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Abstract

In this research, we derive the valuation formulae for a defined contribution pension plan associated with the minimum rate of return guarantees.
Different from the previous studies, we work on the rate of return guarantee which is linked to the δ-year spot rate. The payoffs of interest rate
guarantees can be viewed as a function of the exchange option. By employing Margrabe’s [Margrabe, W., 1978. The value of an option to exchange
one asset for another. Journal of Finance 33, 177–186] option pricing approach, we derive general pricing formulae under the assumptions that
the interest rate dynamics follow a single-factor HJM (1992) [Heath. D. et al., 1992. Bond pricing and the term structure of interest rates: a new
methodology for contingent claims valuation. Econometrica 60, 77–105] interest rate model and the asset prices follow a geometric Brownian
motion. The volatility of the forward rates is assumed to be exponentially decaying. The formula is explicit for valuing maturity guarantee (type-I
guarantee). For multi-period guarantee (type-II guarantee), the analytical formula only exists when the guaranteed rate is the one-year spot rate.
The accuracy of the valuation formulae is illustrated with numerical analysis. We also investigate the effect of mortality and the sensitivity of key
parameters on the value of the guarantee. We find that type-II guarantee is much more costly than the type-I guarantee, especially with a long
duration policy. The closed form solution provides the advantage in valuing pension guarantees.
c© 2007 Elsevier B.V. All rights reserved.
1. Introduction

In the final decades of the twentieth century, a global
wave of pension reforms privatized pension obligations. The
retirement pension system had traditionally been tied to defined
benefit pension (DB) plans, but the critical financial burdens
for DB pension plan providers caused countries to convert
their retirement systems from DB to defined contribution (DC)
plans. The main difference between DB and DC pension plans
relates to the way they treat financial risk. With a DB plan, the
retirement benefit is promised in advance, according to some
predetermined formulae. Thus, employers bear the risks of
poor investment performance by the pension fund. In contrast,
employees with a DC plan bear the investment risk, because the
retirement benefits depend on the performance of investment
portfolios. The main argument in support of converting from
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DB to DC is that the employee must suffer investment risks.
Thus, to avoid the downside risk for the employee, some
guarantees have been provided with DC plans, the cost of which
normally is covered by the pension plan provider. Estimating
the value of the guarantee is very important for the pension plan
provider to set its budget, because a poor estimation may cause
it to suffer significant financial problems. Within this context,
we analyze the values of guarantees in the DC plans.

In practice, there are a variety of guarantee designs in DC
plans. Some are deterministic manner, whereas others employ a
stochastic rate of return on a reference portfolio or interest rates.
The former is called an absolute guarantee, whereas the latter
is referred to as a relative guarantee in the literature (Lindset,
2004). Previous research into valuing guarantees for pension
funds or life insurance products focuses on absolute guarantees,
with which a fund delivers a fixed or prespecified minimum rate
of return. Prior studies on absolute guarantees include Brennan
and Schwartz (1976), Boyle and Schwartz (1977), Boyle and
Hardy (1997), Persson and Aase (1997), Miltersen and Persson
(1999), Grosen and Jørgensen (1997), Grosen and Jørgensen
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(2000), Hansen and Miltersen (2002), and Schrager and Pelsser
(2004). However, setting a deterministic minimum rate of return
in advance makes these ostensibly defined contribution plans
more like defined benefit schemes. The problem with granting
a deterministic guaranteed rate is that low guaranteed rates are
not attractive to plan participants, but high guaranteed rates
might cause financial burdens to the plan provider. Therefore,
a stochastic guaranteed rate, such as rate of return guarantees
relative to the reference portfolio, is more popular in recent
development. Although relative rate of return guarantees are
very common, especially in Latin America, they have not
received the same research focus as absolute guarantees, with
the exceptions of Ekern and Persson (1996), Pennacchi (1999)
and Lindset (2004). Ekern and Persson (1996) use martingale
approach to deal with the relative guarantee for a single
premium unit-linked policy. Pennacchi (1999) uses a contingent
claim analysis to obtain the values of both the absolute and the
relative guarantee provided in the Chilean and Uruguayan DC
plans. Lindset (2004) studies the various minimum guaranteed
rates of return and adopts the Heath–Jarrow–Morton (Heath
et al., 1992) framework to derive explicit formulae for a single
deposit case. For all these three papers, the guaranteed rate of
return represents the performance of the equity market. Thus,
they all assume that the dynamics of the price of the reference
portfolio follow a geometric Brownian motion. We extend their
analysis by setting up a theoretical framework to study the
rate of return guarantees relative to a return measured by the
market realized δ-year spot rates and the guarantee applies to
all contributions in the accumulation period of a pension plan.

