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Abstract

A family of simultaneous con#dence intervals (SCIs) for multinomial proportions is proposed
by inverting the power-divergence statistics and the best SCIs in the family is determined by
Monte-Carlo technique. Numerical comparisons of this method with the other alternatives are
presented. Simulation results indicate that the new procedure is preferable to all its competitors
in most cases.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Simultaneous con#dence intervals for multinomial proportions are very useful in
many aspects of statistical applications such as quality control (Quesenberry and Hurst,
1964; Goodman, 1965), simulation studies (Hurtubise, 1969; Angers, 1984), opinion
polling (Fitzpatrick and Scott, 1987), crime studies (Sison and Glaz, 1995), and cy-
togenetics studies (Hou et al. 1999, 2001). The issue on constructing simultaneous
con#dence intervals for multinomial proportions, hence, has been studied extensively
in the literature. Let N = (N1; N2; : : : ; Nk) be a vector of observed cell frequencies in
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a sample of size n =
∑k
i=1 Ni from a multinomial distribution with the vector of cell

probabilities P=(P1; P2; : : : ; Pk). We are interested in constructing a set of simultaneous
con#dence intervals

S(N) = {P |Pi ∈ Si; i = 1; 2; : : : ; k};
where S(N) satis#es

Pr[P∈ S(N)] = Pr

[
k⋂
i=1

(Pi ∈ Si)
]
¿ 1 − 
 (1)

for a speci#ed signi#cance level 
.
Quesenberry and Hurst (1964), to our knowledge, was the #rst to discuss the issue.

They derived the following large-sample simultaneous con#dence intervals based on
the chi-square approximation of the Pearson’s statistic:

S1(N) =
{
P
∣∣∣∣Pi ∈ A+ 2Ni ∓ {A[A+ 4Ni(n− Ni)=n]}1=2

2(n+ A)
; i = 1; 2; : : : k

}
;

where A is the upper 100 × 
th percentile of the chi-square distribution with k − 1
degrees of freedom. Following the work of Quesenberry and Hurst (1964), Goodman
(1965) proposed a set of shorter-length intervals:

S2(N) =
{
P
∣∣∣∣Pi ∈ B+ 2Ni ∓ {B[B+ 4Ni(n− Ni)=n]}1=2

2(n+ B)
; i = 1; 2; : : : k

}
;

where B is the upper 100 × (
=k)th percentile of the chi-square distribution with one
degree of freedom. In addition, Bailey (1980) utilized an angular transformation and a
square root transformation to binomial variates and proposed two procedures as follows:

S3(N) =


P

∣∣∣∣∣∣Pi ∈
{

sin

[
sin−1

(√
Ni + 3

8

n+ 3
4

)
∓
√

B
4n+ 2

]}2

; i = 1; 2; : : : k


 ;

S4(N) =


P
∣∣∣∣∣∣∣Pi ∈



√
Ni+ 3

8

n+ 1
8

∓
√√√√C

(
C+1−Ni+

3
8

n+ 1
8

)


2/
(C+1)2; i = 1; 2; : : : k


 ;

where C = B=(4n). Fitzpatrick and Scott (1987) applied the normal approximation to
derive the following adjusted binomial intervals:

S5(N) =
{
P
∣∣∣∣Pi ∈ Nin ∓ D

2
√
n
; i = 1; 2; : : : k

}
;

where D is the upper 100 × (
=4)th percentile of the standard normal distribution.
More recently, Sison and Glaz (1995) used two approximations for the rectangular
multinomial probabilities to derive two “computer-based” procedures. Their procedures
have no closed form and must be solved using a computer. To obtain their results, let
Vi and Yi, i=1; 2; : : : ; k, be independent Poisson random variables with mean ni and its
truncation to [ni− �; ni+ �], respectively, where � is some constant. Let N ∗

1 ; N
∗
2 ; : : : ; N

∗
k
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be the cell frequencies in a sample of n observations from a multinomial distribution
with cell probabilities (N1=n; : : : ; Nk=n). De#ne

�i = E(Yi);

�2
i = V (Yi);

�(r) = E[Yi(Yi − 1) : : : (Yi − r + 1)];

�r; i = E(Yi − �i)r ;

�1 =
1
k

∑k
i=1 �3; i

√
k( 1
k

∑k
i=1 �

2
i )

3
2

;

