication of possible extensions to the present work are given in
Section 6. Appendices contain detailed proofs of the main results.

2. Bivariate normal process with known covariance matrix

2.1. The general method for two-parameter exponential families

Let Xj = (X1j , X2j)′ for j = 1, . . . , n be independent random vectors distributed
according to a two-parameter exponential family with probability density

pθ(x) = eθ′x−b(θ),

where θ = (θ1, θ2)′ ∈ Ω and Ω is the natural parameter space, assumed to be open.
Let Ln(θ) denote the log-likelihood function based on x1, . . . , xn, and consider the
bivariate version of the signed root transformation (e.g. [4]) given by

(1) Zn1 = Zn1(θ) =
√

2{Ln(θ̂n) − Ln(θ̃n)}sign(θ1 − θ̂n1)
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and

(2) Zn2 = Zn2(θ) =
√

2{Ln(θ̃n) − Ln(θ)}sign(θ2 − θ̃n2),

where θ̂n = (θ̂n1, θ̂n2)′ is the maximum likelihood estimator and θ̃n = (θ1, θ̃n2)′ is
the restricted maximum likelihood estimator for fixed θ1. Then we have Ln(θ) =
Ln(θ̂n) − ||Zn||2/2, where Zn = (Zn1, Zn2)′.

Consider a Bayesian model in which θ has a prior density ξ with compact support
in Ω. Let Eξ denote expectation in the Bayesian model in which θ is replaced
with a random vector Θ and let En

ξ denote conditional expectation given {Xj , j =
1, . . . , n}. Then the posterior density of Θ given X1, . . . , Xn is ξn(θ) ∝ eLn(θ)ξ(θ),
and the posterior density of Zn is

(3) ζn(z) ∝ J(θ̂n, θ)ξn(θ) ∝ J(θ̂n, θ)ξ(θ)e−
1
2 ||z||

2
,

where z and θ are related by (1) and (2), and J is a Jacobian term. From (3),

(4) ζn(z) = fn(z)φ2(z), z ∈ �2,

where φ2 denotes the standard bivariate normal density and

fn(z) ∝ J(θ̂n, θ)ξ(θ).

Now, for p ≥ 0, let Hp be the set of all measurable functions h : �2 → � for
which |h(z)|/c ≤ 1+ ||z||p for some c > 0, and let H = ∪p≥0Hp. So, H0 denotes the
set of bounded functions. Let Φk denote the standard k-variate normal distribution
for k = 1, 2 and write

Γh =
∫

hdΓ

for an arbitrary measure Γ. Given h ∈ Hp, let h0 = Φ2h, h2 = h and

h1(y1) =
∫
�

h(y1, w)Φ1(dw),

and

g1(y1, y2) = e
1
2 y2

1

∫ ∞

y1

{h1(w) − h0}e−
1
2 w2

dw,

(5)
g2(y1, y2) = e

1
2 y2

2

∫ ∞

y2

{h2(y1, w) − h1(y1)}e−
1
2 w2

dw

for −∞ < y1, y2 < ∞. Then let Uh = (g1, g2)′ and V h = (U2h + U2h′)/2, where
U2h is the 2×2 matrix whose ith column is Ugi and gi is as in (5). Lemma 1 below
follows from Lemma 1 of Weng and Woodroofe [17].

Lemma 1 (Stein’s identity). Let r be a nonnegative integer. Suppose that dΓ =
fdΦ2, where f is twice differentiable on �2 for which∫

�2
|f |dΦ2 +

∫
�2

(1 + ||z||r)||∇f(z)||Φ2(dz) < ∞

and ∫
�2

(1 + ||z||r)||∇2f(z)||Φ2(dz) < ∞.
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Then

Γh = Γ1 · Φ2h + Φ2(Uh)′
∫
�2

∇f(z)Φ2(dz) +
∫
�2

tr{(V h)∇2f}dΦ2

for all h ∈ Hr.

From (4), the posterior distributions of Zn are of a form appropriate for Stein’s
identity. Let

Γξ
1(θ̂n, θ) =

√
n
∇fn(Zn)
fn(Zn)

and

Γξ
2(θ̂n, θ) = n

∇2fn(Zn)
fn(Zn)

.

Now let Bn denote the event {θ̂n ∈ ∇b(Ω)} and let Ξ0 denote the collection of all
prior densities ξ = ξ(θ) with compact support in Ω for which ξ is twice differentiable
almost everywhere under Pξ, and ∇2ξ is bounded on its support. Proposition 2
below follows from Proposition 2 of Weng and Woodroofe [17].

Proposition 2. Suppose that ξ ∈ Ξ0. Then

En
ξ {h(Zn)} = Φ2h +

1√
n

(Φ2Uh)′En
ξ {Γξ

1(θ̂n, θ)} +
1
n

tr[En
ξ {V h(Zn)Γξ

2(θ̂n, θ)}]

almost everywhere on Bn, for all h ∈ H.

Let N = Na be a family of stopping times, depending on a design parameter
a ≥ 1. Suppose that

a

Na
→ ρ2(θ)

in Pθ-probability for almost every θ ∈ Ω, where ρ is a continuous function on Ω.
Suppose also that, for every compact set K ⊆ Ω, there is an η > 0 such that

(6) Pθ(Na ≤ ηa) = o(a−q),

uniformly with respect to θ ∈ K as a → ∞, for some q ≥ 1/2. Lemma 3 below
follows from Theorem 12 of Weng and Woodroofe [17]. Moreover, by their Lemma
5 and (6) above, we have Pθ(Bc

N ) = o(1/a).

Lemma 3. The random vector ZN = (ZN1, ZN2)′ is uniformly integrable with
respect to Pξ.

In what follows, suppose that θ1 is the primary parameter and that θ2 is a
nuisance parameter. Then, for inference about θ1, it is appropriate to use ZN1.
Now, from Proposition 2,

EN
ξ {h(ZN1)} = Φ1h+

1√
N

(Φ1Uh)EN
ξ {Γξ

1,1(θ̂N , θ)}+ 1
N

EN
ξ {V h(ZN1)Γ

ξ
2,11(θ̂N , θ)}.

To determine the mean correction term for ZN1, we take h(z) = z, in which case
Φ1h = 0, Φ1Uh = 1 and V h(z) = 0. Similarly, for the variance correction term, we
take h(z) = z2, in which case Φ1h = 1, ΦUh = 0 and V h(z) = 1. Denote by bij

the partial derivatives bij(θ) = ∂i+jb(θ)/∂θi
1∂θj

2, and similarly for ξij . Let i1(θ) =
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(b20 − b2
11/b02)(θ), i2(θ) = b02(θ), Γξ

1,1(θ, θ) = limω→θ Γξ
1,1(ω, θ) and Γξ

2,11(θ, θ) =
limω→θ Γξ

2,11(ω, θ), and let κ(θ) and m(θ) be such that

(7) Eξ{ρ(θ)Γξ
1,1(θ, θ)} =

∫ ∫
Ω

ξ(θ)κ(θ)dθ1dθ2

and

(8) Eξ{ρ2(θ)Γξ
2,11(θ, θ) − 2ρ(θ)κ(θ)Γξ

1,1(θ, θ) + κ2(θ)} =
∫ ∫

Ω

m(θ)ξ(θ)dθ1dθ2.

Then some algebra yields

κ(θ) =
(−b02, b11) · ∇ρ

b02i
1/2
1

(θ)

(9)

+ ρ(θ)

{
(b02,−b11) · ∇i1

6b02i
3/2
1

(θ) +
(b02,−b11) · ∇i2

2b2
02i

1/2
1

(θ)

}
.

A similar, but more complicated expression, may also be obtained for m(θ).
Now, define

(10) Z
(0)
N =

ZN1 − µ̂
(0)
N

τ̂
(0)
N

,

where

(11) µ̂
(0)
N =




κ̂N/
√

a if |κ̂N | ≤ a1/6{log(a)}−1,
a−1/3{log(a)}−1 if κ̂N > a1/6{log(a)}−1,
−a−1/3{log(a)}−1 if κ̂N < −a1/6{log(a)}−1,

and

(12) τ̂
(0)
N =

{√
1 + m̂N/a if |m̂N | ≤ √

a/log(a),
1 otherwise,

with κ̂N = κ(θ̂N ) and m̂N = m(θ̂N ).

