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Abstract Overadjustment to processes may result in shifts in
process mean, ultimately affecting the quality of products. An
economic model is developed for the joint economic design of
individual Xand cause-selecting control charts to control both
means of the dependent processes. The objective is to determine
the design parameters of the proposed control charts that mini-
mize the total quality control cost. A Markov chain approach is
proposed to derive the economic- adjustment model. Application
of the model is demonstrated through a numerical example.

Keywords Adjustment · Dependent processes control · Markov
chain · Renewal reward processes · Special causes

1 Introduction

Control charts are an important tool of statistical quality control.
These charts are used to monitor and maintain current control of
a process. Deming [2] explains that a production worker can mis-
takenly overadjust or underadjust a process. He further explains
that the control chart provides ‘a rational and economic guide
to minimize loss from both mistakes’. Economic design of con-
trol charts is first proposed by Duncan [3]. The pioneering work
of Duncan is then extended by others. A review of the literature
is available in Montgomery [6], Vance [9], or Ho and Case [4].
Economic design optimizes the model by considering the cost of
underadjustment along with other costs; however, it assumes that
the search for a special cause is perfect.

A common problem in statistical process control is process
overadjustment. Information about the state of the process is
available only through sampling. When a control chart indicates
that the process is out of control, it requires adjustment. Some-
times the process may be adjusted unnecessarily, when a false
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alarm occurs. Saniga [8] describes that economic design of con-
trol charts does not consider statistical properties when selecting
the design parameters for a control chart. Woodall [12] noted
that the effect of overadjustment is an increase in variability. This
increase in variability and resultant loss of quality can be quite
significant. He describes the probability of Type I error in an
economic design as being much higher than that in a statistical
design. This results in greater false alarm frequency, which leads
to overadjustment, and ultimately an increase in the variability
of the quality characteristic. Collani et al [1] first solved this
problem through an economic adjustment model for the X con-
trol chart with a single special cause that considers the effects of
process overadjustment and underadjustment. Their model deter-
mines the design parameters of the X control chart that maximize
the profitability of the process, or equivalently, minimize the cost
of overadjustment and underadjustment. Yang and Rahim [13]
propose a Makovian chain approach to derive the economic ad-
justment model for the X and S control charts that considers the
effects of process mean and variance overadjustment and under-
adjustment. However, they only solve the problem for a single
process.

Today, many industrial products are produced by several
dependent Processes, not just one process. Consequently, it is
not appropriate to monitor these processes with a control chart
for each individual process, what is needed is an appropriate
method for controlling the processes. Zhang [14] proposes the
simple cause-selecting chart to monitor the second process of
the two dependent processes. Wade and Woodall [11] review
the basic principles of the cause-selecting chart for two depen-
dent processes and suggest a modification to the use of a simple
cause-selecting chart. They also examine the relationship be-
tween the simple cause-selecting chart and the multivariate T2

control chart. In their opinion, the simple cause-selecting control
chart has some advantages over the T2 control chart. However,
the process-control approach to effectively distinguish and mon-
itor the dependent processes for an overadjusted process mean
has not been addressed. This paper considers that the incom-
ing quality of the first process and the outgoing quality of the
second process can be affected by a special cause, resulting in
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shifts in the process mean due to overadjustment during oper-
ation. The individual X and cause-selecting control charts are
used to signal the special cause, which result in a shift of the
process mean. A Markovian chain approach is extended. The
proposed approach allows easier derivation of the expected cycle
time and the expected cycle cost than that of others. The paper
is organized as follows. In the next section, the economic ad-
justment model is derived using a Markov chain approach. An
optimization technique is used to determine the optimal design
parameters of the individual X and cause-selecting control charts
that minimize the cost of the production process. An example
is provided to illustrate an application of the individual X and
cause-selecting control charts. A brief summary concludes the
paper.