�2 =
1
k

∑k
i=1 �4; i − 3�4

i√
k( 1
k

∑k
i=1 �

2
i )2
;

fe(x) =
(

1√
2�

e
−x2

2

){
1 +
�1
6

(x3 − 3x) +
�2
24

(x4 − 6x2 + 3)

+
�21
72

(x6 − 15x4 + 45x2 − 15)
}
;

�(�) =
n!
nne−n

{
k∏
i=1

Pr[ni − �6Vi6 ni + �]
}
fe


n−∑ki=1 �i√∑k

i=1 �
2
i


 1√∑k

i=1 �
2
i

and

!(�) = 
1;m

k∏
j=m+1

(

j−m+1; j


j−m+1; j−1

)
;

where


i; j = P[ni − �6N ∗
i 6 ni + �; : : : ; nj − �6N ∗

j 6 nj + �] for 16 i¡ j6 k:

Using the algorithm that approximates multinomial probabilities given by Levin (1981),
their #rst procedure was derived as follows:

S6(N) =
{
P
∣∣∣∣Nin − �

n
6Pi6

Ni
n

+
�+ 2�
n
; i = 1; 2; : : : ; k

}
;

where the integer � satis#es the condition �(�)¡ 1 − 
¡�(�+ 1), and �= (1 − 
) −
�(�)=�(� + 1) − �(�). They also utilized the negative dependence structure inherent in
the multinomial distribution and some related probability inequalities proposed by Glaz
and Johnson (1984) to derive the second type of SCIs as follows:

S7(N) =
{
P
∣∣∣∣Nin − �

n
6Pi6

Ni
n

+
�+ 2!
n
; i = 1; 2; : : : ; k

}
;
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where the constant � is chosen such that !(�)¡ 1 − 
¡!(�+ 1) and != (1 − 
) −
!(�)=!(� + 1) − !(�). According to simulation studies, they concluded that S6(N)
and S7(N) performed equally well, and since S7(N) is very computationally time con-
suming, they thought that S7(N) is impractical from a computational viewpoint and
recommended S6(N) alone.

In Section 2, a new procedure for constructing simultaneous con#dence intervals for
multinomial proportions is proposed. In Section 3, numerical comparisons are presented
to see its superb performance over those previously discussed in the literature. In
Section 4 possible improvements on the new procedure are discussed.

2. A power-divergence-type simultaneous con�dence intervals

2.1. A family of simultaneous con5dence intervals for multinomial proportions

In this section a family of simultaneous con#dence intervals for the vector of parame-
ters of a multinomial distribution will be constructed by inverting the power-divergence
statistics introduced by Cressie and Read (1984). Since Pearson’s chi-square statistic
is one member of the power-divergence statistics, it is obvious that the simultaneous
con#dence intervals proposed by Quesenberry and Hurst (1964) and Goodman (1965)
are special cases of this family.

Cressie and Read (1984) proposed the following power-divergence family of statis-
tics:

I(P; #) =
2

#(#+ 1)

k∑
i=1

Ni

[(
Ni
nPi

)#
− 1

]

=
2n

#(#+ 1)

k∑
i=1

P̂i


( P̂i
Pi

)#
− 1


 ; −∞¡#¡∞; (2)

where (P̂1; : : : ; P̂k) = (N1=n; : : : ; NK=n) and # is the family parameter. For # = 0 and
−1, I(P; #) is de#ned using continuity. It is well known that the power-divergence
statistic provides an important link with many famous statistics, such as the Pearson’s
chi-square statistic (# = 1), the Neyman-modi#ed chi-square statistic (# = −2), the
likelihood ratio statistic (# → 0), and the Freeman–Tukey statistic (# = −0:5). This
link provides a mechanism to derive more general results about the behavior of these
statistics in both large and small samples, it also hints that some new statistics that
are highly competitive may be constructed. Cressie and Read (1988) further indicated
that each member of the power-divergence family of statistics has the same asymptotic
chi-square distribution with k−1 degrees of freedom. Moreover, each of them behaves
algebraically as well as statistically like the Pearson’s chi-square statistic and can be
interpreted, geometrically, as a sum of weighted squared diQerences.