Theorem 4. Let h be a bounded function. Suppose that ρ(θ) is almost differentiable
with respect to θ1 and θ2. If (6) holds with q = 1 and ξ ∈ Ξ0, then

Eξ{h(Z(0)
N )} = Φ1h + o(1/a).

The proof is in Appendix A.3. Theorem 4 shows that under mild conditions
Z

(0)
N is approximately standard normal to order o(1/a) in the very weak sense of

Woodroofe [23]. It extends Theorem 14 of Weng and Woodroofe [17] by not requiring
h to be symmetric and not assuming ∇2ξ to be continuous.

So, an asymptotic level 1 − α confidence interval for θ1 is

(13) IN = {θ1 : |Z(0)
N | ≤ zα/2},

where zα/2 is the 100(α/2)-th percentile of the standard normal distribution.
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2.2. The bivariate normal model with known covariance matrix

Suppose that Xj = (X1j , X2j)′ for j = 1, . . . , n are independent random vectors
from a bivariate normal distribution with mean vector θ = (θ1, θ2)′ and covariance
matrix

Σ =
(

σ2
1 γσ1σ2

γσ1σ2 σ2
2

)
.

Let ψ = (σ2
1 , σ2

2 , γ)′. As before, let N = Na be the stopping time depending on a.
Then, since the likelihood function is not affected by the use of a stopping time
(e.g. [3]), the density of XN is

p(x; θ, ψ) = exp
[
−N log(2π) − N

2
log{σ2

1σ2
2(1 − γ2)}

− 1
2σ2

1σ2
2(1 − γ2)


σ2

2

N∑
j=1

(x1j − θ1)2 + σ2
1

N∑
j=1

(x2j − θ2)2(14)

− 2γσ1σ2

N∑
j=1

(x1j − θ1)(x2j − θ2)




 .

If we assume that θ is unknown and ψ is known, then this model is a two-parameter
exponential family with density that satisfies

log p(x; θ) = c(x) + Nθ1t1 + Nθ2t2 − Nb(θ),

where t1 = x̄1/{σ2
1(1 − γ2)} − γx̄2/{σ1σ2(1 − γ2)}, t2 = x̄2/{σ2

2(1 − γ2)} − γx̄1/
{σ1σ2(1 − γ2)} and b(θ) = θ′Σ−1θ/2. Since b(θ) is quadratic in θ, both i1(θ) and
i2(θ) defined in Section 2.1 are constants; and therefore κ(θ) in (9) reduces to

(15) κ(θ) =
(−b02, b11) · ∇ρ(θ)

b02i
1/2
1

= −σ1ρ10,

where ρij = ∂i+jρ/∂θi
1∂θj

2 and the second equality in (15) follows since the stopping
time N is assumed to depend only on X11, . . . , X1N . Simple calculations show that
the maximum likelihood estimator of θ is (θ̂1, θ̂2) = (X̄N1, X̄N2) and that the
restricted maximum likelihood estimator of θ2 given θ1 is θ̃2 = θ̃2(θ1) = θ̂2 −
γσ2(θ1 − θ̂1)/σ1. By (1) and (2), it is straightforward to obtain

(ZN1, ZN2) = (
√

Nσ−1
1 (θ1 − θ̂1),

√
Nσ−1

2 (1 − γ2)−1/2{θ2 − θ̂2 − γσ2(θ1 − θ̂1)/σ1}).

Furthermore, since the stopping time depends only on the first population, it can
be shown that m(θ) in (8) satisfies

m(θ) = κ2(θ) = (σ1ρ10)2.

Then, substituting these ZN1, κ and m into (10), (11), and (12), by Theorem 4,
the approximate level 1 − α confidence interval for θ1 is as in (13).

For inference about the secondary parameter θ2, it is not appropriate to use ZN2

as it depends on both θ1 and θ2. So, we consider the transformation

(16) ZN1 = ZN1(θ) =
√

2{LN (θ̂N1, θ̂N2) − LN (θ̃N1, θ2)}sign(θ2 − θ̂N2),
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where θ̃N1 = θ̃N1(θ2) is the restricted maximum likelihood estimator of θ1 given
θ2. Then ZN1 =

√
N(θ2 − θ̂2)/σ2. To obtain the mean correction term, we need to

replace bij and ρij in (15) with bji and ρji. So,

(17) Eθ(ZN1) �
1√
a
κ(θ) =

1√
a

(−b20, b11) ·
(

ρ01

ρ10

)

b20(b02 − b211
b20

)1/2
(θ) = − 1√

a
σ1γρ10.

Using a similar trick, we obtain

(18) m(θ) = κ2(θ) = (σ1γρ10)2.

With this ZN1 and its corresponding mean and variance corrections, we obtain a
renormalised pivot Z

(0)
N as in (10). Then, by Theorem 4, an asymptotic level 1− α

confidence interval for θ2 is

(19) θ̂N2 +
σ2√
N

µ̂
(0)
N ± σ2√

N
τ̂

(0)
N zα/2.

This interval is of the same form as the one obtained by Whitehead, Todd and Hall
[21]. However, they use recursive numerical integration to calculate the correction
terms instead of asymptotic approximations.

3. Extension to unknown covariance matrix case

In this section, we consider the following three cases:

C1. σ1 and σ2 are known, but γ is unknown;
C2. σ1 and σ2 are unknown, but γ is known;
C3. σ1, σ2 and γ are all unknown.

When the parameters are unknown, we estimate them by σ̂2
i =

∑N
j=1(Xij − θ̂i)2/

(N − 1) for i = 1, 2 and

γ̂ =

∑N
j=1(X1j − θ̂1)(X2j − θ̂2)√∑N

j=1(X1j − θ̂1)2
∑N

j=1(X2j − θ̂2)2
.

As the main interest of this paper concerns inference about the secondary para-
meter θ2, in the rest of the paper we let ZN1 be as in (16). So the corresponding
κ(σ1, γ, ρ10) and m(σ1, γ, ρ10) are as in (17) and (18). For cases C1–C3, we consider
κ̂

(1)
N = κ(σ1, γ̂, ρ̂10), κ̂

(2)
N = κ(σ̂1, γ, ρ̂10) and κ̂

(3)
N = κ(σ̂1, γ̂, ρ̂10), respectively; and

correspondingly define µ̂
(k)
N and τ̂

(k)
N for k = 1, 2, 3 as in (11) and (12). Then, let

(20) Z
(1)
N =

ZN1 − µ̂
(1)
N

τ̂
(1)
N

and

(21) Z
(k)
N =

ZN1(σ̂2) − µ̂
(k)
N

τ̂
(k)
N

for k = 2, 3, where ZN1(σ̂2) =
√

N(θ2 − θ̂2)/σ̂2. We will use Z
(k)
N for k = 1, 2, 3 as

pivotal quantities for cases C1, C2 and C3, respectively.
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Define ω̂N = σ̂2
2/σ2

2 . Then we can rewrite Z
(k)
N for k = 2, 3 in (21) as

(22) Z
(k)
N =

(σ2
σ̂2

)ZN1 − µ̂
(k)
N

τ̂
(k)
N

=
ZN1 − µ̂

(k)
N ω̂

1/2
N

ω̂
1/2
N τ̂

(k)
N

.

In the rest of the paper, let Ξ denote the collection of all prior densities ξ(ψ, θ) =
ξ1(ψ)ξ2(θ) with compact support in (0,∞)2 × (−1, 1) × Ω for which ξ is twice
differentiable almost everywhere under Pξ and ∇2ξ is bounded on its support.

Theorem 5. Suppose that ξ ∈ Ξ and that (6) holds with q = 1. Then, for k = 2, 3,∣∣∣∣∣
∫

(0,∞)2×(−1,1)

∫
Ω

[
Eψ,θ{h(Z(k)

N )} − Φ1h − 1
a
(Φ4h)ρ2(θ)

]
ξ(ψ, θ)dθdψ

∣∣∣∣∣
(23)

= o(
1
a
)

for all bounded functions h.