2 Economic-adjustment model

2.1 Problem statement

In a production system, suppose that there are two dependent
processes, which may have a failure mechanism. If the processes
experience a failure mechanism, it goes out of control; otherwise,
it is in control. The failure mechanism may occur only in the
first process and shifts the mean of the quality variable (X) or
the second process and shifts the mean of the quality variable
(Y ). The in-control process becomes out of control if it is over-
adjusted. The overadjustment means the operator adjusted the
process when adjustment was unnecessary. The out-of-control
process keeps out of control if it is underadjusted. The under-
adjustment means the operator did not adjust the process when
adjustment was necessary. The quality variable Y is influenced
by the quality variable X because the processes are dependent.
How should we distinguish and detect the shifts of process mean
on the two dependent processes? In this analysis, individual X
and cause-selecting control charts are used to signal the need
for adjustment of the first and the second processes, respectively.
The problem here is: What is the economic dependent processes
control policy? That is, what are the control charts and how does
the overadjustment affect the performance of the processes con-
trol? Specifically, a sample of size n units of output is taken every
hour (h), and the process is adjusted if its sample mean falls out-
side the control limits of its control chart. The objectives are to
derive the economic adjustment model and to determine the pa-
rameters n, h, k1 (control-limit coefficients of the individual X
control chart) and k2 (upper control-limit coefficient of cause-
selecting control chart) so that the average long-term cost of the
processes is minimized and the economic adjustment individual
X and cause-selecting control charts are proposed.

2.2 Description of the production process

When random samples of size one are taken from the second
process at every sampling time interval h, we get pairs of obser-
vations (x, y). The model relating the two variables (X, Y) can
take many forms. Because Y is influenced by X, we take one of

the most useful models, the simple linear regression model. We
let

Yi |Xi = a0 +a1 Xi + εi, i = 1, 2, 3, . . . , n,

where a0 and a1 are constants, and εi is a random error, εi ∼
NID(0, σ2

ε ).
However, the model does not need to be linear; it can also be

applied to a nonlinear model. To monitor the two dependent pro-
cesses effectively, two control charts are constructed to control
the first process and the second process, respectively. To moni-
tor the first process, the individual X control chart is set up based
on the in-control distribution of X. To monitor the second pro-
cess, the specific quality of the second process can be specified
by adjusting the effect of X on Y ; that is, the specific quality

is presented by the cause-selecting values, ei = Yi |Xi −
∧
Yi |Xi .

The cause-selecting control chart is set up based on the in-control
distribution of cause-selecting values.

Assume that, when the first process and the second process
are all in control, X ∼ N(µX , σ2

X) and ∼ N(0, σ2
e ). When a spe-

cial cause SC occurs, there may be a shift in the distribution of
X to X ∼ N(µX + δ1σX , σ2

X) with probability w or a shift in the
distribution of ∼ N(δ2σe, σ

2
e ) with probability 1−w, δ1, δ2 �= 0.

The time until occurrence of a special cause is assumed to be ex-
ponentially distributed with a mean of 1/λ. It is also assumed
that the processes are not self correcting and the time to sample
and plot x is negligible.

An adjustment to the processes is performed if the sampled
x value or/and cause-selecting value fall outside the control lim-
its of the X or/and cause-selecting control charts, respectively,
LCLX , UCLX , LCLe and UCLe, where

LCLX = µX − k1σX

UCLX = µX + k1σX

LCLe = k2σe

UCLe = −k2σe

If the parameters µX , σX and σe are unknown, we take the
in-control x (sample mean), MRX (average moving range of
X observations)/d2, and MRe (average moving range of cause-
selecting values)/d2 to be the estimates of µX , σX and σe, re-
spectively, where d2 is the factor for center line of the range
chart.

The processes correct adjustment and overadjustment can
take one of the forms following the alarm from the X chart or the
cause-selecting chart:

• When the shift results in X ∼ N(µX + δ1σX , σ2
X) and only X

chart has an alarm, special cause is adjusted to let the mean
of X be µX .

• When the shift results in e ∼ N(δ2σe, σ
2
e ) and cause-selecting

chart has an alarm, special cause is adjusted to let the mean of
e be 0.