Suppose the approximation is good, then

Pr[I(P; #)6 %2

(k − 1)] ≈ 1 − 
; −∞¡#¡∞; 0¡
¡ 1:
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For #xed n; k; 
, and #, the inequality

I(P; #)6 %2

(k − 1) (3)

de#nes a region in the parameter space, and if the equal sign is taken the equation
gives the bounding surface of the region. The intersection of the hyperplane represented
by

k∑
i=1

Pi = 1 (4)

with this surface is a (k − 1)-dimensional hypercurve. Applying the technique of
Lagrange multiplier, the minimum and maximum values on the curve can be found
by solving the following equation:

(1 − P̂i)#+1P#i + P̂
#+1
i (1 − Pi)# = A#P#i (1 − Pi)# (5)

for each Pi (i = 1; 2; : : : ; k), where

A# =
#(#+ 1)

2n
%2

(k − 1) + 1:

(A proof for this statement is given in Appendix A.) Following Eq. (5), we can
construct a set of simultaneous con#dence intervals as follows:

S(N; #) = {P|Pi ∈ [Pi#L; Pi#U ]; i = 1; 2; : : : ; k}; −∞¡#¡∞;
where Pi#L and Pi#U are the minimum and maximum solutions for Eq. (5). Using the
similar trick Goodman (1965) suggested, we replace A# in (5) with B#, where

B# =
#(#+ 1)

2n
%2

=k(1) + 1

and obtain a set of shorter-length simultaneous con#dence intervals:

SPD(N; #) = {P|Pi ∈ [P(i#L; P
(
i#U ]; i = 1; 2; : : : ; k}; −∞¡#¡∞;

where P(i#L; P
(
i#U are the minimum and maximum solutions for Eq. (5) with A# substi-

tuted by B#. When the interval endpoints are not explicit functions of the data, numer-
ical methods such as Newton–Raphson’s method can be used to solve the problem.

In particular, when #= 1, we have

A# = A1 =
1
n
%2

(k − 1) + 1

and Eq. (5) becomes

(1 − P̂i)2Pi + P̂
2
i (1 − Pi) = A1Pi(1 − Pi); i = 1; 2; : : : ; k:

It follows that

A1P2
i + (1 − 2P̂i − A1)Pi + P̂

2
i = 0; i = 1; 2; : : : ; k:

Hence

Pi =
A+ 2Ni ∓ {A[A+ 4Ni(n− Ni)=n]}1=2

2(n+ A)
; i = 1; 2; : : : ; k:
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We thus have

S(N; 1) = S1(N):

Similarly, we can show that

SPD(N; 1) = S2(N):

Hence, the set of simultaneous con#dence intervals S1(N) proposed by Quesenberry
and Hurst (1964) is a special case of the family of simultaneous con#dence intervals

F1 = {S(N; #); #∈R} (6)

and the set of simultaneous con#dence intervals S2(N) introduced by Goodman (1965)
is a member of the family of shorter-length simultaneous con#dence intervals

F2 = {SPD(N; #); #∈R}: (7)

2.2. The best power-divergence simultaneous con5dence intervals

The result obtained in Section 2.1 assumed that # is a #xed number. In this subsec-
tion, the optimal choice of # for the family of SCIs will be discussed.

Based on some simulation results, Cressie and Read (1988, p. 63) concluded that in
almost all cases a reasonable choice of # would lie in the range (−1; 2]. Therefore, it
appears reasonable that we also restrict our attention here to the following subfamily:

F = {SPD(N; #); #∈ (−1; 2]}:
Let V (#) denote the volume of the rectangular region of SPD(N; #) and + be

+= {#|Pr[P∈ SPD(N; #)]¿ 1 − 
; #∈ (−1; 2]}:
Thus, for any given data set N and 
, #nding the best power divergence SCIs among
the class F is equivalent to seeking a point #∗ in + that minimizes V (#), or at least
satisfactorily closes to the minimum of V (#). That is, we are looking for #∗ so that

Min
#∈+
V (#) = V (#∗):

Hence, in determining the best power-divergence SCIs among the subfamily F for any
given data set, + needs to be de#ned #rst, the optimal value #∗ can then be pursued.
Unfortunately, elements in + cannot be expressed explicitly, we, instead, set up +
based on Monte-Carlo simulated samples. Since the corresponding SCIs are derived in
terms of the power-divergence statistics, they may be called “the best power-divergence
SCIs”.