The definition of Φ4 and the proof are in Appendix A.4. Theorem 5 shows that
Z

(k)
N for k = 2, 3 are asymptotically distributed according to a t distribution with N

degrees of freedom to order o(1/a) in the very weak sense, since Φ1h+(Φ4h)ρ2(θ)/a
represents the first two terms in an Edgeworth-type expansion for the t distribution
(e.g. [1], Chap.2; [8], Chap.2). Hence,

(24) Pψ,θ{|Z(k)
N | ≤ z} = 2GN (z) − 1 + o(1/a)

very weakly, where GN denotes the t distribution with N degrees of freedom. So,
an asymptotic level 1 − α confidence interval for θ2 is

θ̂N2 +
σ̂2√
N

µ̂
(k)
N ± σ̂2√

N
τ̂

(k)
N cN,α/2,

where cN,α/2 is the 100(α/2)-th percentile of the t distribution with N degrees of
freedom. Note that the form of the above interval is similar to one obtained by
Keener [10] using fixed θ expansions. However, his interval is only valid up to order
o(1/

√
a) and only applicable to linear stopping boundaries.

The proof of Theorem 5 reveals that the correction term (Φ4h)ρ2(θ)/a in (23)
arises from the use of ω̂N . Since σ2 is known for Z

(1)
N in (20), this correction term

vanishes in the asymptotic expansion for Z
(1)
N and an immediate corollary to The-

orem 5 is the following result.

Corollary 6. Suppose that ξ ∈ Ξ and that (6) holds with q = 1. Then∣∣∣∣∣
∫

(0,∞)2×(−1,1)

∫
Ω

[Eψ,θ{h(Z(1)
N )} − Φ1h]ξ(ψ, θ)dθdψ

∣∣∣∣∣ = o(
1
a
)

for all bounded functions h.

Therefore, Z
(1)
N is asymptotically standard normal to order o(1/a) in the very

weak sense, and consequently

Pψ,θ{|Z(1)
N | ≤ z} = 2Φ1(z) − 1 + o(1/a)

very weakly. From this, one can set confidence intervals for θ2 as in (19), but with
µ̂

(0)
N and τ̂

(0)
N replaced by µ̂

(1)
N and τ̂

(1)
N .
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4. Simulation results

4.1. General

Section 3 considers asymptotic results for Z
(k)
N for a class of stopping times N =

Na depending only on the first population. Specifically, let q denote a measurable
function on � which is almost differentiable; let θ̂n1 =

∑n
j=1 X1j/n and

(25) N = Na = inf{n ≥ m0 : nq(θ̂n1) ≥ a} ∧ m,

where m0 and m denote the initial sample size and the maximum size, respectively;
m0 = �a/ε20� and m = �a/ε2�, �x� is the greatest integer less than or equal to
x, a ≥ 1 is a boundary parameter, ε a truncation parameter and ε0 controls the
initial sample size. In this section, we assess the accuracy of the method for two
simulated examples, the truncated sequential probability ratio test and the repeated
significance test. The actual coverage probability and expected stopping time are
assessed through simulation for σ1 = σ2 = 1 and selected values of (θ1, θ2, γ).

4.2. Truncated sequential probability ratio test

The stopping time (25) with q(y) = |y| is equivalent to

N = inf{n ≥ m0 : |Sn1| ≥ a} ∧ m,

where Sn1 =
∑n

j=1 X1j is the partial sum from the first population. This is the
truncated probability ratio test depending on three parameters, a ≥ 1, ε0 and
ε. Simple calculations yield a/N → ρ2, where ρ = max{min(ε0,

√
|θ1|), ε}. The

parameter values are taken as a = 10, ε =
√

0.1 and ε0 =
√

5.0. So, m0 = a/ε20 = 2
and m = a/ε2 = 100. Tables 1 and 2 contain results for known σ1 and σ2, but
unknown γ, that is, case C1, and for unknown σ1, σ2 and γ, that is, case C3,
respectively.

In Table 1, we report the expected sample size and the lower and upper 0.05,
0.025 noncoverage probabilities for ZN1 and Z

(1)
N . The results show that Z

(1)
N is very

accurate for all selected parameter values, but ZN1 is negatively skewed. Table 2
compares the coverage probabilities using ZN1 and Z

(3)
N . The coverage probabilities

for Pψ,θ(|ZN1| ≤ zα/2) for α = 0.05 and 0.1 are in the columns with the title
‘ZN1’. The results using (24) for the pivotal quantity Z

(3)
N are given under the title

‘Z(3)
N : tN ’. As (23) suggests that Z

(3)
N can be approximated by a t distribution with

Table 1

Truncated sequential probability ratio test with known σ1 and σ2, but unknown γ;
replicates = 10,000 (± means 1.96 standard deviations)

ZN1 Z
(1)
N

(θ1, θ2, γ) Eψ,θ(N) L0.05 U0.05 L0.025 U0.025 L0.05 U0.05 L0.025 U0.025
(0.30, 1.00, 0.40) 35.42 0.059 0.040 0.031 0.019 0.048 0.049 0.025 0.025
(0.60, 1.00, 0.40) 17.87 0.057 0.039 0.028 0.020 0.048 0.048 0.024 0.025
(0.80, 1.00, 0.40) 13.54 0.056 0.043 0.027 0.022 0.048 0.050 0.024 0.025
(0.30, 1.00, 0.80) 35.20 0.070 0.030 0.036 0.017 0.050 0.050 0.023 0.024
(0.60, 1.00, 0.80) 17.87 0.064 0.036 0.034 0.017 0.049 0.052 0.025 0.026
(0.80, 1.00, 0.80) 13.55 0.058 0.040 0.029 0.019 0.046 0.055 0.023 0.027

± 0.004 0.004 0.003 0.003 0.004 0.004 0.003 0.003
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Table 2

Truncated sequential probability ratio test with unknown σ1, σ2 and γ; replicates = 10,000
(± means 1.96 standard deviations)

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.30, 1.00, 0.40) 35.42 0.885 0.934 0.892 0.944 0.896 0.947
(0.60, 1.00, 0.40) 17.87 0.871 0.923 0.884 0.941 0.892 0.947
(0.80, 1.00, 0.40) 13.54 0.863 0.917 0.885 0.936 0.895 0.945
(0.30, 1.00, 0.80) 35.20 0.877 0.929 0.891 0.944 0.896 0.947
(0.60, 1.00, 0.80) 17.87 0.865 0.918 0.879 0.936 0.888 0.942
(0.80, 1.00, 0.80) 13.55 0.859 0.911 0.878 0.935 0.888 0.944

± 0.006 0.004 0.006 0.004 0.006 0.004

Table 3

Repeated significance test with known σ1 and σ2, but unknown γ; replicates = 10,000 (± means
1.96 standard deviations)

ZN1 Z
(1)
N

(θ1, θ2, γ) Eψ,θ(N) L0.05 U0.05 L0.025 U0.025 L0.05 U0.05 L0.025 U0.025
(0.30, 1.00, 0.40) 75.18 0.064 0.045 0.034 0.023 0.052 0.047 0.026 0.024
(0.60, 1.00, 0.40) 27.53 0.061 0.037 0.031 0.018 0.047 0.045 0.023 0.023
(0.80, 1.00, 0.40) 16.16 0.060 0.041 0.032 0.019 0.050 0.052 0.024 0.025
(0.30, 1.00, 0.80) 74.88 0.093 0.047 0.049 0.024 0.052 0.047 0.025 0.024
(0.60, 1.00, 0.80) 27.26 0.083 0.029 0.041 0.014 0.051 0.044 0.025 0.023
(0.80, 1.00, 0.80) 16.20 0.067 0.030 0.032 0.016 0.049 0.047 0.025 0.024

± 0.004 0.004 0.003 0.003 0.004 0.004 0.003 0.003

a/ρ̂2 degrees of freedom, we give the results in the last two columns ‘Z(3)
N : ta/ρ̂2 ’.

Apparently, the coverage probabilities for the näıve statistic are all significantly
less than the nominal values. The results using a/ρ̂2 degrees of freedom are slightly
better than those with N . The distribution of Z

(3)
N shows no appreciable skewness.

4.3. Repeated significance test

The stopping time (25) with q(y) = y2 is equivalent to

N = inf{n ≥ m0 : |Sn1| ≥
√

na} ∧ m.

This is the repeated significance test depending on three parameters, a ≥ 1, ε0 and
ε. It is easily seen that a/N → ρ2, where ρ = max{min(ε0, |θ1|), ε}. We take a = 10,
ε =

√
0.1 and ε0 =

√
2.0. So, m0 = a/ε20 = 5 and m = a/ε2 = 100. Tables 3 and

4 contain results for known σ1 and σ2, but unknown γ, that is, case C1, and for
unknown σ1, σ2 and γ, that is, case C3, respectively.

