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This study presents an optimal insurance contract developed endogenously when insured individuals

face two mutually dependent risks, background wealth and insurable loss. If background wealth is

conditionally normally distributed given insurable loss, the optimal insurance contract may be

proportional coinsurance above a straight deductible for a quadratic, negative exponential, or mean-

variance utility function. Additionally, when the insured has a quadratic utility or mean-variance

utility, the optimal retained schedule is a function of conditional expected value of background wealth

given insurable loss. Moreover, the optimal insurance contracts for quadratic and negative exponential

utility functions need not to be mean-variance efficient, even when the conditional normal distribution

is assumed. Finally, when a portfolio problem is considered, the calculation about the optimal

insurance contract remains almost unchanged.

Keywords: optimal insurance; background risk; mean-variance efficient

JEL classification: G22

1. Introduction

Individuals or corporations usually encounter insurable and uninsurable risks in non-life

insurance. Insurable risks include building fire, automobile damage, and airplane crashes,

while uninsurable risks include the volatility of share returns, variations in corporate or

individual income and changes in economic conditions. For an insured party, these

uninsurable risks can be viewed as background risks. Without considering background

risk, several studies have yielded some important results regarding an optimal insurance

contract.1 Assume that the insurer is risk neutral and the insured is risk averse. In the

absence of background risk, Arrow (1963) and Raviv (1979) show that the optimal

insurance is a deductible contract. Since a deductible insurance limits the loss of the

insured below a pre-specified level (deductible) whatever the magnitude of the loss is, this

contract is compatible with the characteristic that the marginal utility of the insured is

*Corresponding author. E-mail: yungming@nccu.edu.tw
1Following Wang, Shyu, & Huang (2005), we define an optimal insurance contract as a policy that is Pareto-

efficient. The optimal insurance form with the indemnity schedule must sufficiently satisfy the insured’s objective

and meet the premium request of the insurer.
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decreasing in wealth or equivalently the insured is risk averse. However, if there exists

background risk, a deductible insurance can only limit the loss of the insurable risk but

not the background risk. Hence, the total losses could be above the pre-specified level. For

instance, if the background wealth is positively related to the insurable risk, the

background wealth can offset the insurable risk.2 In this case, a deductible insurance

may be dominated by a coinsurance contract. Accordingly, the results in Arrow (1963)

and Raviv (1979) do not necessarily hold if background risks exist.

As pointed out by Schlesinger & Doherty (1985), uninsurable background risk might

arise due to any number of the following: social risks, general market risk, informational

asymmetries, transaction costs of insurance, search costs for insurance, nonmarketable

assets, risk versus uncertainty. Since background risks may exist in many situations, an

important extension of determining an optimal insurance contract would consider the

existence of background risks from both practical and theoretical perspectives. In

addition, both the insured and insurer may have some form of background risk. For

instance, the uninsurable income or human capital risk can be viewed as a background

risk for the insured. Besides taking the risks from the insured, the insurer has background

risks such as the asset risks and other risks which are not reinsured. Hence, both the

insurer and insured have to consider background risks when making their insurance

decisions.3

Borch (1983, 1990) indicates that insurers are rational economic agents seeking to

optimize their utility function and argue that if the insurer is risk neutral, there must exist

a premium (above the actuarially fair value) which will induce a risk averse buyer to take

the full insurance cover. Recently, numerous studies have examined insurance demand in

the presence of background risks. These studies can be divided into two categories based

on whether contractual forms are endogenous or exogenous.4 Exogenous studies attempt

to identify the optimal coverage level, usually given contractual forms of deductible

insurance or proportional coinsurance � for example, Doherty & Schlesinger (1983a,

1983b), Mayers & Smith (1983), Aboudi & Thon (1995), Schlesinger (1997), Meyer &

Meyer (1998), Guiso & Jappelli (1998), Jeleva (2000), and Luciano & Kast (2001).

Doherty & Schlesinger (1983a) show that the conditions, sufficient for the optimality of

full coverage or deducible insurances, depend on the correlation between insurable and

uninsurable risks. They further demonstrate that the results in Arrow (1963) and Raviv

(1979) may not hold for non-independence of loss and initial wealth. Mayers & Smith

(1983) note that the purchase of insurance cannot be determined without considering the

2In this study, background wealth is defined as the insured’s uninsurable wealth, i.e., the wealth which is exposed

to uninsurable background risk.
3As discussed above, incorporating background risks is important. However, since most existing studies relating to

optimal insurance do not consider background risk, their results obtained do not necessarily hold in the presence

of background risk. Additionally, if background risk is present, the traditional approach deriving the optimal

insurance may not be applicable.
4Prior studies relating to the background risk can also be classified into two groups. The first is concerned with the

case where this risk is additive (e.g., Doherty & Schlesinger (1983a); Gollier (1996); Gollier & Pratt (1996); Rey

(2003); Dana & Scarsini (2007), whereas the second is related to the case where the risk is multiplicative (e.g., Pratt

(1988); Franke, Schlesinger, & Stapleton (2006)). This paper belongs to the first group.

2 H.-H. Huang et al.120
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investment in other assets in the portfolio when the payoffs of the insurance policy and

those from other assets are correlated with each other.

The endogenous studies, however, focus on developing optimal contractual forms of

insurance. Notable examples include Gollier (1996), Mahul (2000), and Vercammen

(2001). Gollier (1996) shows that the optimal insurance policy displays a disappearing

deductible if the convexity of marginal utility is positive and the risk associated with the

uninsurable asset increases with the loss magnitude of the insurable asset. Mahul (2000)

relaxes Raviv’s (1979) assumption of one source of risk by considering an optimal

insurance contract when the insured party faces background risks and an insurable risk.

He shows that Raviv’s (1979) finding still holds if these two risks are independent of each

other. Moreover, using the stochastic dominance theory, he further demonstrates that

the optimal insurance contract contains a disappearing deductible if both risks are

dependent. Vercammen (2001) also considers the situation in which both risks are

nonseparable due to the positive relation between the marginal insurable loss and the loss

associated with the background risk. Contrary to Gollier’s (1996) result of disappearing

deductible, he shows that the optimal contract requires coinsurance above a deductible

minimum when the agent is prudent.