3. Simulation studies

We perform a series of simulation studies to compare the proposed methods with
those previously discussed in literature. We will consider four data sets for discussion.
The #rst two data sets (Tables 1 and 2) were examined in Sison and Glaz (1995).
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In addition, in order to see their performance under situations with sparse data, an
arti#cial data set (Table 3) as well as a real data set (Table 4) are studied. The former
is created based on the data set in Table 1, the latter is about chromosomal fragile
sites discussed in Hou et al. (1999, 2001). The procedure is as follows:
(a) For any data set (N1; : : : Nk), estimate P′js by Nj=n and use them as if they were

the “true” population proportions.
(b) Simulate 10 000 multinomial samples from this multinomial population. The com-

puter program was coded in FORTRAN V. The simulated multinomial samples
were generated by the IMSL subroutine RNMTN. All simulation studies were
performed on a 686 Pentium II 300 personal computer.

(c) Obtain the SCI intervals for each sample. Comparisons are then made in terms of
the coverage probability and the rectangular volume, where the coverage proba-
bility is de#ned to be the proportion of the 10 000 estimated SCIs that cover the
“true” multinomial vector (N1=n; : : : ; NK=n).

For each of the eight diQerent con#dence regions S1(N); S2(N); : : : ; S7(N), SPD(N; #∗),
we present the intervals for Pi, i = 1; 2; : : : k, the coverage rate, the exact p-values
related to the problem of testing “H0: coverage probability ¿ 1 − 
”, and the volume
of the ”rectangular” region. In determining the best power-divergence SCIs SPD(N; #∗),
the optimal choice #∗ is obtained such that the corresponding coverage probability of
the power-divergence SCIs is greater than or equal to the nominal level by statistical
testing, and the corresponding volume is the smallest. We carried out the former test
based on 50 Monte-Carlo simulated samples (Although we chose to use, conserva-
tively, 50 samples here, we found, based on our extensive simulation studies, we gain
essentially nothing by using more than 20 samples).

In Sison and Glaz (1995), they simulated 10 000 multinomial samples, and for each
sample they calculated the vector (N1=n; : : : ; NK=n), rather than the SCIs, to obtain the
proportion for those vectors which were located in the original SCIs calculated in terms
of the observed data (N1; : : : Nk), and took it to estimate coverage probability. Thus, the
simulation results presented here are a little bit diQerent from those provided in Sison
and Glaz (1995). Nevertheless, the correctness of the results is our own responsibility.
Since procedure S7(N) is very time consuming, the coverage probabilities for procedure
S7(N) are not presented.

Recall that the simultaneous con#dence intervals are targeted to achieve a cover-
age probability greater than or equal to a predetermined nominal level (i.e., to satisfy
inequality (1)). In Table 1, it can be found that all intervals are conservative except
S3(N), S4(N), S6(N) (at 0.05 signi#cance level). Among the intervals that are con-
servative, SPD(N; #∗) has the smallest volume. According to Tables 2 and 3, it can
be seen that the intervals S1(N), S5(N), and SPD(N; #∗) are conservative. Among the
intervals that are conservative, SPD(N; #∗) again has the smallest volume. In Table 4,
we can see that the coverage probability for S2(N), S3(N), and S4(N) do not attain
the nominal level, while the rest are conservative. Among those that are conserva-
tive, SPD(N; #∗) once again has the best performance in terms of volume. To sum
up, as shown in Tables 1–4, SPD(N; #∗) has the smallest volume overall and also
achieves a coverage closest to 0.95. Hence, it appears that SPD(N; #∗) is the optimal
choice. Similar results are also obtained in our extensive simulation studies. Note that
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achieving the speci#ed coverage probability is generally regarded as the primary con-
cern for good simultaneous con#dence intervals. We can see from Tables 1–4 that the
intervals based Goodman (1965) and Bailey (1980) have poor coverage probabilities.
Hence, although in some cases S3(N) and S4(N) based on Bailey (1980) seem to have
the smallest volumes, their optimality is super#cial.

4. Conclusions and future work

This new procedure proposed in this article is derived using the power-divergence
statistics proposed by Cressie and Read (1984), and Monte-Carlo technique is applied
to #nd the optimal solution. Based on the numerical results, the new procedure appar-
ently outperforms all the other alternatives in terms of accuracy, where the accuracy is
measured by the volume of the con#dence region corresponding to the nominal cov-
erage probability and the probability of coverage it achieves. The result derived here
can be extended for several multinomial distributions.