In Table 3, we see that ZN1 is slightly more negatively skewed than in Table 1,
but Z

(1)
N is again very accurate for all selected parameter values. The coverage

probabilities in Table 4 show that the use of ZN1 leads to significantly lower coverage
probabilities than the nominal values, but using Z

(3)
N and a t distribution with a/ρ̂2

degrees of freedom also works very well for this test. As before, the distribution of
Z

(3)
N shows no appreciable skewness.

5. A practical example

In this section, we illustrate the proposed confidence interval method using the data
obtained by Bellissant et al. [2]. This study was concerned with the treatment of
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Table 4

Repeated significance test with unknown σ1, σ2 and γ; replicates = 10,000 (± means
1.96 standard deviations)

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.30, 1.00, 0.40) 75.18 0.880 0.934 0.897 0.947 0.900 0.948
(0.60, 1.00, 0.40) 27.53 0.872 0.925 0.891 0.939 0.896 0.946
(0.80, 1.00, 0.40) 16.16 0.854 0.907 0.875 0.933 0.886 0.942
(0.30, 1.00, 0.80) 74.88 0.847 0.911 0.891 0.945 0.896 0.948
(0.60, 1.00, 0.80) 27.26 0.850 0.908 0.883 0.938 0.893 0.945
(0.80, 1.00, 0.80) 16.20 0.850 0.904 0.876 0.934 0.887 0.945

± 0.006 0.004 0.006 0.004 0.006 0.004

infants of up to eight years of age suffering from gastroesophageal reflux. The in-
fants were randomised between metoclopramide and placebo, which they received
for a two-week period. The pH level in the oesophagus was measured continuously
using a flexible electrode secured above the lower oesophageal sphincter. The pri-
mary response variable was the percentage reduction in acidity, measured by the
proportion of time that pH < 4, over the two weeks of treatment.

The above variable was taken to be normally distributed and the triangular test
([20], Chap.4) was used to monitor the study. Inspections were made after groups
of about four patients and the trial was stopped after the seventh interim analy-
sis, with the conclusion that metoclopramide is not an improvement over placebo.
Although Bellissant et al. [2] mention various normally distributed secondary re-
sponse variables of interest, only standard analyses of them are carried out. For
example, uncorrected confidence intervals are given for secondary parameters of in-
terest. Thus, it is interesting to apply the corrected confidence intervals presented
in Section 3 in this case.

In order to illustrate the confidence interval method, we assume that there is a
single secondary response variable, the proportion of time that pH < 4 on day 14,
and that the patients arrive in pairs, with one patient in each pair being assigned
to metoclopramide and the other to placebo. The trial data give the estimates
θ̂1 = 0.3, θ̂2 = 0.07, σ̂1 = 0.5 and σ̂2 = 0.1. To simulate the trial, we treated these
values as the true values for the parameters. Further, since the sample covariance
matrix was not available, we simulated the trial when γ = 0.4 and γ = 0.8, as for
the two sequential tests in Section 4. As in the original trial of Bellissant et al. [2],
we use a one-sided triangular test to test H0 : θ1 = 0 against H1 : θ1 > 0 and
choose the design parameters so that it has significance level 5% and 95% power
for θ1 = 0.5.

Let ma denote the group size, possibly depending on a > 0. Then the stopping
time for the above triangular test is essentially of the form

N = inf{n ≥ 1 : ma|n, Sn1/σ̂1 ≥ a + bn− 0.583 or Sn1/σ̂1 ≤ −a + 3bn + 0.583},

where ma|n means that ma divides n and Sn1 denotes the sum of the first n
differences in response between metoclopramide and placebo. Values are chosen
for the parameters a > 0 and b > 0 in order to satisfy the error probability re-
quirements, and the number 0.583 is a correction for overshoot of the stopping
boundaries due to the discreteness of the inspection process ([20], Chap.4). Upon
termination of the test, H0 is rejected if SN1/σ̂1 ≥ a + bN − 0.583 and accepted if
SN1/σ̂1 ≤ −a + 3bN + 0.583. Now, the above stopping time may be rewritten as

(26) N = inf{n ≥ 1 : ma|n and nq(θ̂n1/σ̂1) ≥ a − 0.583},
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Table 5

Triangular test with unknown σ1, σ2 and γ; replicates = 10, 000 (± means 1.96 standard
deviations)

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Power Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.00, 0.07, 0.40) 0.021 7.43 0.807 0.864 0.848 0.921 0.892 0.935
(0.00, 0.07, 0.80) 0.021 7.43 0.815 0.867 0.857 0.919 0.896 0.936
(0.30, 0.07, 0.40) 0.574 10.49 0.826 0.885 0.866 0.927 0.894 0.949
(0.30, 0.07, 0.80) 0.574 10.49 0.780 0.849 0.860 0.921 0.892 0.956
(0.50, 0.07, 0.40) 0.956 8.17 0.818 0.877 0.860 0.926 0.893 0.942
(0.50, 0.07, 0.80) 0.956 8.17 0.812 0.867 0.859 0.923 0.896 0.945

± 0.006 0.004 0.006 0.004 0.006 0.004

where q(y) = max(y − b, 3b − y). Note that (26) is a special case of more general
stopping times studied by, for example, Morgan [13]. So we have a/N → ρ2, where
ρ = max(

√
θ1/σ1 − b,

√
3b − θ1/σ1), provided that ma = o(a). As in Bellissant et

al. [2], we take a = 5.495 and b = 0.2726. These values may be obtained using
PEST 4 [5]. Since the data are being monitored after groups of four patients, we
have ma = 2.

In Table 5, we report the probabilities of rejecting H0, that is, the power, the
expected numbers of pairs of patients, and the coverage probabilities using ZN1 and
Z

(3)
N , all of the results being based on 10,000 replications. Although the simulated

sequential test satisfies the power requirement for θ1 = 0.5, it is a little conservative.
This is because the above stopping time is not exactly the same as the original.
Now, we know from Section 4 that the confidence intervals based on ZN1 have
coverage probabilities below the nominal values and that those based on Z

(3)
N have

roughly the correct coverage probabilities. The results in Table 5 show that the use
of Z

(3)
N leads to coverage probabilities which are usually quite close to the nominal

values, especially given the small sample sizes. Note that, since our theory has been
developed for the case where ρ = ρ(θ1), when calculating the correction terms, σ1

has been replaced with its estimate except in terms involving ρ̂, when its true value
is used. We return to this point in Section 6.

Returning to the actual trial, a standard analysis gives an uncorrected confidence
interval for θ2 of (0.018, 0.122), whereas the corrected confidence interval is (0.008,
0.124) when γ = 0.4 and (0.002, 0.122) when γ = 0.8. So the approach is useful in
practice, especially if the correlation coefficient is large.

6. Discussion

In this paper, we have shown how corrected confidence intervals for secondary
parameters may be constructed following a sequential test in which one component
of a bivariate normal process is being monitored. The intervals have a simple form
and very weak expansions are used to justify them. Simulation of two well-known
sequential tests show that the approximations are very accurate. We have also
illustrated the approach using a real-life example.

We have only considered sequential tests based on the mean of the first compo-
nent of a bivariate normal process. As we have seen in Section 5, a sequential test
may also depend on the variance of the first component, so that ρ = ρ(θ1, σ1). The
derivation of the variance correction term is more complicated in this case, since
the sampling variation in σ̂2

1 needs to be allowed for. For some related work in this
direction, see [26].
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There may be several primary response variables in practice. So a natural ex-
tension would be to generalise the ideas in Sections 2 and 3 to a p-variate normal
process, where p > 2. Such a development would require consideration of the mul-
tivariate version of the signed root transformation and an application of the results
of Weng and Woodroofe [17] for the p-parameter exponential family in order to
determine the analogues of the mean and variance correction terms in (17) and
(18).

Although we have considered both the known and unknown covariance matrix
cases in this paper, one assumption that we have made is that the correlation coeffi-
cient between the two components of the response vector is constant over time. This
is called the proportionality case by Hall and Yakir [9]. Another natural extension
would be to generalise the ideas in Sections 2 and 3 to the non-proportional case
where the correlation coefficient is a function of time.

A further possible extension is to consider two binary streams of data, where
the primary parameter is the log odds ratio and the secondary parameters are the
individual success probabilities. Although approximations may be obtained using
the results of Weng and Woodroofe [17], they do not lead to simple formulae.
However, it would be interesting to compare this approach with that of Todd and
Whitehead [16], and also to consider unequal sample sizes.