Individual preference is usually defined using an expected utility, mean-variance, or

stochastic dominance framework. The expected utility framework assumes that the

individual has a von Neumann-Morgenstern utility function, which is a cardinal measure

(Ingersoll 1987). In the mean-variance framework proposed by Markowitz (1952), an

individual chooses a portfolio to be mean-variance efficient.5 These two frameworks are

commonly used when analyzing decision behavior under uncertainty. Literature (e.g.,

Meyer, 1987; Huang & Litzenberger, 1988, Chapter 3) has shown that in most cases the

expected wealth utility cannot be defined by only expected value and variance, unless the

utility function or the wealth probability distribution is further specified. Moreover, the

expected utility and mean-variance models can coincide if the utility function is of a

quadratic form or the wealth is normally distributed. Meyer (1987) further derives 7

compatible properties and some comparative statistic connecting these two models

without these two restrictions but under the location and scale (LS) parameter condition.6

Using Meyer’s (1987) results, Sinn (1990) proves that the indifference curve slope in mean-

standard deviation (m � s) space increases with s, given m, when absolute risk aversion

satisfies some regular conditions. Moreover, Boyle & Conniffe (2008) extend the

compatibility of expected utility and mean-variance models to probability distributions

that are not location-scale, but can be transformed to that family. Additionally,

5Preferences cannot usually be represented as a function of mean and variance only. However, for asset choice, the

mean-variance framework is popular because of its analytical tractability and its rich empirical implications

(Huang & Litzenberger 1988).
6The LS condition can be presented as a linear function, y � m � s x, where y, x, m and s denote the uncertain

wealth, random return, location and scale parameters, respectively. Accordingly, the portfolio payoff invested in

one riskless asset and one risky asset satisfies the LS condition. Additionally, if the insurance contractual form is

of proportional coinsurance, the insured’s final wealth is a linear function of random loss and hence also satisfies

this condition. It is noted, however, that policy-limit and deductible insurance does not satisfy the LS condition.

Since this study aims to endogenously develop the optimal insurance contract with stochastic background wealth,

the derived contract under the expected utility or mean-variance framework is not necessarily a proportional

coinsurance and hence our results cannot be fully compared with those derived under the Meyer’s LS condition.

Optimal insurance contract 3121
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a stochastic dominance framework can also identify the individual preference, corre-

sponding to a certain family of utility functions. For instance, if Good X is second-degree

dominated by Good Y, then all risk averters would prefer Y to X.7

Consider two stochastic payoffs A and B, which may be viewed as the payoffs from two

different insurance contracts. Using the stochastic dominance approach, an individual

chooses payoffs A or B by only comparing their associated probability distributions. The

result obtained from this approach can be widely applied to most utility functions.

However, its drawback is that the stochastic dominance between A and B may not exist.

In this case, we cannot determine which one is better. The expected utility approach says

an individual strictly prefers A to B if and only if E[U(A)]�E[U(B)]. Unlike the stochastic

dominance approach, the preference relations for the expected utility approach are of

completeness. However, using this approach requires information about the probability

distributions of A and B as well as the parametric form of the utility function. The mean-

variance approach only requires information about the means, variances and covariance

for A and B. Hence, this approach is analytically tractable. However, like the stochastic

dominance approach, the mean-variance efficient relation of A and B may not exist.

The expected utility framework is adopted in Doherty & Schlesinger (1983a, 1983b),

Gollier (1996), Guiso & Jappelli (1998), Mahul (2000), and Vercammen (2001). The

mean-variance framework is adopted in Mayers & Smith (1983). The stochastic

dominance framework is adopted in Aboudi & Thon (1995), Gollier & Schlesinger

(1996), Schlesinger (1997), and Meyer & Meyer (1998).

This study presents an optimal insurance contract developed endogenously when the

insured agent faces an insurable risk in the presence of an uninsurable background risk.

This uninsurable risk is represented by background wealth, consisting of stochastic initial

wealth and a portfolio of financial assets. As in most prior studies (e.g., Raviv, 1979;

Gollier, 1996; Mahul, 2000), the optimal insurance contract must generate the maximal

expected utility of final wealth for the insured, given that insurance premiums meet

insurer’s requirements. Specifically, this study respectively adopts expected utility and

mean-variance frameworks to define the preferences of insured individuals. Restated,

insured individuals choose an optimal indemnity schedule for maximizing the expected

utility or mean-variance efficiency corresponding to the two frameworks.

Following Gollier (1996), Mahul (2000), and Vercammen (2001), this study assumes

that background risk depends on insurable loss and endogenously derives the optimal

insurance contract. We extend the literature on the design of optimal insurance in the

following ways. First, for comparison purposes, this study designs an optimal insurance

policy simultaneously under the expected utility and mean-variance frameworks. The

results are compared and discussed. Second, under an expected utility framework, this

study only assumes that the utility function U( �) of the insured is strictly increasing and

concave, i.e., U?( �)�0�U??( �). Hence, the result concerning the optimal insurance design

can be compared with previous studies, which developed several important results based

on more specific assumptions. For instance, in addition to U?( �)�0�U??( �), Gollier

7A lower-degree stochastic dominance implies a higher-degree one. The related argument and mathematical proof

can be found in Ingersoll (1987, Chapter 5) and Huang & Litzenberger (1988, Chapter 2).

4 H.-H. Huang et al.122
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(1996) and Vercammen (2001) assume that the insured is prudent U???( �)�0), whereas

Mahul (2000) assume that the background risk becomes riskier, according to any degree

of stochastic dominance, as the insurable loss increases. Third, under the mean-variance

framework, we develop an optimal insurance policy endogenously rather than limiting the

contractual form as in Mayers & Smith (1983).8 Finally, this study derives an optimal

insurance contract, assuming that the insured has mean-variance, quadratic, or negative

exponential utility functions. To obtain an explicit solution, we further assume that the

background wealth obeys a conditional normal distribution given the insurable loss. The

main contributions of this paper are with respect to results established for the mean-

variance utility function, inclusion of the portfolio problem and examination of optimal

insurance with specific utility functions combined with a bivariate normal distribution

assumption. In addition, unlike previous research such as Mahul (2000) we utilize

Taylor’s theorem to show that the Raviv’s result holds when background risk is

independent of insurable loss.

The main results of this paper are summarized in six propositions presented below. If

background wealth is conditionally normally distributed given insurable loss, the optimal

insurance contract may be proportional coinsurance above a straight deductible for

quadratic, negative exponential, or mean-variance utility functions. Additionally, when

the insured’s utility function is quadratic or mean-variance, the optimal retained schedule

is a function of conditional expected value of background wealth given insurable loss.