Rate of return guarantees consists of two fundamentally
different types. A maturity guarantee is binding only at the
expiration of the contract and ensures a minimum pension
payment to the participants in the contract, whereas a multi-
period guarantee works on a periodic basis and secures a
periodic return not less than a guaranteed minimum return.
We consider both maturity and multi-period relative rate of
return guarantees herein. In particular, we analyze the value of
the relative rate of return guarantee on a defined contribution
scheme, according to which a fixed proportion of a participant’s
wage is assumed to be credited to an underlying investment
portfolio. The guaranteed rate is set as the market δ-year
spot rates over the contract period, which is quite different
from the existing literature, which links the guaranteed rate
to the stochastic return of equity markets. After relating the
guaranteed rate to the market realized δ-year spot rate, we attain
essentially an interest rate guarantee. This method of valuing
the interest rate type of relative guarantees is more complicated
than that of valuing equity-type relative guarantees, because
both of the rate of return process for the investment portfolio
of the pension fund and the interest rate process of the
guarantee must be incorporated into the model. We further
assume that the value of the underlying investment portfolio
follows a geometric Brownian motion and adopt Heath, Jarrow
and Morton’s (HJM) (Heath et al., 1992) framework with an
exponentially decaying forward rate volatility to model the
term structure of interest rates, from which the stochastic
guaranteed δ-year spot rates can be derived. After showing that
the values of both types of relative guarantees have similar
payoff structures of an exchange option, we employ Margrabe
(1978) exchange option pricing formula to derive the values of
both guarantees explicitly. The values of both guarantees are
demonstrated in the numerical results. In addition, mortality
improvement has caused a lot of financial problem for the
life insurer or pension fund provider. We study the effect of
mortality improvement on the value of the guarantee in our
numerical analysis.

The contributions of this paper relative to the previous
works on relative guarantees are fourfold. First, we obtain a
valuation formula for the guarantee allowed for a stochastic
guaranteed rate of return linked to the interest rate, in addition
to a stochastic rate of return on the investment portfolio of
a pension fund. Specifically, we consider a minimum rate of
return guarantee based on the market realized δ-year spot rates.
Second, we consider guarantees associated with DC plans. In
the literature, works on interest rate guarantees are based more
often on single-premium insurance contracts. For the guarantee
with a DC pension plan, its value depends on the contribution
during the working period. The contributing payments make
the guarantee depend on the the asset price and guaranteed δ-
year spot rates at different time points. Incorporating these two
main points, we provide closed-form solutions for interest rate
guarantees, both maturity and multi-period guarantees. Third,
we value the pension guarantee more efficiently by using a
closed-form solution. In practice, the duration during which a
participant joins the pension is very long, say 30 years, which
might require a lot of time to compute the value of the guarantee
using simulations. In this research, we illustrate the valuation
using both a closed-form solution and simulation. Fourth, the
effect of mortality is investigated in this research. Because
pension contracts have long maturities, the effect of mortality
can’t be ignored.

The structure of this paper is as follows. Section 2 describes
both maturity and multi-period rate of return guarantees
embedded in a defined contribution pension plan and presents
the underlying economic model. In Section 3, we derive the
values of two types of relative guarantees using Margrabe’s
exchange option pricing formula. In Section 4, we provide
numerical results and sensitivity analysis for the values of these
guarantees. Section 5 concludes this paper.