• When the processes are in control but only the X chart has
an alarm, the first process is overadjusted to let X ∼ N(µX +
δ1σX , σ2

X).
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• When the processes are in control but only the cause-
selecting chart has an alarm, the second process is overad-
justed to let e ∼ N(δ2σe, σ

2
e ).

• When the processes are in control but both X and cause-
selecting charts have alarms, the first process is overadjusted
to let X ∼ N(µX + δ1σX , σ2

X) with probability w and the sec-
ond process is overadjusted to let e ∼ N(δ2σe, σ

2
e ) with prob-

ability 1−w because a special cause can only influence one
of the processes.

• When the first process is out of control but only the cause-
selecting chart has an alarm, SC is adjusted, the second
process is overadjusted to let e ∼ N(δ2σe, σ

2
e ) and the first

process is correct adjusted to let X ∼ N(µX , σ2
X ).

• When the second process is out of control but only the X
chart has an alarm, special cause is adjusted, the first process
is overadjusted to let X ∼ N(µX + δ1σX , σ2

X) and the second
process is correct adjusted to let e ∼ N(0, σ2

e ).
• When only the first process is out of control but X and The

cause-selecting charts have alarms, the first process is cor-
rect adjusted to let X ∼ N(µX , σ2

X) and the second process
is overadjusted to let e ∼ N(δ2σe, σ

2
e ); similar to when only

the second process is out of control but X and cause-selecting
charts have alarms.

The decision rule can result in an overadjustment following
false alarm for either the first process or the second process or for
both together. It is assumed that a transition in the process from
in control to out of control during sampling is impossible. The
following notation is used.

2.3 Defining the probabilities of overadjustment and
underadjustment

αX : Probability that the first process is overadjusted when the
individual X control chart gives a false alarm, where

αX = 1− P(LCLX ≤ X ≤ UCLX |X ∼ N(µX , σ2
X))

= 2Φ(−k1),

and Φ(.) is the cumulative probability of a normal distribu-
tion.

αe : Probability that the second process is overadjusted when
cause-selecting control chart gives a false alarm, where

αe = 1− P(LCLe ≤ e ≤ UCLe|e ∼ N(0, σ2
e ))

= 2Φ(−k2).

α : Probability that either X or cause-selecting control chart in-
dicates an alarm, when both processes are in control, where

α = αX +αe −αXαe.

βX : Probability that the first process is underadjusted because it
is affected by a special cause, where

βX = P(LCLX ≤ X ≤ UCLX |X ∼ N(µX + δ1σX , σ2
X))

= Φ(k1 − δ1)−Φ(−k1 − δ1).

βe : Probability that the second process is underadjusted when it
is affected by a special cause, where

βe = P(LCLe ≤ X ≤ UCLe|e ∼ N(δ2σe, σ
2
e ))

= Φ(k2 − δ2)−Φ(−k2 − δ2).

2.4 Defining the terms associated with times and costs

Tf : expected time of overadjustment following a false alarm
Tsc: time before the special cause occurs in the

process, Tsc ∼ exp(λi)

Tsr : expected time to search and repair the special cause
Cf : expected cost of overadjustment
C0: production cost per unit time when the process is in

control
C1: production cost per unit time when the process is affected

by a special cause
Csr : expected cost to search and repair a special cause
a: fixed cost per sample and test
b: cost per unit sampled and tested
τ : expected arrival time of the special cause, given that it

occurred in the first sampling interval, where

τ = 1−(1+λh)e−λh

λ−λe−λh (see Lorenzen and Vance [5])

2.5 Description of Markov chain

In order to use the Markov chain approach to derive the expected
cycle time (ET) and the expected cycle cost (EC), all possible
states at the end of each sampling and testing time must be ex-
amined. Depending on the state of the system, the transition
probabilities and transition costs can be computed. There are 12
possible states at the end of every sampling and testing time, and
these states are defined as as in Table 1.

These states can be classified into two types of states: tran-
sient states and absorbing states. States 6 and 11 are absorbing
states, the others are transient states. Transition probability from
state i to state j in time interval h is described in Appendix 1.

Table 1. Definition for each state

State SC occurs X chart Cause- Process overadjustment
and which signal? selecting and which process?
process? signal?