Moreover, the optimal insurance contracts for quadratic and negative exponential utility

functions need not to be mean-variance efficient, even when the conditional normal

distribution is assumed.

The remainder of this paper is organized as follows. Section 2 presents the assumptions

regarding insurable loss, background wealth, and insurance premiums. Sections 3 and 4

then derive the optimal insurance contract corresponding to expected utility and mean-

variance frameworks, respectively. Section 5 demonstrates further analytical results for

the portfolio problem and multivariate normal distribution, and determines the insurance

premium and investment amount. The last section draws the conclusion.

2. Assumptions

An insured party has a stochastic initial wealth ~y and faces a risk of loss ~x, where ‘�’

denotes a random variable hereinafter. ~x is nonnegative and perfectly insurable, and has a

probability density function f (x), x]0. Variable ~y, which can be viewed as a random

endowment, includes salary income and some uninsurable risk; hence, ~y may be positive

or negative.

The insured can utilize an insurance contract to compensate for loss ~x. The insurance

contract costs a premium P and pays an indemnity schedule I (x), 0�IðxÞ�x for all x,

8Mayers & Smith (1983) limited the contractual form to proportional coinsurance. Accordingly, the optimal

coinsurance ratio and portfolio components can be determined explicitly, and the calculation resembles the

traditional mean-variance frontier proposed by Markowitz (1952).

Optimal insurance contract 5123
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where x is an outcome of ~x. According to Raviv (1979), Gollier (1996), Wang et al. (2005),

and Huang (2006), the premium P is equivalent to the expected indemnity plus a

proportional loading. Mathematically,

P ¼ ð1þ lÞE½Ið~xÞ� (1)

where l denotes the percentage of loading. For convenience, let R(x)�x � I(x) represent

the retained loss schedule, consequently, 05R (x)5x for all x.

In addition to the insurance market, the insured may invest his/her money in a financial

market. Assume that a1; a2; . . . ; and an, denote the respective investment amounts in

assets 1, 2,. . ., n. The financial market consists of n assets with the following rate of

returns: ~z1;~z2; . . . ;~zn. Additionally, let the column vectors a ¼ ða1; a2; . . . ; anÞ
T

and

~z ¼ ð~z1;~z2; . . . ;~znÞ
T

, where the superscript ‘T’ represents the transpose of a vector or

matrix. Therefore, the total wealth of the insured is

~W ¼ ~yþ aT~z� P � Rð~xÞ (2)

where ~yþ aT~z is the uninsurable background wealth.

3. Expected utility framework

Assume that insured individuals have a von Neumann-Morgenstern utility function, i.e.,

their preferences can be represented as an expected utility (Huang & Litzenberger, 1988).

Insured individuals are risk averse and not satiable, equivalently, their utility Uð ~W Þ
satisfies U 0ð ~WÞ>0> U 00ð ~W Þ. According to Raviv (1979), Gollier (1996), and Mayers &

Smith (1983), the optimality problem of insured individuals is to select a decision bundle

(a, P, R (x)) for maximizing the expected wealth utility E½Uð ~W Þ�. Formally,

Maximize
a;P
0;0�RðxÞ�x

E½Uð ~W Þ� ¼ E½Uf~yþ aT~z� P � Rð~xÞg� (3)

subject to P ¼ ð1þ lÞE½Ið~xÞ� ¼ ð1þ lÞE½~x� Rð~xÞ� (3a)

As in Raviv (1979), Gollier (1996), Wang et al. (2005), and Huang (2006), Equation (3)

can be solved in two steps. Given a and P, the first step is to derive R
ðxÞ as a function of a

and P, R
ðx; a;PÞ. Then in the second step we solve R
ðxÞ by finding the optimal a
 and

P
 and R
ðx; a
;P
Þ.
In Section 3, we assume that the insured does not have opportunities to invest his/her

funds in financial assets. Subsection 3.1 derives the closed form solution of R
ðxÞ. The

next subsection assumes that the insured has a quadratic utility and a negative

exponential utility, respectively. A more explicit solution for R
ðxÞ is accordingly

obtained.

6 H.-H. Huang et al.124
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3.1. Preliminary results

Due to the assumption of no investment opportunity available for the insured, we set

a ¼ 0 � n� 1 zero vector. Equation (3) is then simplified as:

Maximize
P
0;0�RðxÞ�x

E½Uð ~WÞ� ¼ E½Uf~y� P � Rð~xÞg� (4)

subject to P ¼ ð1þ lÞE½Ið~xÞ� ¼ ð1þ lÞE½~x� Rð~xÞ� (4a)

If the initial wealth ~y is assumed deterministic rather than stochastic, R
ðxÞ would be a

deductible insurance, as shown in Arrow (1963) and Raviv (1979). We further demonstrate

that R
ðxÞ is also a deductible insurance as long as ~y is independent of ~x. The arguments

are displayed in Proposition 1 and Corollary 1 as follows:

PROPOSITION 1 Suppose that the insured with a strictly increasing and strictly concave

utility function has a stochastic initial wealth that is independent of the insurable loss, and

that the insurance premium is a strictly increasing function of expected indemnity. The

optimal insurance contract would be a deductible insurance.

Proof. See Appendix 1.

The result in Proposition 1 resembles that obtained by Gollier (1996) and Mahul (2000), in

which the direct utility of the insured is replaced by an indirect utility, and thus the optimal

insurance problem is reduced to the model presented by Raviv (1979). Since a deductible

insurance limits the loss of insured below a pre-specified level (deductible), this contract is

compatible with the characteristic that the marginal utility of the insured is decreasing in

wealth, or equivalently, the insured is risk averse. Note that the presence of an independent

background risk causes the insured to increase his/her risk aversion. As a consequence, the

optimal deductible size with an independent background risk is less than that without an

independent background risk (Gollier, 1996; Mahul, 2000). However, unlike Gollier (1996)

and Mahul (2000), we directly apply Taylor’s Theorem to verify this proposition. We believe

that the proof in Appendix 1 provides an alternative approach. The result in Proposition 1

can be directly applied to Equation (4) and the following corollary is accordingly obtained.

COROLLARY 1 If ~y and ~x are independent, then the optimal retained loss schedule in

Equation (4) is

R
ðxÞ ¼ minfx; d
g for all x (5)

where d
 is the solution of

P � ð1þ lÞE½maxf~x� d
; 0g� ¼ 0 (5a)

Proof. See Appendix 2.