2. Structure of guarantee and financial model settings

Under a DC pension plan associated with a relative
guarantee, the accumulation of the pension fund depends on
the contributions, investment performance, guaranteed rate,
and working period. We analyze the relative rates of return
guarantees linked to the market δ-year spot rates and consider
two methods for crediting the guaranteed rate to the pension
fund. If the guaranteed minimum rate is binding only at the
expiration of the contract, we call it a maturity guarantee and
refer it as a type-I guarantee; if the guaranteed minimum rate of
return is binding for each period, we refer to it as a multi-period
guarantee or type-II guarantee. Intuitively, a type-II guarantee
is more valuable than a type-I guarantee.
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Assume that an employee contributes a fixed proportion
of his or her annual salary to the pension fund each year
and the employee’s salary increases each year. To express
the terminal payoffs of the two types of guaranteed pension
plans in a more precise way, we denote c as the contribution
rate, Y0 as the initial yearly wage, i as the yearly wage
growth rate, Rt as the actual rate of return on the underlying
investment portfolio at time t , and R (t − 1, t − 1 + δ) as
the δ-year spot rate at time t − 1, that is, the minimum
guaranteed rate of return on the pension fund at time t − 1.
The δ-year spot rate, R (t − 1, t − 1 + δ), is chosen along
with Rt , the realized return on an investment fund, to define
the contract payoff. R (t − 1, t − 1 + δ) can be regarded as
the δ-year constant maturity Treasury (CMT) rate, which
focuses on an interest rate on securities with specified
maturities. We choose the spot rate of constant maturity δ-
year, R (t − 1, t − 1 + δ), as the reference rate for interest rate
guarantees considered in this paper. The fixed and constant
maturity feature of R (t − 1, t − 1 + δ) avoids the difficulties
in calculating returns of a physical bond with diminishing
remaining life to maturities. Moreover, rates with constant
maturity features generally facilitate the trading and hedging
of pure interest rate instruments for a selected maturity, without
reducing time to maturity associated with physical bonds. The
CMT rate could also be used to speculate on an increase or
decrease in the market-driven risk premium built into LIBOR. It
allows the counterparties to participate in changes in the shape
of the yield curve.1

Under a type-I guarantee, the pension fund at retirement date
after T -year’s accumulation, HT (I ), can be expressed as

HT (I ) =

T∑
n=1

c · Y0 (1 + i)n−1

× max

[
T∏

t=n
exp(R (t − 1, t − 1 + δ)),

T∏
t=n

exp (Rt )

]

=

T∑
n=1

c · Y0 (1 + i)n−1

×

{
max

[
T∏

t=n
exp(R (t − 1, t − 1 + δ))

−

T∏
t=n

exp (Rt ) , 0

]
+

T∏
t=n

exp (Rt )

}
. (1)

Under a type-II guarantee, the pension fund at retirement
date after T -year’s accumulation, HT (II), can be expressed as

HT (II) =

T∑
n=1

c · Y0 (1 + i)n−1
1 Due to the liquidity of interest rate swaps relative to Treasury securities,
swap rates with constant maturities, commonly known as CMS rates, are
widely used in the market. The calculation of CMS rates involves convexity
corrections. Pelsser (2003) proposes a theoretical framework to demonstrate
that convexity adjustment can be interpreted as the side-effect of a change of
probability measure.
×

T∏
t=n

max
[
exp(R (t − 1, t − 1 + δ)), exp (Rt )

]
=

T∑
n=1

c · Y0 (1 + i)n−1

×

{[
T∏

t=n
max

[
exp

(
R (t − 1, t − 1 + δ)

)
, exp (Rt )

]
−

T∏
t=n

exp (Rt )

]
+

T∏
t=n

exp (Rt )

}
. (2)

Eqs. (1) and (2) show that the payoffs of the defined
contribution pension plans with rate of return guarantees can
be viewed as a function of the exchange option. We make use
of Margrabe (1978) option pricing model to derive the values
of the guarantees. We describe the modelling framework and
derive the values of both guarantees in the next section.

In Eqs. (1) and (2), we find that the payoffs of the guaranteed
defined contribution pension plans depend on both the actual
rate of return of the underlying investment portfolio (Rt )
and the minimum guaranteed rate of the δ-year spot rate
(R (t − 1, t − 1 + δ)) at time t − 1. The actual rate of return
is measured by the market value of the investment portfolio.
To value the guarantee, we assume that the market value of
the underlying investment portfolio S• under the risk-neutral
probability measure Q follows the stochastic process

dSt = rt St dt + σS St dZ t , (3)

where rt is the risk-free rate of return on the investment
portfolio, σS ∈ R+ is the volatility of investment return, and Z t
is a one-dimensional standard Brownian motion under the risk-
neutral measure Q. The actual rate of return on the investment
portfolio in period j , R j , therefore is defined by

R j = ln
(

S j

S j−1

)
, j = 1, 2, . . . , T .