Appendix A

A.1. Wald-type equations for bivariate normal models

In this subsection, we provide some results on randomly stopped sums for the
bivariate normal models. Recall the definitions of γ̂ and σ̂2

i , i = 1, 2, in Section 3.
Now define σ̃2

i = (N − 1)σ̂2
i /N , i = 1, 2. So,

(27) σ̃2
i − σ2

i =

∑N
j=1(Xij − θi)2

N
− σ2

i − (θ̂i − θi)2,

and γ̂ defined in Section 3 can be rewritten as

(28) γ̂ =

∑N
j=1(X1j − θ̂1)(X2j − θ̂2)

Nσ̃1σ̃2
.

Let L1N denote the likelihood function based on the first population and let L′
1N

denote the partial derivative of L1N with respect to σ2
1 , so that

L1N = exp


−N

2
log(2π) − N

2
log(σ2

1) − 1
2σ2

1

N∑
j=1

(x1j − θ1)2




and

L′
1N ≡ ∂

∂σ2
1

L1N =


 1

2σ4
1

N∑
j=1

(x1j − θ1)2 −
N

2σ2
1


L1N .(29)

Then we also have

∂
∂σ2

1
(2σ4

1L′
1N )

L1N
= −N +

1
2σ4

1




N∑
j=1

(x1j − θ1)2 − σ2
1N




2

.(30)
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Let p be as in (14). Some of the derivations in Lemma 7 below rely on the identity
(e.g. [22], Chap.1)

(31)
∂

∂σ2
i

Eψ,θ(MN ) =
∫

MN

(
∂

∂σ2
i

log p

)
dPψ,θ

for i = 1, 2, where

∂

∂σ2
1

log p = − N

2σ2
1

+
1

2σ2
1σ2

2(1 − γ2)


σ2

2

σ2
1

N∑
j=1

(x1j − θ1)2

− γ
σ2

σ1

N∑
j=1

(x1j − θ1)(x2j − θ2)


 ,

and ∂ log p/∂σ2
2 has a similar form.

Lemma 7. Suppose that ξ ∈ Ξ, MN = MN (X11, . . . , X1N , X21, . . . , X2N ), b(ψ, θ)
is twice differentiable and ∇2b is bounded. Then the following hold:

(i) Eξ{b(ψ, θ)MN} = Eξ{b(ψ, θ)}Eξ̃(MN ), where ξ̃ = ξb/Eξ(b) ∈ Ξ;

(ii) Eξ{
∑N

j=1(Xij − θi)2/N} = Eξ(σ2
i ) for i = 1, 2;

(iii) Eξ[{
∑N

j=1(Xij − θi)2}2/N ] = Eξ(2σ4
i + σ4

i N) for i = 1, 2;
(iv) Eξ{

∑N
j=1(X1j − θ1)2

∑N
j=1(X2j − θ2)2/N} = Eξ(2γ2σ2

1σ2
2 + σ2

1σ2
2N).

Proof. The proof of (i) is straightforward and hence omitted. Consider (ii). Taking
MN = 1/N in (31) for i = 1, 2 leads to

γEψ,θ

{∑N
j=1(X1j − θ1)(X2j − θ2)

N

}
= −σ1σ2(1 − γ2)

+
σ2

σ1
Eψ,θ

{∑N
j=1(X1j − θ1)2

N

}

− 2σ3
1σ2(1 − γ2)

∂

∂σ2
1

Eψ,θ(
1
N

)

and a similar equation with σ1 and σ2 switched, where ∂Eψ,θ(1/N)/∂σ2
i = 0, since

N defined in (25) does not depend on σi; and therefore,

(32) Eψ,θ

{∑N
j=1(X1j − θ1)2

N

}
=

σ2
1

σ2
2

Eψ,θ

{∑N
j=1(X2j − θ2)2

N

}
.

By (29),

Eξ

{∑N
j=1(X1j − θ1)2

N

}
= Eξ

(
2σ4

1

L′
1N

NL1N
+ σ2

1

)
,
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where

Eξ

(
2σ4

1

L′
1N

NL1N

)
=

∫ ∫
2σ4

1ξ(σ2
1 , θ1)Eσ1,θ1

(
L′

1N

NL1N

)
dσ2

1dθ1

= −
∫ ∫ {

4σ2
1ξ(σ2

1 , θ1) + 2σ2
1

∂

∂σ2
1

ξ(σ2
1 , θ1)

}
Eσ1,θ1(

1
N

)dσ2
1dθ1

= −
∫ ∫

4σ2
1ξ(σ2

1 , θ1)Eσ1,θ1(
1
N

)dσ2
1dθ1

+
∫ ∫

2ξ(σ2
1 , θ1)

∂

∂σ2
1

{
σ2

1Eσ1,θ1(
1
N

)
}

dσ2
1dθ1

=
∫ ∫

2σ4
1ξ(σ2

1 , θ1)
∂

∂σ2
1

{
Eσ1,θ1(

1
N

)
}

dσ2
1dθ1,

where the third line follows by an integration by parts and the fact that ξ is defined
on a compact set and vanishes on the boundaries, and the last line is zero since
Eσ1,θ1(1/N) does not depend on σ1. So, Eξ{

∑N
j=1(X1j − θ1)2/N} = Eξ(σ2

1), and
then by (32), we have Eξ{

∑N
j=1(X2j − θ2)2/N} = Eξ(σ2

2).
Now consider (iii) and (iv). First, by (30),

{
∑N

j=1(X1j − θ1)2}2

N
=

8σ6
1L′

1N + 4σ8
1L

′′

1N

NL1N
+ 2σ4

1 + 2σ2
1

N∑
j=1

(X1j − θ1)2 − Nσ4
1 ,

where Eξ{(8σ6
1L′

1N + 4σ8
1L

′′

1N )/(NL1N )} = 0 can be proved in the same way as
in the preceding paragraph, and Eξ{σ2

1

∑N
j=1(X1j − θ1)2} = Eξ(σ4

1N) by Wald’s
equation. Hence,

(33) Eξ


 1

N




N∑
j=1

(X1j − θ1)2




2

 = Eξ(2σ4

1 + σ4
1N).

Next, taking MN =
∑N

j=1(X1j − θ1)2/N in (31) for i = 1, 2 leads to

∂

∂σ2
1

Eψ,θ

{∑N
j=1(X1j − θ1)2

N

}

= − 1
2σ2

1

Eψ,θ




N∑
j=1

(X1j − θ1)2




(34)

+
1

2σ4
1(1 − γ2)

Eψ,θ

[
{
∑N

j=1(X1j − θ1)2}2

N

]

− γ

2σ3
1σ2(1 − γ2)

Eψ,θ

[∑N
j=1(X1j − θ1)2

∑N
j=1{(X1j − θ1)(X2j − θ2)}

N

]

and a similar equation. Taking MN =
∑N

j=1(X2j − θ2)2/N in (31) for i = 1, 2 leads
to two further equations. By (ii), (33), (34) and the other three equations, we obtain
(iii) and (iv).
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A.2. Biases and variances of estimators

We now give some properties of the estimators for the bivariate normal models.
Similar calculations are carried out by Coad and Woodroofe [6] for an adaptive
normal linear model.

Lemma 8. Suppose that ξ ∈ Ξ and that (6) holds with q = 1. Then the following
hold:

(i) Eξ(θ̂i − θi) = o(1/
√

a) for i = 1, 2;
(ii) Eξ(σ̂2

i − σ2
i ) = o(1/a) for i = 1, 2.

Proof. Consider (i). First, by (6), Eξ[(θ̂i − θi)1{a/Na≥1/η}] = o(1/a). Then, observe
that

√
a(θ̂i − θi)1{a/Na<1/η} =

√
a

N
N1/2(θ̂i − θi)1{a/Na<1/η} ⇒ N(0, σ2

i ρ2).

Since a/Na < 1/η and N1/2(θ̂i − θi) is uniformly integrable by Lemma 3, the left
side converges in the mean. Hence (i) follows.

Next, consider (ii). From (27) and Lemma 7(ii), aEξ(σ̃2
i −σ2

i ) = −aEξ{(θ̂i−θi)2}.
Then, since σ̂2

i − σ2
i = σ̃2

i − σ2
i + σ̃2

i /(N − 1), we have

aEξ(σ̂2
i − σ2

i ) = −aEξ{(θ̂i − θi)2} + Eξ(
a

N
σ̃2

i ) + o(1),

where a(θ̂i − θi)2 ⇒ ρ2σ2
i χ2

1 and is uniformly integrable, by a similar argument to
the preceding paragraph, and hence converges in the mean, and the second term is
Eξ(ρ2σ2

i ) + o(1). So the result follows.