1 No No No No —
2 No Yes No Yes I
3 No No Yes Yes II
4 No Yes Yes Yes I or II
5 Yes, X No No No —
6 Yes, X Yes No No —
7 Yes, X No Yes Yes II
8 Yes, X Yes Yes Yes II
9 Yes, CS No No No —
10 Yes, CS Yes No Yes I
11 Yes, CS No Yes No —
12 Yes, CS Yes Yes Yes I
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The transition probability matrix is denoted as P11 = [Pi, j ],
i, j = 1, 2, 3, 4, 5, 7, 8, 9, 10, 12; P12 = [Pi, j ], i = 1, 2, 3, 4,
5, 7, 8, 9, 10, 12, j = 6, 11; zero matrix 0 = [Pi, j ], Pi, j = 0 for
i = 6, 11, j = 1, 2 ,3, 4, 5, 7, 8, 9, 10, 12.

Identity matrix I = [Pi, j ], Pi, j = 1 for i, j = 6, 11, and matrix
P is the combination of submatrices P11, P12, I, and 0. That is

P =
[

P11 P12
0 I

]
.

The cycle time is the time from the start of the process in
control until an alarm is detected, repaired, and the process is
restarted, or equivalently, it is the time from transient state 1 to
reach state 6 or state 11. The state variable Yt (t = 0, h, 2h, . . . )
is a Markov chain on the state 1, 2, . . . 16 and so the Markov
property can be effectively used to find the expected cycle time.

2.6 Expected cycle time and cost

Let random variable Ti be the time until absorption from tran-
sient state i. Then, using the Markov property and conditioning
on the first step,

P(Ti = h + Tsr) = Pi, j where j = 6, 11, i �= j

P(Ti = h + Tf + Tj) = Pi, j where i �= 6, 11, j = 2, 3, 4 (1)

P(Ti = h + Tf + Tsr + Tj) = Pi, j

where i �= 6, 11, j = 7, 8, 10, 12

P(Ti = h + Tj) = Pi, j where i �= 6, 11, j = 1, 5, 9

Equation 1 can be expressed in matrix form,

M = h1+ P11 Msr1 + P11 M+ P12Msr2

So

M =h(I − P11)
−11+ (I − P11)

−1 P11 Msr1 +
(I − P11)

−1 P12 Msr2,

where M is a (10×1) vector, with the expected time up to ab-
sorption from transient state i, i �= 6, 11.

1 is a (10×1) vector, with elements 1,
Msr1i s a (10 × 1) vector, MT

sr1 = [0 Tf Tf Tf 0
Tf + Tsr Tf + Tsr 0 Tf + Tsr T f + Tsr],

Msr2 is a (2×1) vector, MT
sr2 = [Tsr Tsr ], P11 is defined as

above.
The expected cycle time is the first element of vector M, i.e.

M1 or E(T1).
Once the expected cycle time is obtained, the expected cycle

cost must be calculated, and the economic adjustment model can
be derived by taking the ratio of the expected cycle cost to the
expected cycle time.

The derivation of the expected cycle cost uses the Markov
property in a similar manner to that used for the expected cycle
time. Let Ci, j be the expected cumulative cost that is associ-
ated with transition from state i to j in time interval h; i, j =
1, 2, . . . 12. The calculation of Ci, j is illustrated in Appendix 2.

The transition cost matrices are denoted as C11 = [Ci, j ], i, j
= 1, 2, 3, 4, 5, 7, 8, 9, 10, 12; C12 = [Ci, j ], i = 1, 2, 3, 4, 5, 7, 8, 9,
10, 12, j = 6, 11; zero matrix 0 = [Ci, j ], Ci, j = 0 for i = 6, 11, j
= 1, 2, 3, 4, 5, 7, 8, 9, 10, 12; C22 = Csr I, I is the identity matrix
for i, j = 6, 11, and matrix C is the combination of submatrices
C11, C12, C22, and 0. That is

C =
[

C11 C12

0 C22

]
.