When the underlying investment portfolio S• follows the
geometric Brownian motion, R j is normally distributed.

In addition, the pension fund is guaranteed a δ-year spot rate.
We assume that the evolution of the term structure of the interest
rate is captured by a model from the single-factor Heath, Jarrow,
and Morton (HJM) (Heath et al., 1992) framework. The HJM
framework describes the dynamics of the forward rate curve
f (t, T ), 0 ≤ t ≤ T . In the HJM setting, the evolution of the
forward rate curve under the risk-neutral measure Q is modeled
as

d f (t, u) = µ f (t, u)dt + σ f (t, u)dWt ,

where Wt is a one-dimensional standard Brownian motion
under measure Q, µ f (t, u) is the drift term, and σ f (t, u) is the
instantaneous volatility of the forward rate with maturity u. rt ,
the short rate at time t , is given by

r(t) = f (t, t) = f (0, t) +

∫ t

0
µ f (s, t)ds +

∫ t

0
σ f (s, t)dWs

according to the HJM framework.
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In this framework, the time t price of a zero-coupon bond
maturing at time u is computed as

P(t, u) = exp
[
−

∫ u

t
f (t, s)ds

]
.

HJM also derive the restriction on the drift term
µ f (t, u) imposed by the absence of arbitrage as µ f (t, u) =

σ f (t, u)
∫ u

t σ f (t, x)dx . Thus, arbitrage-free dynamics of the
forward rate curve under the risk-neutral probability measure
Q become

d f (t, u) =

(
σ f (t, u)

∫ u

t
σ f (t, x)dx

)
dt + σ f (t, u)dWt . (4)

Eq. (4) indicates that the critical factor in determining the
behaviour of a model under the HJM framework is the forward
rate volatility σ f (t, u). Therefore an HJM model is essentially
a specification of the forward rate volatility structure.

In this paper, we consider the specific case of exponentially
decaying forward rate volatility, that is σ f (t, u) = σe−λ(u−t) >

0, where σ and λ are constants, and σ f (t, u) is independent
of the level of the forward rate. In the literature, the constant
volatility assumption underlying the HJM model has been
rejected by the empirical research, for example Flesaker (1993).
Moreover, the empirical research shows that long-maturity rates
have a lower volatility than short-maturity rates. Therefore, we
incorporate the exponentially decaying feature in the forward
rate volatility of the HJM model.

By virtue of Eq. (4), the dynamics of the forward rate process
under the measure Q are given by

d f (t, u) =

(
σ 2e−λ(u−t)

∫ u

t
e−λ(x−t)dx

)
dt + σe−λ(u−t)dWt ,

and the short rate rt satisfies

rt = f (0, t) +
σ 2

2λ2

(
1 − e−λt)2

+ σ

∫ t

0
e−λ(t−v)Wv (5)

The time t price of a zero-coupon bond maturing at time u
equals

P (t, u) =
P (0, u)

P (0, t)
× exp

{
−

σ 2

λ3

[ (
eλt

− 1
) (

e−λt
− e−λu)

−

(
e2λt

− 1
) (

e−2λt
− e−2λu

)
4

]}

× exp
[
−

σ

λ

∫ t

0
eλv

(
e−λt

− e−λu) dWv

]
,

and the equivalent continuously compounded yield, or the time
t spot rate for maturity u, is given by

R (t, u) = −
ln P (t, u)

u − t

=
ln P (0, t) − ln P (0, u)

u − t

+
σ

λ(u − t)

∫ t

0
eλv

(
e−λt

− e−λu) dWv
+
σ 2

λ3(u − t)

[ (
eλt

− 1
) (

e−λt
− e−λu)

−

(
e2λt

− 1
) (

e−2λt
− e−2λu

)
4

]
. (6)

In summary, the stochastic processes for the investment
portfolio St and the forward rate f (t, u) are of the forms

dSt = rt St dt + σS St dZ t

and

d f (t, u) =

(
σ 2e−λ(u−t)

∫ u

t
e−λ(x−t)dx

)
dt + σe−λ(u−t)dWt ,

where Z t and Wt are the two correlated Brownian motions
satisfying dZ t dWt = ρdt for all ρ ∈ [−1, +1]. This implies
that dZ t = ρdWt +

√
1 − ρ2dŴt , where Ŵt is a Q-Brownian

motion independent of Wt .