Some might suspect that procedure SPD(N; #∗) could be fairly time consuming. How-
ever, for a #xed #, it took only 0.018 and 0:404 s CPU time to solve the con#dence
bounds for data sets considered in Tables 1 and 4, respectively. Consider a worse sce-
nario in which we choose 30 grid points among {#|#∈ (−1; 2]} and use 50 Monte-Carlo
samples to search for the optimal value of #, it will only take about 0.45 and 10:1 min
CPU time to #nd the best power-divergence SCIs for data sets given in Tables 1 and 4,
respectively. From numerical results presented in Section 4 it is obvious that procedure
SPD(N; #∗) is more accurate than all the others. This accuracy should suTce for most
applications, although we have to admit that the costs in some situations may be still
expensive. Therefore, a quicker numerical method in searching for the optimal value
#∗ is called for.

The chi-square approximation for the power-divergence family of statistics I(P; #) is
satisfactory as the sample size n approaches in#nity. For #nite (or small) n, the exact
distribution of I(P; #) is not known. How to determine the appropriate critical value is
still an open problem. However, Cressie and Read (1988, p. 95) indicated that we can
view the parameter # as a transformation index on the individual cell frequencies. Note
that the exact distribution of I(P; #) varies as # varies from −∞ to ∞. Hence, for any
given positive value c, it is possible to simulate a value #∗ such that the 100×(1−
)th
percentile of the distribution of I(P; #∗), say I 1−
#∗ , is equal or close to c (i.e., it is
possible to #nd a #∗ such that P[I(P; #∗)6 c] ≈ 1 − 
, for any given positive value
c). On the other hand, for any #xed #, it is also possible to approximate the exact
100× (1−
) percentile of the distribution of I(P; #) by using Monte-Carlo simulation.
Thus, for any #xed n, k, 
, # and c (c¿ 0), instead of using (3) to construct a set of
SCIs, we can use the inequality I(P; #)6 c to play the key role.

By the same arguments as in Section 2.1 the minimum and maximum values can
be found for each Pi and a set of simultaneous con#dence intervals can be stated as
follows:

S(N; #; c) = {P|Pi ∈ [Pi#cL; Pi#cU ]; i = 1; 2; : : : ; k}; −∞¡#¡∞; c¿ 0;
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where Pi#cL and Pi#cU are the minimum and maximum solutions of the following
equations:

(1 − P̂i)#+1P#i + P̂
#+1
i (1 − Pi)# = C#P#i (1 − Pi)#; i = 1; 2; : : : ; k;

where

C# =
#(#+ 1)

2n
c + 1:

Hence, for any given positive value c, we can have a set of simultaneous con#dence
intervals:

F(c) = {S(N; #; c); #∈R}
and therefore a class of family of simultaneous con#dence intervals:

U = {F(c); c¿ 0}:
Obviously, F1 = F(%2


(k − 1))∈U , and F2 = F(%2

=K (1)), where F1 and F2 are de#ned

as in Eqs. (6) and (7).
Let 1 be de#ned as

1= {(#; c)|c¿ I 1−
# ; where I 1−
# is the exact 100 × (1 − 
)th percentile
of the distribution of I(P; #)}:

Note that for any signi#cance level 
∈ (0; 1),

I 1−
# 6 c; ∀(#; c)∈1:
We thus have

{I(P; #)6 I 1−
# } ⊂ {I(P; #)6 c}; ∀(#; c)∈1
and

Pr[I(P; #)6 c]¿ Pr[I(P; #)6 I 1−
# ]

= 1 − 
; ∀(#; c)∈1:
Hence, every member belonging to the following class:

{S(N; #; c); (#; c)∈1}
is conservative (i.e., their coverage probabilities are not less than 1 − 
).

From our preliminary simulation results it appears that the smaller the positive value
c is, the smaller volume the power-divergence SCIs has. This result needs to be ex-
amined further. Nevertheless, it seems positive that we can write a computer program
to search for the optimal pair of values (#; c) based on the Monte-Carlo simulated
multinomial samples to improve the accuracy of the power-divergence SCIs.
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Appendix A. Derivation for Eq. (5)

Note that

I(P; #) =
2n

#(#+ 1)

k∑
j=1

P̂j


( P̂j
Pj

)#
− 1




=
2n

#(#+ 1)


 k∑
j=1

P̂
#+1
j

P#j
− 1


 : (A.1)

Since

I(P; #)6 %2

(k − 1);

we have

2n
#(#+ 1)


 k∑
j=1

P̂
#+1
j

P#j
− 1


6 %2


(k − 1):

It follows that

k∑
j=1

P̂
#+1
j

P#j
6
#(#+ 1)

2n
%2

(k − 1) + 1 = A#: (A.2)

For #xed n; k; 
, and #, the inequality (A.2) de#nes a region in the parameter space,
and if the equal sign is taken, i.e.,

k∑
j=1

P̂
#+1
j

P#j
= A#; (A.3)

the equation gives the bounding surface of the region. The intersection of this sur-
face with the hyperplane represented by Eq. (4) is a (k − 1)-dimensional hypercurve.
Maximum and minimum values can now be found for each Pi (i = 1; 2; : : : ; k) on this
curve.