This study next considers a case in which ~y depends on ~x. By using integral

representations for all expected values, Equation (4) resembles a continuous optimal

control problem. Following Fryer & Greenman (1987) and Raviv (1979), this equation

can be then solved. The Lagrangian for Equation (4) is

L ¼ E½Uf~y� P � Rð~xÞg� þ kfP � ð1þ lÞE½~x� Rð~xÞ�g (6)

Optimal insurance contract 7125
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where l represents the Lagrange multiplier. By using an iterated expectation rule,

Equation (6) can be rewritten as

L ¼ E½E½Uf~y� P � Rð~xÞgjx�� þ kfP � ð1þ lÞE½~x� Rð~xÞ�g (6a)

where E½�jx� denotes the conditional expectation given ~x ¼ x. Since E½�jx� is a function of

x, Equation (6a) can be reformulated as

L ¼
ð1

0

E½Uf~y� P � Rð~xÞgjx� þ kfP � ð1þ lÞ½x� RðxÞ�gð Þf ðxÞdx (6b)

The corresponding Hamiltonian in Equation (6b) is

H ¼ E½Uf~y� P � Rð~xÞgjx� þ kfP � ð1þ lÞ½x� RðxÞ�gð Þf ðxÞ (7)

Now R
ðxÞ can be derived by maximizing Equation (7). The result is summarized in

Proposition 2.

PROPOSITION 2: The optimal retained loss schedule in Equation (4) is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
E½U 0f~y� P � R̂ð~xÞgjx� ¼ cðconstantÞ for all x

:

�
(8)

Proof. See Appendix 3.

The economic implication of Proposition 2 is as follows. R̂ðxÞ is the optimal retained

loss schedule when RðxÞ is not limited. Consider arbitrary loss outcomes x1 and x2. If the

expected marginal utility for ~x ¼ x1 exceeds that for ~x ¼ x2, then simultaneously

increasing indemnity in ~x ¼ x1 and decreasing indemnity in ~x ¼ x2 may enhance expected

utility. Accordingly, insured individuals would select a particular R(x) such that the

expected marginal utility is fixed for all x. Additionally, the retained loss schedule is

limited to 0 � RðxÞ � x. Thus, the final result is presented as Equation (8).

Since the assumption for Proposition 2 is only that the utility function of the insured is

increasing and concave, Equation (8) can be applied to most situations. Actually, Equation

(8) contains a rich family of contractual forms and hence can widely correspond to the

results obtained in the existing literature. For instance, if R̂ðxÞ ¼ 0 for x 
 x̂ and R̂ðxÞ > 0

for xB x̂, the optimal insurance displays a disappearing deducible resembling the results in

Gollier (1996) and Mahul (2000), where x̂ represents some disappearing deducible.

Additionally, if R̂ðxÞ ¼ dxþ d, d�0, d � 0, the optimal insurance contract is a

coinsurance above a straight deductible, resembling the results in Vercammen (2001),

where 1 � d represents the coinsurance proportion and d represents the straight deductible.

3.2. Quadratic utility and negative exponential utility

The hyperbolic absolute risk aversion (HARA) or equivalently linear risk tolerance (LRT)

class of utility functions is conventionally adopted. In this subsection, we use the

quadratic utility and negative exponential utility functions as examples of HARA, since

8 H.-H. Huang et al.126
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they are the most commonly seen in the literature (see, e.g., Huberman, Mayers, & Smith

(1983); Bowers et al. (1986); Huang & Litzenberger (1988)).

A. Quadratic utility function

A quadratic utility function is defined by UðW Þ ¼W � b
2
W 2; 0BbBW�1. Thus, the

corresponding marginal utility function is

U 0ðW Þ ¼ 1� bW ; 0BbBW�1: (9)

Substituting Equation (9) into Equation (8) yields

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
E½1� bf~y� P � R̂ðxÞgjx� ¼ c

�
(10)

Equation (10) can be rewritten as

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ E½~yjx� þ d1

d1 ¼ �P þ ðc� 1Þ=b

8<
: (11)

For the quadratic utility, the marginal utility is linear. Incorporating this fact into

Equation (8) yields that the optimal insurance depends on the conditional expectation

E½~yjx�. Consider the normal situation R̂ðxÞ > 0. In this case, R
ðxÞ ¼ minfx; R̂ðxÞg,
where the deductible R̂ðxÞ ¼ E½~yjx� þ d1. If the background risk ~y is independent of ~x,

then E½~yjx� ¼ E½~y� and R
ðxÞ ¼ minfx;E½~y� þ d1g. This result, as in Proposition 1,

demonstrates that the straight deductible insurance with deductible E½~y� þ d1 would be

optimal. Additionally, for example, if ~x and ~y are positively correlated, then E½~yjx� > E½~y�
for relatively large values of x. In this case, the deductible would increase to

R̂ðxÞ ¼ E½~yjx� þ d1 since the conditional stochastic initial income E½~yjx� can be used to

offset the loss x. Conversely, the deductible would decrease when E½~yjx�BE½~y� for

relatively small values of x.

B. Negative exponential utility function

A negative exponential utility function is defined by UðW Þ ¼ �1
c expf�cWg; c > 0.

Consequently, the corresponding marginal utility function is

U 0ðWÞ ¼ expf�cWg; c > 0 (12)

Substituting Equation (12) into Equation (8) produces

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
E½expf�c½~y� P � R̂ðxÞ�gjx� ¼ c

�
(13)

Optimal insurance contract 9127
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Equation (13) can be rewritten as

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ �c�1 logfE½expf�c~ygjx�g þ d2

d2 ¼ �P þ c�1 log c

8<
: (14)

For the negative exponential utility, the marginal utility is also exponential, shown on

Equation (12). Incorporating this fact into Equation (8) yields that the optimal insurance

depends on conditional expectation E½expf�c~ygjx�. Actually, Equation (11) is similar to

Equation (14) if ~y and R̂ðxÞ are substituted by expf�c~yg and expf�cR̂ðxÞg, respectively.

Hence, the intuition of the design of optimal insurance for negative exponential utility is

similar to that for quadratic utility.

4. Mean-variance utility framework

Suppose that the insured has a mean-variance utility function. Thus, the insured would

prefer the expected wealth with minimum variance, given the same expected wealth.

Conversely, given the same variance, the insured prefers the maximum expected wealth.