Both investment portfolio return rates and interest rates
are assumed to be Gaussian in this research. In this setting,
analytical results for valuing interest rate guarantees embedded
in the defined contribution pension plan can be derived, as we
do in the next section.

3. Valuations of relative guarantees

In Section 2, we show that the payoffs of the interest rate
guarantees under a defined contribution pension plan can be
viewed as a function of exchange options. In this section, we
apply Margrabe (1978) option pricing model to the derivation
of the values of both the maturity and multi-period guarantees
embedded in a defined contribution pension plan.

3.1. Maturity guarantee (type-I guarantee)

Within the setting for a maturity guarantee, we define VT (I )
as the terminal account value of the type-I guarantee embedded
in the defined contribution pension plan, which is

VT (I ) =

T∑
n=1

c · Y 0 (1 + i)n−1

×

{
max

[
T∏

t=n
exp(R (t − 1, t − 1 + δ)) −

T∏
t=n

exp (Rt ) , 0

]}
.

(7)

To value the interest rate guarantee embedded in the defined
contribution pension plan, we first focus on the value of per unit
of the embedded guarantee. Define π

(n)
T (I ) as the time T value

of the guarantee for $1 contributed in the nth year, n ≤ T ; thus,
the value of π

(n)
T (I ) is

π
(n)
T (I ) = max

[
T∏

t=n
exp(R (t − 1, t − 1 + δ))

−

T∏
t=n

exp (Rt ) , 0

]
. (8)
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Expressed in this way, the payoff structure of this
interest rate guarantee is analogous to that of an ex-
change option that gives the participant the right to ex-
change the risky asset

∏T
t=n exp (Rt ) for another asset∏T

t=n exp(R (t − 1, t − 1 + δ)).

We denote the first asset in the exchange option as
A(n)

1,T , which is the time T value of the payoff from the

guarantee for $1 contributed in the nth year, that is, A(n)
1,T =∏T

t=n exp(R (t − 1, t − 1 + δ)). We use A(n)
2,T to express the

second asset in the exchange option, which is the time T
payoff of investing $1 in the nth year in the investment
portfolio S• with return rate R j for the j th period, or A(n)

2,T =∏T
t=n exp (Rt ) . Accordingly, the time T value of an embedded

interest rate guarantee for $1 contributed in the nth year
can be viewed as an exchange option with payoff structure

π
(n)
T (I ) = max

[
A(n)

1,T − A(n)
2,T , 0

]
at time T . In this section,

we attempt to find the initial market value of the embedded
rate of return guarantee V0 (I ) , which is equal to V0 (I ) =∑T

n=1 c ·Y 0 (1 + i)n−1
× π

(n)
0 (I ).

After some straightforward calculation, we can show that
A(n)

2,T =
∏T

t=n exp (Rt ) = ( ST
Sn−1

), with the defined return rate

Rt = ln( St
St−1

). Note that A(n)
2,T is a lognormally distributed

variable. If we treat the asset of A(n)
2,T as numeraire, the valuation

problem can be reduced to that of a one-asset option, as

π
(n)
0 (I )

A(n)
2,0

= E P̂
0

[
π

(n)
T (I )

A(n)
2,T

]
,

and

π
(n)
0 (I ) = A(n)

2,0 × E P̂

max
(

A(n)
1,T − A(n)

2,T , 0
)

A(n)
2,T


= A(n)

2,0 × E P̂

[
max

(
A(n)

1,T

A(n)
2,T

− 1, 0

)]
,

where E P̂
0 [·] denotes the expectation function under P̂ measure

conditional on the market information up to time 0.

In other words, given the A(n)
2,T as numeraire, the process

of π
(n)
• (I )

A(n)
2,•

under P̂ measure is a martingale. Accordingly, we

define a new random variable UT =
A(n)

1,T

A(n)
2,T

, which is again

lognormal as both A(n)
1,T and A(n)

2,T are lognormally distributed
under our setting. To this end, the valuation problem can be
considered as the pricing of a standard European call option
with a lognormally distributed underlying asset U• and with
unit strike price.