A simple consequence of Lemma 8(ii) is

(35) Eξ(ω̂N − 1) = o(1/a).

The derivation of Lemma 9(iii)(iv) below relies on the identity

(36)
∂

∂γ
Eψ,θ(MN ) =

∫
MN

(
∂

∂γ
log p

)
dPψ,θ,

where p is as in (14) and

∂

∂γ
log p =

Nγ

1 − γ2
+

(1 + γ2)
(1 − γ2)2

∑N
j=1(X1j − θ1)(X2j − θ2)

σ1σ2

− γ

(1 − γ2)2

{∑N
j=1(X1j − θ1)2

σ2
1

+

∑N
j=1(X2j − θ2)2

σ2
2

}

=
Nγ

1 − γ2
+

(1 + γ2)
(1 − γ2)2

{
Nγ̂σ̂1σ̂2

σ1σ2
+

N(θ̂1 − θ1)(θ̂2 − θ2)
σ1σ2

}

− γ

(1 − γ2)2

{
Nσ̂2

1 + N(θ̂1 − θ1)2

σ2
1

+
Nσ̂2

2 + N(θ̂2 − θ2)2

σ2
2

}
.

Lemma 9. Suppose that ξ ∈ Ξ. Then the following hold:
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(i) Eξ{N(σ̃2
i − σ2

i )2} = 2Eξ(σ4
i ) + o(1) for i = 1, 2;

(ii) Eξ{N(σ̃2
1 − σ2

1)(σ̃2
2 − σ2

2)} = 2Eξ(γ2σ2
1σ2

2) + o(1);
(iii) Eξ(γ̂ − γ) = −Eξ{γ(1 − γ2)/(2N)} + o(1/a);
(iv) Eξ{(γ̂ − γ)2} = o(1/

√
a).

Proof. For (i), first from Wald’s equation,

(37) 0 = Eψ,θ




N∑
j=1

(Xij − θi)2 − Nσ2
i


 = Eψ,θ{N(σ̃2

i − σ2
i ) + N(θ̂i − θi)2}.

Next, by (27) we can write

N(σ̃2
i − σ2

i )2

=
{
∑N

j=1(Xij − θi)2}2

N
− 2N(σ̃2

i − σ2
i ){σ2

i + (θ̂i − θi)2} − N{σ2
i + (θ̂i − θi)2}2,

where Eξ{N(σ̃2
i −σ2

i )(θ̂i −θi)2} and Eξ{N(θ̂i −θi)4} are both o(1). Then, together
with Lemma 7(iii) and (37), we obtain the desired result.

For (ii), by (27),

N(σ̃2
1 − σ2

1)(σ̃2
2 − σ2

2) =
1
N

N∑
j=1

(X1j − θ1)2
N∑

j=1

(X2j − θ2)2 − σ2
1

N∑
j=1

(X2j − θ2)2

−σ2
2

N∑
j=1

(X1j − θ1)2 − (θ̂1 − θ1)2
N∑

j=1

(X2j − θ2)2

−(θ̂2 − θ2)2
N∑

j=1

(X1j − θ1)2 + N(θ̂1 − θ1)2(θ̂2 − θ2)2

+Nσ2
1(θ̂2 − θ2)2 + Nσ2

2(θ̂1 − θ1)2 + Nσ2
1σ2

2 ,

where we have Eξ{
∑N

j=1(X1j − θ1)2
∑N

j=1(X2j − θ2)2/N} = Eξ(2γ2σ2
1σ2

2 +σ2
1σ2

2N)
by Lemma 7(iv), Eξ{σ2

1

∑N
j=1(X2j −θ2)2 +σ2

2

∑N
j=1(X1j −θ1)2} = 2Eξ(σ2

1σ2
2N) by

Wald’s equation, Eξ{N(θ̂1−θ1)2(θ̂2−θ2)2} = o(1) because the integrand approaches
zero and is uniformly integrable, and

Eξ


(θ̂2 − θ2)2


Nσ2

1 −
N∑

j=1

(X1j − θ1)2






= Eξ


N(θ̂2 − θ2)2

N∑
j=1

{(X1j − θ1)2 − σ2
1}/N


 = o(1)

because N(θ̂2 − θ2)2 = Op(1) and
∑N

j=1{(X1j − θ1)2 − σ2
1}/N = op(1) are both

uniformly square integrable. Similarly, Eξ[(θ̂1 − θ1)2{Nσ2
2 −

∑N
j=1(X2j − θ2)2}] =

o(1). Hence (ii) follows.
Consider (iii). Taking MN = 1/(Nσ̃1σ̃2) in (36), and then multiplying both sides
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by (1 − γ2)2 leads to

(1 − γ2)2
∂

∂γ
Eψ,θ

(
1

Nσ̃1σ̃2

)
= Eψ,θ

[
γ(1 − γ2)

(
1

σ̃1σ̃2

)

+
(1 + γ2)

σ1σ2

{
γ̂ +

(θ̂1 − θ1)(θ̂2 − θ2)
σ̃1σ̃2

}
(38)

− γ

σ2
1

{
σ̃2

1 + (θ̂1 − θ1)2

σ̃1σ̃2

}

− γ

σ2
2

{
σ̃2

2 + (θ̂2 − θ2)2

σ̃1σ̃2

}]
.

From (28), the distribution of γ̂ does not depend on the values of σ1 and σ2. So,
without loss of generality, we take σ1 = σ2 = 1 in the evaluation of Eψ,θ(γ̂). Letting
ψ0 = (1, 1, γ)′, then together with (38) we have

Eψ,θ(γ̂) = Eψ0,θ(γ̂)

=
(1 − γ2)2

1 + γ2

∂

∂γ
Eψ0,θ

(
1

Nσ̃1σ̃2

)
− γ(1 − γ2)

1 + γ2
Eψ0,θ

(
1

σ̃1σ̃2

)

−Eψ0,θ

{
(θ̂1 − θ1)(θ̂2 − θ2)

σ̃1σ̃2

}
+

γ

1 + γ2
Eψ0,θ

(
σ̃1

σ̃2
+

σ̃2

σ̃1

)

+
γ

1 + γ2
Eψ0,θ

{
(θ̂1 − θ1)2

σ̃1σ̃2
+

(θ̂2 − θ2)2

σ̃1σ̃2

}
.

Now we claim that

(39)
∂

∂γ
Eξ

(
1

Nσ̃1σ̃2

)
= o(

1
a
),

(40) Eξ

(
1

σ̃1σ̃2

)
= 1 +

1
a
{5
2
Eξ(ρ2) +

1
4
Eξ(ρ2γ2σ2

1σ2
2)} + o(

1
a
),

(41) Eξ

(
σ̃1

σ̃2
+

σ̃2

σ̃1

)
= 2 +

1
a
{Eξ(ρ2) − 1

2
Eξ(ρ2γ2σ2

1σ2
2)} + o(

1
a
),

(42) Eξ

{
(θ̂1 − θ1)2

σ̃1σ̃2
+

(θ̂2 − θ2)2

σ̃1σ̃2

}
=

2
a
Eξ(ρ2) + o(

1
a
)

and

(43) Eξ

{
(θ̂1 − θ1)(θ̂2 − θ2)

σ̃1σ̃2

}
=

1
a
Eξ(γρ2) + o(

1
a
).

Since the verifications of (39)–(43) are similar, here we only sketch the proof for
(40). A Taylor series expansion about the point σ2

10 = σ2
20 = 1 gives

1
σ̃1σ̃2

� 1 − 1
2
(σ̃2

1 − 1) − 1
2
(σ̃2

2 − 1) +
3
8
(σ̃2

1 − 1)2

+
3
8
(σ̃2

2 − 1)2 +
1
4
(σ̃2

1 − 1)(σ̃2
2 − 1).