The cycle cost is the cumulative cost from the start of the pro-
cess, in control, until an alarm is detected, the process is repaired
and restarted, or equivalently, it is the cost from transient state 1
until it reaches an absorbing state.

Let random variable Ci be the cumulative cost up to ab-
sorption from transient state i, i = 1, 2, . . . , 10. Then using the
Markov property and conditioning on the first step,

P(Ci = Ci, j ) = Pi, j where j = 6, 11, i �= j

P(Ci = Ci, j +Cj ) = Pi, j where i, j �= 6, 11 (2)

Equation 2 can be expressed in matrix form as

U = P11 ∗C11 + P11U + P12 ∗C12,

where ∗ denotes the Hadamard product of the two matrices and
U is a (10× 1) vector with the expected cost up to absorption
from transient state i, i �= 6, 11.

So U = (I − P11)
−1W1, where W = [P11 ∗ C11 P12 ∗ C12],

and the first element of the vector, U1, is the expected cycle cost.

2.7 Determination of optimal design parameters

Applying the property of renewal reward processes (Ross [7]),
the objective function (L), the expected cost per unit time is
derived by taking the ratio of the expected cycle cost (U1)
to the expected cycle time (M1); L = U1/M1. The expected
long-term loss is the function of design parameters h, k1 and
k2; L(k1, k2, h). Hence, the optimal design parameters of the
economic-adjustment design of the individual X and cause-
selecting control charts can be determined by minimization of
the objective function or cost model, that is MinL(k1, k2, h).

It may be noted that the proposed approach can also be used
to derive the identical economic-adjustment model obtained by
Collani et al. [1] if there is no second process, the expected time
of overadjustment = 0, the expected time to search and repair
a special cause = 0, the expected cost of incorrect adjustment =
0, the expected cost to search and repair a special cause = 0, and
profit maximization is used, instead of cost minimization, in the
single special-cause economic adjustment model.

3 A numerical example

In this section, we give an example to illustrate how the proposed
method is used to solve a real process-control problem.
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Assume that a cotton yarn factory produces cotton yarn in
two dependent processes. The skein strength of the cotton yarn is
denoted by the quality variable Y , which is produced in the cur-
rent process. Yarn strength is the most important single index of
spinning quality. Good yarn strength not only increases the range
of usefulness of a given cotton but it indicates good spinning and
weaving performance. The fiber length of the cotton yarn is de-
noted by the quality variable X, which is produced in the first
process. The skein strength can be obtained from knowledge of
fiber length, so their relationship can be found by analysis history
data. When the process is in control, the average skein strength

given fiber length is expressed as model
∧

Y |X = 11+1.1X. The
distributions of X and e are illustrated as follows, when the first
and second processes are all in control:

X ∼ N(77.05, 52)

e ∼ N(0, 2.52)

In the production process, a machine could be out of control
in either the first process or the second process. Because the ma-
chines do not tend to deteriorate with time, it is of prime concern
in process control to be able to distinguish in which one of the
processes the out-of-control situation occurs. An out-of-control
situation occurring in the first process would cause only the mean
of the X distribution to change or result in shifts in the process
mean of X distribution due to overadjustment during operation.
An out-of-control situation in the second process would cause
only the mean of the e distribution to change or result in shifts
in the process mean of the e distribution due to overadjustment
during operation.

The individual X chart and cause-selecting chart that min-
imize cost of overadjustment and underadjustment are con-
structed to monitor the two processes effectively. To determine
the optimal design parameters of the individual X chart and
cause-selecting chart, the process and cost parameters are esti-
mated as follows:

δ1 = 2, δ2 = 2.5, λ1 = 0.05, a = $0.5, b = $0.1, Cf = $10,
Csr = $35, Tf = 0.1(hours), Tsr = 0.4(hours), C0 = $5, C1 =
$20, w = 0.5.

The algorithm used to obtain the approximate optimum
values (h∗, k1∗, k2∗) of the design values (h, k1, k2), with con-
straints 0 < k1, k2 < 6, 0 < h ≤ 8, is a simple grid-search method
yielding the following result: h∗ = 0.9, k1∗ = 1.2, k2∗ = 2.6.