The optimality problem of the insured is to choose a decision bundle (a, P, R(x)) to

achieve a mean-variance efficiency. Mathematically,

Minimize
a;P
0;0�RðxÞ�x

r2
w ¼ Var½ ~W � ¼ Var½~yþ aT~z� P � Rð~xÞ� (15)

subject to P ¼ ð1þ lÞE½Ið~xÞ� ¼ ð1þ lÞE½~x� Rð~xÞ� (15a)

E½ ~W � ¼ E½~yþ aT~z� P � Rð~xÞ� ¼ lw (15b)

As in the previous section, we do not consider the portfolio decision in this section. Thus,

taking a � 0, Equation (15) is reduced to

Minimize
P
0;0�RðxÞ�x

r2
w ¼ Var½ ~W � ¼ Var½~y� P � Rð~xÞ� (16)

subject to P ¼ ð1þ lÞE½Ið~xÞ� ¼ ð1þ lÞE½~x� Rð~xÞ� (16a)

E½ ~W � ¼ E½~y� P � Rð~xÞ� ¼ lw (16b)

Equation (16) actually is the mean-variance frontier problem suggested by Markowitz

(1952), demonstrating that the insured should choose an optimal couple ðP
;R
ðxÞÞ for

minimizing r2
w, given E½ ~W � ¼ lw. Based on Equations (16a) and (16b),

E½Rð~xÞ� ¼ l�1½ð1þ lÞlx � ly þ lw� ¼ lR

P ¼ l�1ð1þ lÞð�lx þ ly � lwÞ

�
(17)

where lx ¼ E½~x�, ly ¼ E½~y�, and lR ¼ E½Rð~xÞ�. This equation suggests that both mR and

P are known constants once mw is given. Using Equation (17), the optimality problem in

Equation (16) is simplified as

Minimize
0�RðxÞ�x

r2
w ¼ r2

y � 2E½ð~y� lyÞðRð~xÞ � lRÞ� þ E½ðRð~xÞ � lRÞ
2� (18)

10 H.-H. Huang et al.128
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where r2
y ¼ Var½~y�. Using the iterated expectation rule, Equation (18) is rewritten as

Minimize
0�RðxÞ�x

r2
w ¼ r2

y � 2E½ðE½~yjx� � lyÞðRðxÞ � lRÞ� þ E½ðRð~xÞ � lRÞ
2� (19)

Since E½~yjx� is a function of x, Equation (19) can be presented as

Minimize
0�RðxÞ�x

r2
w ¼

ð1
0

r2
y � 2½ðE½~yjx� � lyÞðRðxÞ � lRÞ� þ ðRðxÞ � lRÞ

2
� �

f ðxÞdx (20)

Equation (20) is an optimal control problem; the corresponding Hamiltonian is

Minimize
0RðxÞx

H ¼ r2
y � 2½ðE½~yjx� � lyÞðRðxÞ � lRÞ� þ ðRðxÞ � lRÞ

2
� �

f ðxÞ (21)

Solving Equation (21), the following proposition is obtained.

PROPOSITION 3: The optimal retained loss schedule in Equation (16) is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ E½~yjx� þ lR � ly

lR ¼ l�1½ð1þ lÞlx � ly þ lw�

8<
: for all x (22)

Proof. See Appendix 4.

Proposition 3 reveals that R̂ðxÞ ¼ lR and R
ðxÞ ¼ minfx; lRgwhen ~y is independent of ~x,

implying that the optimal contract is deductible insurance with a deductible mR. Thus, even

with existing background risk, deductible insurance is mean-variance efficient as long as the

background risk does not depend on insurable loss. Without taking background risk into

account, Gollier & Schlesinger (1996) show that any feasible insurance contract would be

dominated by a deductible insurance policy, according to the second-order stochastic

dominance criterion. Since second-degree stochastic dominance implies mean-variance

efficiency, the Proposition 3 result can be utilized to supplement the argument of Gollier &

Schlesinger (1996), in which only existing insurable loss is considered.

Comparing Equations (11) and (22), we find that the optimal insurance contractual

form for the mean-variance utility framework resembles that for the quadratic utility

function. This result is not surprising, since the expected utility for the quadratic utility

function depends on only the first two moments (mean and variance); that is,

E½ ~W � b
2

~W 2� ¼ lw � b
2
½l2

w þ r2
w�.

5. Further analytical results

This section discusses further analytical results for the optimal insurance contract. In

Subsection 5.1, we take into account the portfolio decision in financial markets. In the

next subsection, we attempt to obtain a more explicit solution by assuming that the

random vector ½~y~z�T given ~x ¼ x follows a multivariate normal distribution. In the final

subsection, the optimal insurance premium and investment amount are determined.

Optimal insurance contract 11129
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5.1. Portfolio problem

Assume that the insured is able to invest his/her funds on assets in the financial markets.

The derivation of R
ðxÞ given a and P is similar to that in Sections 3 and 4. Propositions 2

and 3 can then be easily extended to Propositions 4 and 5 as follows.

PROPOSITION 4: The optimal retained loss schedule in Equation (3) is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
E½U 0f~yþ aT~z� P � R̂ð~xÞgjx� ¼ cðconstantÞ

�
for all x (23)

PROPOSITION 5: The optimal retained loss schedule in Equation (15)

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ E½~yþ aT~zjx� þ lR � ly

lR ¼ l�1½ð1þ lÞlx � ly � aTlz þ lw�

8<
: for all x (24)

where lz ¼ E½~z� represents the expectation of the vector ~z.

Since investment risk is, in general, uninsurable, it can be viewed as one source of

background risks. The optimal contractual form in the portfolio problem is similar to that

without considering this problem. Propositions 2 and 3, in fact, can be extended to

Propositions 4 and 5. In essence, the intuition for Propositions 4 and 5 is analogous to

Propositions 2 and 3.

Particularly, if the insured has a quadratic utility function, referring to Equations (11)

and (23), the optimal retained loss schedule is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ E½~yþ aT~zjx� þ d1

d1 ¼ �P þ ðc� 1Þ=b

8<
: (25)

Additionally, if the insured has a negative exponential utility function, referring to

Equations (14) and (23), the optimal retained loss schedule is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ �c�1 logfE½expf�cð~yþ aT~zÞgjx�g þ d2

d2 ¼ �P þ c�1 log c

8<
: (26)

In addition to deterministic terms, the stochastic terms (depending on ~x) of R̂ðxÞ are

the same as E½~yþ aT~zjx� in Equations (24) and (25). Based on Equations (11), (22), and

(25), the optimal insurance contractual form with background risk for the quadratic

utility is also similar to that for the mean-variance utility, no matter what the portfolio

problem is considered.
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5.2. Multivariate normal distribution

Assumes that random vector ½~y ~z�T given ~x ¼ x obeys a multivariate normal distribution.