98 R. C. Weng and D. S. Coad

Then, by (i) and (ii), we obtain (40).
For (iv), we take MN = 1/(Nσ̃1σ̃2)2 in (36), multiply both sides by (1 − γ2)2,

and then take the derivative of both sides with respect to γ. We obtain

∂

∂γ

[
(1 − γ2)2

∂

∂γ
Eψ,θ

{
1

(Nσ̃1σ̃2)2

}]

= Eψ,θ

(
∂

∂γ

[
γ(1 − γ2)

{
1

N(σ̃1σ̃2)2

}

+
1 + γ2

σ1σ2

{
γ̂

Nσ̃1σ̃2
+

(θ̂1 − θ1)(θ̂2 − θ2)
N(σ̃1σ̃2)2

}

− γ

σ2
1

{
σ̃2

1 + (θ̂1 − θ1)2

N(σ̃1σ̃2)2

}
− γ

σ2
2

{
σ̃2

2 + (θ̂2 − θ2)2

N(σ̃1σ̃2)2

}])

+Eψ,θ

([
γ(1 − γ2)

{
1

N(σ̃1σ̃2)2

}
+

1 + γ2

σ1σ2

{
γ̂

Nσ̃1σ̃2
+

(θ̂1 − θ1)(θ̂2 − θ2)
N(σ̃1σ̃2)2

}

− γ

σ2
1

{
σ̃2

1 + (θ̂1 − θ1)2

N(σ̃1σ̃2)2

}
− γ

σ2
2

{
σ̃2

2 + (θ̂2 − θ2)2

N(σ̃1σ̃2)2

}](
∂

∂γ
log p

))

= Eψ,θ

{
(1 + γ2)2(γ̂ − γ)2

(σ1σ2)2(1 − γ2)2

}
+ Ia,

where Eξ(Ia) = O(1/a) and the last equality follows from tedious calculations,
which are omitted here. Since

Eξ

(
∂

∂γ

[
(1 − γ2)2

∂

∂γ
Eψ,θ

{
1

(Nσ̃1σ̃2)2

}])
= o(

1√
a
),

the required result follows.

Note that, in the absence of a stopping time, Lemma 9(iii) reduces to the usual
bias formula for the sample correlation coefficient in the fixed-sample case (e.g. [14],
Chap.5).

Lemma 10. Suppose that ξ ∈ Ξ. Then
√

N(ω̂N −1) ⇒ N(0, 2). Moreover, N(ω̂N −
1)2 is uniformly integrable with respect to Pξ.

Proof. The first statement follows since

√
N(ω̂N − 1) =

√
N

σ2
2

(σ̂2
2 − σ2

2)

=
√

N

∑N
j=1{(X2j − θ2)2 − σ2

2}
(N − 1)σ2

2

+
√

N

N − 1
−

√
N(θ̂2 − θ2)2

σ2
2

,

where the first term on the right-hand side converges in distribution to N(0, 2) by
Anscombe’s theorem and the last two terms are op(1).

For the second statement, it suffices to show that N(ω̂N − 1)2 converges to 2χ2
1

in the mean. From Lemma 9(i) and the relationship between σ̂2 and σ̃2, we have
Eξ{N(ω̂N − 1)2} → 2. So the result follows.

Two additional results are needed for Lemma 11. By (6) with q ≥ 1/2 and
Lemma 9(i), we have

(44) Eξ[a(σ̃2
i − σ2

i )21{Na>ηa}] = Eξ

[ a

N
N(σ̃2

i − σ2
i )21{Na>ηa}

]
= O(1)
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for i = 1, 2, and, by (37), we have

(45) Eξ[a||θ̂ − θ||21{Na>ηa}] = Eξ

[ a

N
N ||θ̂ − θ||21{Na>ηa}

]
= O(1).

Lemma 11. Let g(ψ, θ) be twice continuously differentiable on a compact set K ⊆
(0,∞)2 × (−1, 1) × Ω. Suppose that ξ ∈ Ξ and (6) holds with q ≥ 1/2. Then

Eξ[{g(ψ, θ) − g(ψ̂, θ̂)}1{Na>ηa}] = o(1/
√

a).

Proof. By compactness and continuity, there exists C > 0 such that

|g(ψ, θ) − g(ψ̂, θ̂) − (ψ − ψ̂, θ − θ̂)′∇g(ψ̂, θ̂)| ≤ C(||ψ̂ − ψ||2 + ||θ̂ − θ||2).

Now, since Eξ[(||ψ̂ − ψ||2 + ||θ̂ − θ||2)1{Na>ηa}] = o(1/
√

a) by Lemma 9(iv), (44)
and (45), and ||Eξ(θ̂−θ)||+ ||Eξ(ψ̂−ψ)|| = o(1/

√
a) by Lemma 8(i)(ii) and Lemma

9(iii), the statement follows by using the arguments in Proposition 6.13 of Weng
and Woodroofe [18].

Note that, if K = ∪q
i=1Ki, Ki are compact sets, Ko

i ∩ Ko
j = ∅ for i �= j, where

Ko
i denotes the interior of Ki, and g is twice piecewise continuously differentiable

on Ki, then we can write

Eξ{g(ψ, θ) − g(ψ̂, θ̂)} =
q∑

i=1

∫
Ki

ξ(ψ, θ)Eψ,θ{g(ψ, θ) − g(ψ̂, θ̂)}dθdψ

=
q∑

i=1

1
ci

∫
Ki

ξi(ψ, θ)Eψ,θ{g(ψ, θ) − g(ψ̂, θ̂)}dθdψ

=
q∑

i=1

1
ci

Eξi{g(ψ, θ) − g(ψ̂, θ̂)},

where ci are normalising constants and ξi = ciξ1Ki . Thus, Lemma 11 holds for such
g. In particular, it applies to κ and yields Eξ[{κ̂(k)

N − κ}1{Na>ηa}] = o(1/
√

a) for
k = 0, 1, 2, 3.

A.3. Proof of Theorem 4

Three lemmas are required for the proof.

Lemma 12. Let h be a bounded function, and let

H0(σ, µ) =
∫
�

h(
z − µ

σ
)φ(z)dz

and

H1(σ, µ) =
∫
�

zh(
z − µ

σ
)φ(z)dz

for σ > 0 and −∞ < µ < ∞. Then H0 and H1 have continuous derivatives of
all orders. Further, at µ = 0 and σ = 1, we have H0 = Φ1h, ∂H0/∂µ = −Φ1Uh,
∂H0/∂σ = −2Φ1V h, ∂2H0/∂µ2 = 2Φ1V h, H1 = Φ1Uh, ∂H1/∂µ = −2Φ1V h,
∂H1/∂σ = 0 and ∂2H1/∂µ2 = 0.
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This lemma is a simple extension of Lemma 13 of Weng and Woodroofe [17] and
can be proved analogously. Note that, if h is symmetric, then Φ1Uh = 0, and hence
∂H0/∂µ = H1 = 0, and Lemma 12 reduces to their Lemma 13.

Now define

R2,a(h) = a

(
EN

ξ {h(ZN )} − Φ2h − 1√
N

(Φ2Uh)′EN
ξ {Γξ

1(θ, θ)}

− 1
a
tr[Φ2V hEN

ξ {ρ2(θ)Γξ
2(θ, θ)}]

)
.

Then, by Proposition 2, we have

R2,a(h) =
√

a

[√
a

N
(Φ2Uh)′EN

ξ {Γξ
1(θ̂, θ) − Γξ

1(θ, θ)}
]

+
a

N
tr[EN

ξ {V h(ZN )Γξ
2(θ̂, θ)}] − tr[Φ2V hEN

ξ {ρ2(θ)Γξ
2(θ, θ)}]

= R
(1)
2,a(h) + R

(2)
2,a(h).

Lemma 13 below is similar to Theorem 7 of Weng and Woodroofe [17], but here we
consider R2,a(h) for all bounded h, not necessarily symmetric.

Lemma 13. If (6) holds with q = 1 and ξ ∈ Ξ0, then lima→∞|Eξ[R2,a(h)1{Na>ηa}]|
= 0 for all bounded h.

Proof. First, lima→∞|Eξ{R(2)
2,a(h)}| = 0 follows by the same argument used to prove

Theorem 7 of Weng and Woodroofe [17]. Next, since

|Eξ[R
(1)
2,a(h)1{Na>ηa}]|

=
√

a

∣∣∣∣Eξ((Φ2Uh)′EN
ξ

[√
a

N
{Γξ

1(θ̂, θ) − Γξ
1(θ, θ)}

]
1{Na>ηa})

∣∣∣∣
≤ C1

√
aEξ{||Γξ

1(θ̂, θ) − Γξ
1(θ, θ)||}

for some constant C1, the right-hand side is o(1) by Lemma 11.