That is, the upper and lower control limits of the economic
X chart should be set at 88.05 and 71.05, respectively. The up-
per control limit of the cause-selecting chart should be set at 6.5;
the lower control limit of the cause-selecting chart should be set
at −6.5. To monitor the process states, every 0.9 hours, a sample
of size 1 is taken and tested.

There are four possible results for the process. These out-
comes with the associated actions are displayed in Table 2. Com-
bination 1 means that the process is in control, so the process
continues and the next sample is taken after 0.9 hours. Com-
bination 2 means that the first process should be stopped and
the special cause is adjusted. Combination 3 means that the
second process should be stopped and the special cause is ad-

Table 2. Decision rules

Combi- X chart Cause-selecting Which process
nations signal? chart signal? stop?

1 No No No
2 Yes No First, adjust special cause
3 No Yes Second, adjust special cause
4 Yes Yes First, adjust special cause

or
Second, adjust special cause

justed. Combination 4 means that either the first process or
the second process should be stopped and the special cause is
adjusted.

4 Summary

A model of two dependent production processes is proposed, the
quality of which can be affected by the occurrence of a special
cause, which results in a shift in the mean of the first process or
the second process. A shift in either may also result from over-
adjustment of the process when the process is in control. Deming
[2] discusses this common situation for a single process in prac-
tice. The proposed model is an improvement to the economic
design with a single process because it considers the effect of
process overadjustment on two dependent processes. Using the
proposed design, the processes may be distinguished and ad-
justed with minimum cost because the only information about
process state available is from sampling.

A Markov chain approach is extended to derive the economic
adjustment model of two dependent processes used to determine
the design parameters of the X and cause-selecting control charts
that together minimize the long-term cost resulting from pro-
cesses overadjustment or underadjustment. It is demonstrated
that the expression for the economic-adjustment model is eas-
ier to obtain through the proposed approach rather than by those
of others. Several important extensions of the proposed model
can be developed. It is straightforward to extend the proposed
model to study other control charts, like attributes charts. One
particularly interesting research area for the future involves the
economic modeling of production processes subject to multiple
special causes.
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Appendix 1

Row 1

P(1,1) = P(1,2) = P(1,3) = P(1,4) =
exp(−λh)(1−αX)(1−αe) exp(−λh)αX(1−αe) exp(−λh)(1−αX )αe exp(−λh)αXαe
P(1,5) = P(1,6) = P(1,7) = P(1,8) =
(1−exp(−λh))βX(1−αe) (1−exp(−λh))(1−βX )(1−αe) (1−exp(−λh))βXαe (1−exp(−λh))(1−βX)αe
P(1,9) = P(1,10) = P(1,11) = P(1,12) =
(1−exp(−λh))(1−αX)βe (1−exp(−λh))αXβe (1−exp(−λh))(1−αX )(1−βe) (1−exp(−λh))αX(1−βe)

Row 2

P(2,1) = 0 P(2,2) = 0 P(2,3) = 0 P(2,4) = 0
P(2,5) = βX(1−αe) P(2,6) = (1−βX )(1−αe) P(2,7) = βXαe P(2,8) = (1−βX )αe
P(2,9) = 0 P(2,10) = 0 P(2,11) = 0 P(2,12) = 0

Row 3

P(3,1) = 0 P(3,2) = 0 P(3,3) = 0 P(3,4) = 0
P(3,5) = 0 P(3,6) = 0 P(3,7) = 0 P(3,8) = 0
P(3,9) = (1−αX )βe P(3,10) = αXβe P(3,11) = (1−αX )(1−βe) P(3,12) = αX(1−βe)

Row 4

P(4,1) = 0 P(4,2) = 0 P(4,3) = 0 P(4,4) = 0
P(4,5) = 0 P(4,6) = 0 P(4,7) = 0 P(4,8) = 0
P(4,9) = 0 P(4,10) = 0 P(4,11) = 0 P(4,12) = 0