Mathematically,

~y
~z

� 	
jx �N

lyjx
lzjx

� 	
;

r2
yjx Ryzjx

Rzyjx Rzzjx

� 	
 �
(27)

According to Greene (1997, Chapter 3), the conditional expectation vector and

conditional variance matrix are defined by

lyjx ¼ ly þ ðrxy=r
2
xÞðx� lxÞ ¼ ly þ qðry=rxÞðx� lxÞ (28)

lzjx ¼ lz þ ðRzx=r
2
xÞðx� lxÞ (29)

r2
yjx Ryzjx

Rzyjx Rzzjx

� 	
¼ r2

y Ryz

Rzy Rzz

� 	
� rxy=r

2
x

Rzx=r
2
x

� 	
rxy Rxz

� 

(30)

where r2
x ¼ Var½~x�, r2

y ¼ Var½~y�, rxy ¼ Cov½~x; ~y� ¼ qrxry, lz ¼ E½~z�, Rzz ¼ Var½~z�,
Rxz ¼ Cov½~x;~z� ¼ RT

zx, and Ryz ¼ Cov½~y;~z� ¼ RT
zy.

Assume that the insured has a quadratic utility. Substituting Equations (28) and (29)

into expression (25), it yields

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ ðrxy=r

2
x þ aTRzxÞxþ d
1

d
1 ¼ �P þ ðc� 1Þ=b� lxðrxy þ aTRzxÞ=r2
x þ ly þ aTlz

8<
: (31)

If the insured has a negative exponential utility, the moment generating function can be

utilized to solve Equation (26). Assume that any two random vectors ~x1 and ~x2 are

normally distributed, the joint moment generating function is then

E½expftT
1 ~x1 þ tT

2 ~x2g� ¼ expftT
1 l1 þ tT

2 l2 þ 1
2
½tT

1 R11t1 þ 2tT
1 R12t2 þ tT

2 R22t2g (32)

where l1 ¼ E½~x1�, l2 ¼ E½~x2�, R11 ¼ Varð~x1Þ, R22 ¼ Varð~x2Þ, R12 ¼ Covð~x1; ~x2Þ, t1 and t2

are some vectors of deterministic numbers. From Equations (27) and (32),

E½expf�cð~yþ aT~zÞgjx� ¼ expf�c½lyjx þ aTlzjx þ �c
2
ðr2

yjx þ 2aTRzyjx þ aTRzzjxaÞ�g (33)

Incorporating Equations (14), (28), (29), and (33) yields

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ ðrxy=r

2
x þ aTRzxÞxþ d
2

d
2 ¼ �P þ c�1 log c� lxðrxy þ aTRzxÞ=r2
x

�c
2
ðr2

yjx þ 2aTRzyjx þ aTRzzjxaÞ þ aTlz þ ly

8>><
>>:

(34)

If the insured has a mean-variance utility, substituting Equations (28) and (29) into

Equation (24) generates

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ ðrxy=r

2
x þ aTRzxÞxþ lR � ly

lR ¼ l�1½ð1þ lÞlx � ly � aTlz þ lw�

8<
: (35)

Optimal insurance contract 13131
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Comparing Equations (31), (34), and (35), the optimal insurance contracts for quadratic

and negative exponential utility functions need not to be mean-variance efficient, even

when a conditional normal distribution is assumed. Additionally, to obtain more explicit

result, the portfolio problem is now excluded from our model. Accordingly, substituting

a�0 into Equations (31), (34), and (35) yields the following three expressions.

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ qðry=rxÞðx� lxÞ þ d
1
d
1 ¼ ly þ ðc� 1Þ=b� P

8<
: for quadratic utility (36)

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ qðry=rxÞðx� lxÞ þ d
2
d
2 ¼ ly þ c�1 log c� c

2
r2

yjx � P

8<
: for negative exponential utility (37)

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ qðry=rxÞðx� lxÞ� þ d
3
d
3 ¼ l�1½ð1þ lÞlx � ly þ lw�

8<
: for mean� variance utility (38)

Incorporating Equations (36), (37) and (38) yields the following proposition.

PROPOSITION 6: Suppose that the insurance premium equals expected indemnity plus a

proportional loading and that the initial wealth of the insured obeys a conditional normal

distribution given insurable loss. The optimal retained loss schedule would then be

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg
R̂ðxÞ ¼ qðry=rxÞðx� lxÞ þ d


�
(39)

for the insured with quadratic, negative exponential, or mean-variance utility functions,

where r is the correlation coefficient between stochastic initial wealth and insurable loss, and

d
 is a constant and generally varies for different utility functions.

Proposition 6 is discussed as follows. Assume that d̂ � d
 � qlxðry=rxÞ > 0, hence

R̂ðxÞ ¼ ðqry=rxÞxþ d̂. When r�0, i.e., the stochastic initial wealth is positively

correlated with the insurable loss, the stochastic wealth may offset the losses, hence

providing an implicit insurance or natural hedge against losses. A positive r raises the

sense of homemade insurance, as suggested by Mayers & Smith (1983). If 0Bqry=rxB1,

then the optimal insurance contract is a proportional coinsurance above a straight

deductible, similar to the result in Vercammen (2001), where the coinsurance proportion

equals 1� qry=rx and the deductible equals d̂. In the case of rB 0, the optimal insurance

contract displays a disappearing deductible, similar to the results in Gollier (1996) and

Mahul (2000), where the disappearing deductible equals d̂rx=ð�qryÞ. In this case, the

insured would purchase more insurance to cover this risk arising from diminishing wealth.

Now assume that d̂B0, then R̂ðxÞ can be positive for sufficiently large x if r� 0, while

R̂ðxÞ is always negative for all x if rB0. Accordingly, when d̂B0 and rB0, the optimal

14 H.-H. Huang et al.132
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insurance contract would be a full insurance. The restriction I (x)5x is most likely to

bind in the rB0 case, rather than in the r�0 case.9

Assume that the insurer is risk neutral and the insured is risk averse. In the absence of

background risk, Arrow (1963) and Raviv (1979) show the optimal insurance is a deductible

contract and Gollier & Schlesinger (1996) further suggest that this deductible insurance

dominates all other contractual forms in the sense of second-order stochastic dominance.