From Eq. (A.3), we have

Pi =


 P̂

#+1
i

A# −
∑
j �=i (P̂

#+1
j =P

#
j )




1
#

i = 1; 2; : : : ; k: (A.4)

Thus the function to be maximized and minimized is

Q= Pi − t

 k∑
j=1

Pj − 1
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= (1 − t)Pi − t

∑
j �=i
Pj − 1




= (1 − t)

 P̂

#+1
i

A# −
∑
j �=i (P̂

#+1
j =P

#
j )




1
#

− t

∑
j �=i
Pj − 1


 ;

where t is the Lagrange multiplier. DiQerentiating Q with respect to Pm and Pl (m �= i;
l �= i; m �= l) and setting these expressions equal to zero gives

tP̂
#+1
i

(t − 1)P#+1
i

=
P̂
#+1
m

P#+1
m
; i; m; l= 1; 2; : : : ; k;

tP̂
#+1
i

(t − 1)P#+1
i

=
P̂
#+1
l

P#+1
l

; i �=m; i �= l; m �= l:

Therefore,

P̂
#+1
m

P#+1
m

=
P̂
#+1
l

P#+1
l

∀m �= l; m; l= 1; 2; : : : ; k (m �= i; l �= i);

and

Pm = Pl
P̂m
P̂l

∀m �= l; m; l= 1; 2; : : : ; k (m �= i; l �= i) (A.5)

follows. All we have to do then is to solve these k − 2 equations in (A.5) with
constraints (4) and (A.3) simultaneously. According to Eq. (A.3),

k∑
m=1

P̂
#+1
m

P#m
= A#:

Note that the left-hand side can be further expressed as follows:

k∑
m=1

P̂
#+1
m

P#m
=
∑
m �=i
m �=l

P̂
#+1
m

P#m
+
P̂
#+1
i

P#i
+
P̂
#+1
l

P#l

=
∑
m �=i
m �=l

P̂
#+1
m

(PlP̂m=P̂l)#
+
P̂
#+1
i

P#i
+
P̂
#+1
l

P#l

=
∑
m �=i
m �=l

P̂mP̂
#
l

P#l
+
P̂
#+1
i

P#i
+
P̂
#+1
l

P#l
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=
P̂
#
l

P#l


∑
m �=i
m �=l

P̂m + P̂l


+

P̂
#+1
i

P#i

=
P̂
#
l

P#l

∑
m �=i
P̂m +

P̂
#+1
i

P#i

=
P̂
#
l

P#l
(1 − P̂i) +

P̂
#+1
i

P#i
; l; i = 1; 2; : : : ; k; l �= i;

where the second equality is derived using (A.5), and the last equality holds since∑k
m=1 P̂m = 1. Hence,

P̂
#
l

P#l
(1 − P̂i) +

P̂
#+1
i

P#i
= A#; l; i = 1; 2; : : : ; k; l �= i: (A.6)

Note that

1 =
k∑
m=1

Pi

=
∑
m �=i
m �=l

Pm + Pi + Pl

=
∑
m �=i
m �=l

Pl
P̂m
P̂l

+ Pi + Pl

= Pl


∑
m �=i
m �=l

P̂m + P̂l
P̂l


+ Pi

= Pl

∑
m �=i P̂m
P̂l

+ Pi

= Pl
(1 − P̂i)
P̂l

+ Pi:

Hence

Pl = P̂l

(
1 − Pi
1 − P̂i

)
for l; i = 1; 2; : : : ; k; l �= i: (A.7)
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Solving Eqs. (A.6) and (A.7) simultaneously, we obtain

P̂
#
l (1 − P̂i)

(P̂l( 1−Pi
1−P̂i ))

#
+
P̂
#+1
i

P#i
= A#

and hence

(1 − P̂i)#+1P#i + P̂
#+1
i (1 − Pi)# = A#P#i (1 − Pi)# i = 1; 2; : : : ; k:
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