Row 5

P(5,1) = 0 P(5,2) = 0 P(5,3) = 0 P(5,4) = 0
P(5,5) = βX(1−al phae) P(5,6) = (1−βX )(1−αe) P(5,7) = βXαe P(5,8) = (1−βX )αe
P(5,9) = 0 P(5,10) = 0 P(5,11) = 0 P(5,12) = 0

Row 6

P(6,1) = 0 P(6,2) = 0 P(6,3) = 0 P(6,4) = 0
P(6,5) = 0 P(6,6) = 1 P(6,7) = 0 P(6,8) = 0
P(6,9) = 0 P(6,10) = 0 P(6,11) = 0 P(6,12) = 0

Row 7

P(7,1) = 0 P(7,2) = 0 P(7,3) = 0 P(7,4) = 0
P(7,5) = 0 P(7,6) = 0 P(7,7) = 0 P(7,8) = 0
P(7,9) = 0 P(7,10) = 0 P(7,11) = 0 P(7,12) = 0

Row 8

P(8,1) = 0 P(8,2) = 0 P(8,3) = 0 P(8,4) = 0
P(8,5) = 0 P(8,6) = 0 P(8,7) = 0 P(8,8) = 0
P(8,9) = exp(−λ1h) ·βX2

P(8,10) = exp(−λ1h)(1−βX2
)· P(8,11) = exp(−λ1h)(1−βX2

) P(8,12) = exp(−λ1h)(1−βX2
)

Psc1 Psc2 Psc12

Row 9

P(9,1) = 0 P(9,2) = 0 P(9,3) = 0 P(9,4) = 0
P(9,5) = 0 P(9,6) = 0 P(9,7) = 0 P(9,8) = 0
P(9,9) = exp(−λ1h) ·βX2

P(9,10) = exp(−λ1h)(1−βX2
)· P(9,11) = exp(−λ1h)(1−βX2

) P(9,12) = exp(−λ1h)(1−βX2
)

Psc1 Psc2 Psc12
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Row 10

P(10,1) = 0 P(10,2) = 0 P(10,3) = 0 P(10,4) = 0
P(10,5) = 0 P(10,6) = 0 P(10,7) = 0 P(10,8) = 0
P(10,9) = 0 P(10,10) = 0 P(10,11) = 0 P(10,12) = 0

Row 11

P(11,1) = 0 P(11,2) = 0 P(11,3) = 0 P(11,4) = 0
P(11,5) = 0 P(11,6) = 0 P(11,7) = 0 P(11,8) = 0
P(11,9) = 0 P(11,10) = 0 P(11,11) = 1 P(11,12) = 0

Row 12

P(12,1) = 0 P(12,2) = 0 P(12,3) = 0 P(12,4) = 0
P(12,5) = 0 P(12,6) = 0 P(12,7) = 0 P(12,8) = 0
P(12,9) = exp(−λ1h) ·βX1

P(12,10) = exp(−λ1h)(1−βX1
)· P(12,11) = exp(−λ1h)(1−βX1

) P(12,12) = exp(−λ1h)(1−βX1
)

Psc1 Psc2 Psc12

Appendix 2

Row 1

C(1,1) = (C0h)+ (a+bn) C(1,2) = (C0h)+ (a+bn)+C f C(1,3) = (C0h)+ (a+bn)+C f C(1,4) = (C0h)+ (a+bn)+C f
C(1,5) = C0τ1 +C1(h −τ1)+ (a+
bn)

C(1,6) = C0τ1 +C1(h −τ1) C(1,7) = C0τ1 +C1(h −τ1) C(1,8) = C0τ1 +C0(h −τ1)

+(a+bn)+Csr +(a+bn)+C f +(a+bn)+Csr +Cf
C(1,9) = C0τ2 +C0(hτ2−)+ (a +
bn)

C(1,10) = C0τ2 +C0(h −τ2) C(1,11) = C0τ2 +C0(h −τ2) C(1,12) = C0τ2 +C0(h −τ2)