Proof of Theorem 4. Since h is bounded and both Pξ(Na ≤ ηa) and Pξ(Bc
N )

are o(1/a), it suffices to show that Eξ[h(Z(0)
N )1{Na>ηa}∩BN

] = Φ1h + o(1/a). Write
h(Z(0)

N ) = ha(ZN1). Then, by the definition of R2,a,

EN
ξ {h(Z(0)

N )} = EN
ξ {ha(ZN1)}

= Φ1ha +
1√
a
(Φ1Uha)EN

ξ {ρ(θ)Γξ
1,1(θ, θ)}(46)

+
1
a
(Φ1V ha)EN

ξ {ρ2(θ)Γξ
2,11(θ, θ)} +

1
a
R2,a(ha),

where Eξ[R2,a(ha)1{Na>ηa}] → 0 as a → ∞ by Lemma 13. Since h here may not be
symmetric, by Lemma 12 two additional terms arise in the analysis of (46), namely,

A(h) =
1√
a
(Φ1Uh)EN

ξ {ρ(θ)Γξ
1,1(θ, θ)} −

1√
a
(Φ1Uh)κ̂(0)

N .

To show that the effect of non-symmetry of h vanishes, observe that

Eξ[A(h)1{Na>ηa}] =
1√
a
(Φ1Uh)Eξ[{ρ(θ)Γξ

1,1(θ, θ) − κ̂
(0)
N }1{Na>ηa}]

=
1√
a
(Φ1Uh)Eξ[{κ(θ) − κ̂

(0)
N }1{Na>ηa}],
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where the last line is o(1/a) by Lemma 11. So, the theorem follows. �

A.4. Proof of Theorem 5

Given a measurable function h, s > 0, c > 0 and ν ∈ �, let

(47) h∗(z) = h{s− 1
2 c−1(z − ν)},

Ψ0(h; ν, s) = −(Φ1Uh)ν + (Φ1V h)ν2 − 2(Φ1V h)(c − 1)

−(Φ1V h)(s − 1) − (Φ3h)ν(s − 1) +
1
2
(Φ4h)(s − 1)2

and
Ψ1(h; ν, s) = −2(Φ1V h)ν + (Φ3h)(s − 1),

where

Φ3h =
1
2

∫
�
(2 − z2)zh(z)Φ1{dz}

and

Φ4h =
∫
�
{1
4
(z2 − 1)2 − 1

2
}h(z)Φ1{dz}.

Lemma 14. There is a constant C for which

|Φ1h∗ − Φ1h − Ψ0(h; ν, s)| ≤ C{|ν|3 + |s − 1|3 + |c − 1|3/2},

|Φ1Uh∗ − Φ1Uh − Ψ1(h; ν, s)| ≤ C{|ν|2 + |s − 1|2 + |c − 1|}

and
|Φ1V h∗ − Φ1V h| ≤ C{|ν| + |s − 1| + |c − 1|},

for all |ν| ≤ 1, |s − 1| ≤ 1/2, |c − 1| ≤ 1/2 and bounded h.

We omit the proof of this lemma since it can be derived in a similar manner to
Lemma 1 of Woodroofe and Coad [25].

Proof of Theorem 5. We shall only consider Z
(2)
N , as the same argument applies

to Z
(3)
N . From (22), we can write h{Z(2)

N } = h∗(ZN1), where ZN1 is defined in (16)
and h∗(z) is as in (47). As in the proof of Theorem 4, we only need to consider the
set {Na > ηa} ∩ BN . If ψ = (σ2

1 , σ2
2 , γ)′ is known, the bivariate normal model is

a two-parameter exponential family. Let EN,ψ
ξ2

denote the conditional expectation
given ψ and the data by time N . So, by Proposition 2,

EN,ψ
ξ2

{h∗(ZN1)} − Φ1h = EN,ψ
ξ2

{h∗(ZN1)} − Φ1h∗ + Φ1h∗ − Φ1h

=
1√
a
(Φ1Uh∗)EN,ψ

ξ2
{ρ(θ)Γξ

1,1(θ, θ)}
(48)

+
1
a
(Φ1V h∗)EN,ψ

ξ2
{ρ2(θ)Γξ

2,11(θ, θ)}

+
1
a
R2,a{h∗(ZN )} + Φ1h∗ − Φ1h,
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where Eξ2 [R2,a(h∗)1{Na>ηa}] → 0 as a → ∞ by Lemma 13. Then, by Lemma 14
we can write the last two lines of (48) as

1√
a
{Φ1Uh − 2(Φ1V h)ω̂1/2

N µ̂
(2)
N + (Φ3h)(ω̂N − 1)}EN,ψ

ξ2
{ρ(θ)Γξ

1,1(θ, θ)}

+
1
a
(Φ1V h)EN,ψ

ξ2
{ρ2(θ)Γξ

2,11(θ, θ)} − (Φ1Uh)ω̂1/2
N µ̂

(2)
N + (Φ1V h){ω̂1/2

N µ̂
(2)
N }2

− 2(Φ1V h){τ̂ (2)
N − 1} − (Φ1V h)(ω̂N − 1) − (Φ3h)ω̂1/2

N µ̂
(2)
N (ω̂N − 1)

+
1
2
(Φ4h)(ω̂N − 1)2 + o(

1
a
)

=
1√
a
(Φ1Uh)IN +

1
a
(Φ1V h)IIN +

1√
a
(Φ3h)IIIN + (Φ4h)IVN + o(

1
a
),

where
IN = EN,ψ

ξ2
{ρ(θ)Γξ

1,1(θ, θ)} − ω̂
1/2
N κ̂

(2)
N ,

IIN = EN,ψ
ξ2

{ρ2(θ)Γξ
2,11(θ, θ)} − 2ω̂

1/2
N κ̂

(2)
N EN,ψ

ξ2
{ρ(θ)Γξ

1,1(θ, θ)} + {ω̂1/2
N κ̂

(2)
N }2

−2a{τ̂ (2)
N − 1} − a(ω̂N − 1),

IIIN = EN,ψ
ξ2

[(ω̂N − 1){ρ(θ)Γξ
1,1(θ, θ) − ω̂

1/2
N κ̂

(2)
N }]

and
IVN =

1
2
(ω̂N − 1)2.

To prove (23), it suffices to show that Eξ[IN1{Na>ηa}] = o(1/
√

a), that
Eξ[IIN1{Na>ηa}] = o(1), that Eξ[IIIN1{Na>ηa}] = o(1/

√
a) and that aEξ[IVN ×

1{Na>ηa}] = Eξ{ρ2(θ)}+o(1). For IN , recall from (7) that we may write Eξ2{ρ(θ)×
Γξ

1,1(θ, θ)} = Eξ2{κ(σ1, γ, ρ10)}, which together with Lemma 11 yields
√

aEξ[IN1{Na>ηa}] =
√

aEξ[{κ − ω̂
1/2
N κ̂

(2)
N }1{Na>ηa}] = o(1).

Next, consider IIN . By consistency of σ̂2 and κ̂
(2)
N , and (18),

Eξ[ρ2(θ)Γξ
2,11(θ, θ) − 2ρ(θ)κ̂(2)

N ω̂
1/2
N Γξ

1,1(θ, θ) + {κ̂(2)
N ω̂

1/2
N }2]

= Eξ{ρ2(θ)Γξ
2,11(θ, θ) − 2ρ(θ)κΓξ

1,1(θ, θ) + κ2} + o(1)

= Eξ(κ2) + o(1).

So, by definition of τ̂
(2)
N and (35),

Eξ(IIN ) = Eξ[κ2 − 2a{τ̂ (2)
N − 1}] − aEξ(ω̂N − 1) + o(1)

= −aEξ(ω̂N − 1) + o(1)
= o(1).

For IIIN , write
√

a(IIIN ) =
√

a(ω̂N − 1){ρ(θ)Γξ
1,1(θ, θ) − ω̂

1/2
N κ̂

(2)
N },

where |ρ(θ)Γξ
1,1 − ω̂

1/2
N κ̂

(2)
N | is bounded, and

√
a(ω̂N − 1) converges to a limit with

mean zero and is uniformly integrable by Lemma 10. So Eξ(IIIN ) = o(1/
√

a).
For IVN , first observe by (6) that Eξ[IVN1{Na≤ηa}] = o(1/a). Then, note that

we have aIVN1{Na>ηa} = a(ω̂N −1)21{Na>ηa}/2, which is uniformly integrable and
approaches ρ2χ2

1 by Lemma 10. So, the desired result follows. �
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