Accordingly, this deductible insurance would also be mean-variance efficient, since second-

order stochastic dominance implies mean-variance efficient. However, in the presence of

background risk, the deductible insurance need not to be of second-order stochastic

dominance and mean-variance efficiency, even though the normality is assumed. The

intuition can be obtained using the following simple case: Suppose ~W � Nðl; r2Þ.
The objective function for the mean-variance framework is E½ ~W � � kVarð ~W Þ ¼ l� kr2.

The objective function for quadratic utility is E½ ~W � b
2

~W 2� ¼ l� b
2
ðl2 þ r2Þ. The objective

function for negative exponential utility is E½�1
c expf�c ~Wg� ¼ �1

c expf�clþ 1
2
c2r2g. The

objective functions for quadratic and negative exponential utilities are not the same as the

mean-variance framework. As a consequence, the derived optimal insurances for quadratic

and negative exponential utilities need not to be mean-variance efficient under an

assumption of normality.

5.3. Insurance premium and investment amount

After R
ðxÞ is obtained, the next step is to determine a* and P*, the optimal investment

amount and insurance premium. From Proposition 4, it follows that in the expected

utility framework R
ðxÞ depends on a and P. If Rða;P; xÞ is the solution R
ðxÞ, then

Equation (3) can be rewritten as

Maximize
a;P

E½Uð ~WÞ� ¼ E½Uf~yþ aT~z� P � Rða;P; ~xÞg� (40)

In the mean-variance framework, Equations (17) and (24) implies that both mR and P are

known constants once mw and a are given. That is, P
 ¼ Pða; lwÞ and R
ðxÞ ¼ Rða; lw; xÞ.
Substituting P
 ¼ Pða; lwÞ and R
ðxÞ ¼ Rða; lw; xÞinto Equation (15) yields

Minimize
a

r2
w ¼ Var½~yþ aT~z� Pða; lwÞ � Rða; lw; ~xÞ�

¼ Var½~yþ aT~z� Rða; lw; ~xÞ�

where Pða; lwÞ is deterministic and, hence, does not affect the variance.

Unlike Equations (3) and (15), Equations (40) and (41) are common calculus problems

rather than optimal control problems. Unless the utility function Uð�Þ and the joint

9In fact, both the cases of positive and negative correlations are commonly seen in the real world. For example, a

gas station is exposed to the risk of receiving counterfeit money from customers. However, the more revenue it has

(the more cash it probably receives), the more likely it will receive counterfeit money. In this case of positive

correlation, the gas station does not need to purchase full insurance against this risk. However, for the negative

correlation case, the insured would buy full insurance. For instance, a department store faces fire risk. If a fire

does occurs, in addition to property losses, some uninsurable losses may also be incurred. Thus, the department

store will attempt to purchase over insurance. If the purchase of over insurance is not allowed by the regulations, it

will buy full insurance.
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probability distribution of ½~x; ~y;~z� obey particular specifications, Equation (40) does not

have an explicit solution for a* and P*. Similarly, unless the joint probability distribution

of ½~x; ~y;~z� is particularly specified, a* in Equation (38) cannot be solved explicitly.

Nevertheless, for Equations (40) and (41), the numerical solutions are not difficult to

obtain in most cases.

6. Conclusion

This study developed endogenously an optimal insurance contract under the situation in

which background wealth depends on insurable loss. It was assumed that the insured is

risk averse and not satiable and that the insurance premium equals expected indemnity

plus a proportional loading. With these assumptions, the following results are obtained.

First, when the background wealth of the insured obeys a conditional normal

distribution given insurable loss, the optimal insurance contract may be a proportional

coinsurance above a straight deductible for the insured with a quadratic, negative

exponential, or mean-variance utility function. Second, the contractual form concerning

the optimal insurance for an insured with a quadratic utility function resembles that for

an insured with a mean-variance utility function. The optimal retained schedule is a

function of conditional expected value of background wealth given insurable loss. Third,

the optimal insurance contracts for quadratic and negative exponential utility functions

need not to be mean-variance efficient, even when a conditional normal distribution is

assumed. Moreover, when background wealth is independent of insurable loss, it is shown

that a deductible insurance is optimal among other feasible insurance contracts under the

expected utility framework. In this situation, the deductible insurance is mean-variance

efficient. In addition, when the portfolio investment problem is considered, we find that

the design of an optimal insurance policy remains almost unchanged.
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Appendix 1

Proof of Proposition 1:

Let ~x, ~y, P, Rð~xÞ be the insurable loss, stochastic initial wealth, insurance premium, and

retained loss schedule. The final wealth of the insured is ~W ¼ ~y� P � Rð~xÞ. The utility

function Uð ~WÞ is assumed to be U 0ð ~WÞ > 0 > U 00ð ~W Þ. Additionally, the insurance

premium is P ¼ GfE½~x� Rð~xÞ�g, where Gf�g is a strictly increasing function.

Accordingly, Proposition 1 claims that the optimal retained loss schedule is

R
ðxÞ ¼ minfx; d
g for all x (A1)
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where d
 is the solution of

P ¼ GfE½~x�minf~x; d
g�g (A2)

That is, for any retained loss schedule R (x) such that

P ¼ GfE½~x� Rð~xÞ�g ¼ GfE½~x� R
ð~xÞ�g (A3)

One must claim that

E½Uð~y� P � Rð~xÞÞ� � E½Uð~y� P � R
ð~xÞÞ� for all RðxÞ (A4)

For arbitrarily real values a and b, by Taylor’s Theorem, we have

UðbÞ ¼ UðaÞ þ ðb� aÞU 0ðaÞ þ 1
2
ðb� aÞ2U 00ðcÞ (A5a)

for some value c between a and b. Incorporating the fact U 00ð�ÞB0 into Equation (A5a)

yields

UðbÞ �UðaÞðb� aÞU 0ðaÞ (A5b)

Substituting a and b with a ¼ y� P � R
ðxÞ and b ¼ y� P � RðxÞ into Equation (A5b),

we obtain

Uðy�P � RðxÞÞ �Uðy� P �R
ðxÞÞ½R
ðxÞ�RðxÞ�U 0ðy� P� R
ðxÞÞ for all y and x (A5)

Additionally, we claim

½R
ðxÞ � RðxÞ�U 0ðy� P � R
ðxÞÞ � ½R
ðxÞ � RðxÞ�U 0ðy� P � d
Þ (A6)

To confirm Equation (A6), two cases, x 
 d
 and xBd
, are considered.