+(a+bn)+C f +(a+bn)+Csr +(a+bn)+Csr +Cf

Row 2

C(2,1) = 0 C(2,2) = 0 C(2,3) = 0 C(2,4) = 0
C(2,5) = C1h + (a+bn) C(2,6) = C1h + (a+bn)+Csr C(2,7) = C1h + (a+bn)+C f2 C(2,8) = C1h + (a + bn) + Csr +

Cf
C(2,9) = 0 C(2,10) = 0 C(2,11) = 0 C(2,12) = 0

Row 3

C(3,1) = 0 C(3,2) = 0 C(3,3) = 0 C(3,4) = 0
C(3,5) = 0 C(3,6) = 0 C(3,7) = 0 C(3,8) = 0
C(3,9) = C2h + (a+bn) C(3,10) = C2h + (a+bn)+C f1 C(3,11) = C2h + (a+bn)+Csr2 C(3,12) = C2h + (a+bn)+Csr2 +

Cf1

Row 4

C(4,1) = 0 C(4,2) = 0 C(4,3) = 0 C(4,4) = 0
C(4,5) = 0 C(4,6) = 0 C(4,7) = 0 C(4,8) = 0
C(4,9) = 0 C(4,10) = 0 C(4,11) = 0 C(4,12) = 0

Row 5

C(5,1) = 0 C(5,2) = 0 C(5,3) = 0 C(5,4) = 0
C(5,5) = C1h + (a+bn) C(5,6) = C1h + (a+bn)+Csr C(5,7) = C1h + (a+bn)+C f C(5,8) = C1h + (a + bn) + Csr +

Cf
C(5,9) = 0 C(5,10) = 0 C(5,11) = 0 C(5,12) = 0

Row 6

C(6,1) = 0 C(6,2) = 0 C(6,3) = 0 C(6,4) = 0
C(6,5) = 0 C(6,6) = Csr1 C(6,7) = 0 C(6,8) = 0
C(6,9) = 0 C(6,10) = 0 C(6,11) = 0 C(6,12) = 0

Row 7

C(7,1) = 0 C(7,2) = 0 C(7,3) = 0 C(7,4) = 0
C(7,5) = 0 C(7,6) = 0 C(7,7) = 0 C(7,8) = 0
C(7,9) = 0 C(7,10) = 0 C(7,11) = 0 C(7,12) = 0
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Row 8

C(8,1) = 0 C(8,2) = 0 C(8,3) = 0 C(8,4) = 0
C(8,5) = 0 C(8,6) = 0 C(8,7) = 0 C(8,8) = 0
C(8,9) = C2h + (a+bn) C(8,10) = C2h + (a+bn)+C f C(8,11) = C2h + (a+bn)+Csr C(8,12) = C2h + (a +bn)+Csr +

Cf

Row 9

C(9,1) = 0 C(9,2) = 0 C(9,3) = 0 C(9,4) = 0
C(9,5) = 0 C(9,6) = 0 C(9,7) = 0 C(9,8) = 0
C(9,9) = C2h + (a+bn) C(9,10) = C2h + (a+bn)+C f C(9,11) = C2h + (a+bn)+Csr C(9,12) = C2h + (a +bn)+Csr +

Cf

Row 10

C(10,1) = 0 C(10,2) = 0 C(10,3) = 0 C(10,4) = 0
C(10,5) = 0 C(10,6) = 0 C(10,7) = 0 C(10,8) = 0
C(10,9) = 0 C(10,10) = 0 C(10,11) = 0 C(10,12) = 0

Row 11

C(11,1) = 0 C(11,2) = 0 C(11,3) = 0 C(11,4) = 0
C(11,5) = 0 C(11,6) = 0 C(11,7) = 0 C(11,8) = 0
C(11,9) = 0 C(11,10) = 0 C(11,11) = Csr C(11,12) = 0

Row 12

C(12,1) = 0 C(12,2) = 0 C(12,3) = 0 C(12,4) = 0
C(12,5) = C1h + (a+bn) C(12,6) = C1h + (a+bn)+Csr C(12,7) = C1h + (a+bn)+C f C(12,8) = C1h + (a +bn)+Csr +

Cf
C(12,9) = 0 C(12,10) = 0 C(12,11) = 0 C(12,12) = 0