Case 1: x 
 d


If xd
, then R
ðxÞ ¼ d
 and the left-hand side equals the right-hand side for Equation

(A6).

Case 2. xBd


If xBd
, then R
ðxÞ ¼ x 
 RðxÞ. This implies R
ðxÞ � RðxÞ 
 0 and R
ðxÞBd
. Since

U 00ð�ÞB0, R
ðxÞBd
 implies

U 0ðy� P � R
ðxÞÞBU 0ðy� P � d
Þ (A7)

Combining Equation (A7) with R
ðxÞ � RðxÞ 
 0 yields the inequality of Equation (A6).

Therefore, Equation (A6) is verified for all cases of x. Combining Equations (A5) and

(A6) produces

Uðy� P � RðxÞÞ �Uðy� P � R
ðxÞÞ � ½R
ðxÞ � RðxÞ�U 0ðy� P � d
Þ (A8)

Taking expectations of Equation (A8) generates

E½Uð~y� P � Rð~xÞÞ� � E½Uð~y� P � R
ð~xÞÞ� � E½ðRð~xÞ � R
ð~xÞÞU 0ð~y� P � d
Þ� (A9)

Since ~y and ~x are independent,

E½ðRð~xÞ � R
ð~xÞÞU 0ð~y� P � d
Þ� ¼ E½ðRð~xÞ � R
ð~xÞÞ�E½U 0ð~y� P � d
Þ� (A10)
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With the assumption that Gf�g is a strictly increasing function, incorporating Equation

(A3) obtains

E½~x� � E½Rð~xÞ� ¼ E½~x� Rð~xÞ� ¼ E½~x� R
ð~xÞ� ¼ E½~x� � E½R
ð~xÞ� (A11)

Simplifying Equation (A11) yields

E½Rð~xÞ� ¼ E½R
ð~xÞ� (A12)

Combining Equations (A9), (A10) and (A12) yields the result of Equation (A4). Q.E.D.

Appendix 2

Proof of Corollary 1:

First, Equation (4a) implies that P is a monotonic and increasing function of expected

indemnity. Second, ~y and P in Equation (4) may be considered as the stochastic initial

wealth and the insurance premium for Proposition 1. These are sufficient conditions for

Equation (5), based on Proposition 1. Additionally, incorporating Equations (5) and (4a)

generates Equation (5a). Q.E.D.

Appendix 3

Proof of Proposition 2:

The problem is to choose an optimal R
ðxÞ to maximize Equation (7), i.e.,

Maximize
0�RðxÞ�x

H ¼ E½Uf~y� P � Rð~xÞgjx� þ kfP � ð1þ lÞ½x� RðxÞ�gð Þf ðxÞ (A13)

The first order derivative is10

@H=@RðxÞ ¼ �E½U 0f~y� P � Rð~xÞgjx� þ kð1þ lÞð Þf ðxÞ (A14)

The second order derivative is

@2H=@RðxÞ2 ¼ E½U 00f~y� P � Rð~xÞgjx�f ðxÞB0 (A15)

Referring to Equation (A14), R̂ðxÞ is assumed to be the solution of

�E½U 0f~y� P � Rð~xÞgjx� þ kð1þ lÞ ¼ 0 (A16)

The above equation can be rewritten as

E½U 0f~y� P � R̂ð~xÞgjx� ¼ kð1þ lÞ ¼ c (A17)

where the constant c ¼ k ð1þ lÞ is independent of x. From Equations (A14), (A15), and

(A16), H is globally concave in R(x) and has a maximum Hmax at RðxÞ ¼ R̂ðxÞ. Figure 1

presents the feature of the Hamiltonian H.

10The Hamiltonian problem here is to find an optimal R(x) for a fixed loss x. Since the loss x is fixed, E[ỹ | x] is

accordingly fixed. Moreover, since R(x) is only a posterior claim, E[ỹ | x] is not affected by R(x), implying

@E[ỹ|x] / @R(x)�0 in this case. Therefore, Equation (A14) does not include the term @E[ỹ | x] / @R(x).
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Figure 1 shows that @H=@RðxÞ > 0 if RðxÞBR̂ðxÞ, and @H=@RðxÞB0 if RðxÞ > R̂ðxÞ.
Combining the result with the constraint of 0 � RðxÞx, the optimal retained schedule is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg (A18)

Incorporating Equations (A17) and (A18) yields Equation (8). Q.E.D.

Appendix 4

Proof of Proposition 3:

For convenience, Equation (21) is rewritten as follows.

Minimize
0�RðxÞ�

H ¼ r2
y � 2½ðE½~yjx� � lyÞðRðxÞ � lRÞ� þ ðRðxÞ � lRÞ

2
� �

f ðxÞ (A19)

The first order derivative is11

@H=@RðxÞ ¼ �2½ðE½~yjx� � lyÞ� þ 2ðRðxÞ � lRÞ
� �

f ðxÞ (A20)

The second order derivative is

@2H=@RðxÞ2 ¼ 2f ðxÞ > 0 (A21)

Referring to Equation (A20), R̂ðxÞ is assumed to be the solution of

�2½ðE½~yjx� � lyÞ� þ 2ðRðxÞ � lRÞ� ¼ 0 (A22)

Equation (A22) implies that

R̂ðxÞ ¼ E½~yjx� þ lR � ly (A23)

From Equations (A20�A23), H is globally convex in R(x) and has a minimum Hmin at

RðxÞ ¼ R̂ðxÞ. Figure 2 depicts the characteristic of the Hamiltonian H.

11As explained in the previous footnote, @E½~yjx�=@RðxÞ ¼ 0 in this case.

H

R(x)
R(x)

Hmax

Figure 1. The feature of the Hamiltonian H in Equation (7).
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The above figure shows that @H=@RðxÞB0 if RðxÞBR̂ðxÞ, and @H=@RðxÞ > 0 if

RðxÞ > R̂ðxÞ. Combining the result with the constraint of 0 � RðxÞ � x, the optimal

retained schedule is

R
ðxÞ ¼ minfx;maxfR̂ðxÞ; 0gg (A24)

Incorporating Equations (17), (A23), and (A24) yields Equation (22). Q.E.D.

R(x)
R(x)

H

Hmin

Figure 2. The feature of the Hamiltonian H in Equation (21).
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