Proposition 1. The initial market value of the type-I guarantee

with time T payoff as π
(n)
T (I ) = max

[∏T
t=n exp

(
R (t − 1,

t − 1 + δ)
)
−
∏T

t=n exp (Rt ) , 0
]

= max
[

A(n)
1,T − A(n)

2,T , 0
]

is
given by

π
(n)
0 (I ) = A(n)

1,0 N
(

d(n)
1

)
− A(n)

2,0 N
(

d(n)
2

)
,

where

A(n)
1,0 = exp [g2 (n, T )] · exp

{
1
2

(
1 − e−λδ

λδ

)2

× VarQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)]}
× exp

{
1
2

VarQ
0

[
σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]}
× exp

{
−

(
1 − e−λδ

λδ

)
CovQ

0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)
,

σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]}

A(n)
2,0 = exp

(
−

∫ n−1

0
f (0, u) du

)

d(n)
1 =

ln
(

A(n)
1,0

A(n)
2,0

)
+

(
σ̂

(n)
I

)2
T

2(
σ̂

(n)
I

)√
T

, d(n)
2 = d(n)

1 −

(
σ̂

(n)
I

)√
T

(
σ̂

(n)
I

)2
T = VarQ

0

(
ln A(n)

1,T

)
+ VarQ

0

(
ln A(n)

2,T

)
− 2CovQ

0

(
ln A(n)

1,T , ln A(n)
2,T

)
,

g1 (t) =
ln P (0, t − 1) − ln P (0, t − 1 + δ)

δ

+
σ 2

λ3δ

[(
eλ(t−1)

− 1
) (

e−λ(t−1)
− e−λ(t−1+δ)

)
−

(
e2λ(t−1)

− 1
) (

e−2λ(t−1)
− e−2λ(t−1+δ)

)
4

]

g2 (n, T ) =

T∑
t=n

g1 (t) −

∫ T

0
f (0, u) du −

σ 2

2λ2

×

[
T −

2
λ

(
1 − e−λT

)
+

1
2λ

(
1 − e−2λT

)]

VarQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)]

=
σ 2

2λ

T∑
i=n

T∑
j=n

[
e−λ(i+ j−2)

(
e2λ min(i−1, j−1)

− 1
)]

VarQ
0

[
σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]
=

σ 2

λ2

[
T −

2
λ

(
1 − e−λT

)
+

1
2λ

(
1 − e−2λT

)]
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CovQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)
,

σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]

=
σ 2

λ2

[
(T − n + 1) −

(
e−λT

− e−λ(n−1)

e−λ − 1

)

−

(
1 − e−λ(T −n+1)

2(eλ − 1)

)
+

(
e−2λT

− e−λ(T +n−1)

2(e−λ − 1)

)]

VarQ
0

(
ln A(n)

1,T

)
=

σ 2

2λ

(
1 − e−λδ

λδ

)2

×

T∑
i=n

T∑
j=n

[
e−λ(i+ j−2)

(
e2λ min(i−1, j−1)

− 1
)]

VarQ
0

(
ln A(n)

2,T

)
=

σ 2

2λ3

[
e−λT

− e−λ(n−1)
]2 [

e2λ(n−1)
− 1

]
+

σ 2

λ2

[
(T − n + 1) −

(
2(1 − e−λ(T −n+1))

λ

)

+

(
1 − e−2λ(T −n+1)

2λ

)]
+ σ 2

S (T − n + 1)

+
2ρσσS

λ

[
(T − n + 1) −

(
1 − e−λ(T −n+1)

λ

)]

CovQ
0

(
ln A(n)

1,T , ln A(n)
2,T

)
= σ

(
1 − e−λδ

λδ

)

×

T∑
t=n

[(
1 − e−λ(t−n)

λ

)(σ

λ
+ ρσS

)
+

σ

2λ2

(
e−λ(T +t−1)

+ e−λ(t−n)

− e−λ(t+n−2)
− e−λ(T −t+1)

)]
.

N (·) is the cumulative probability function of a standardized
normal distributed variable, and σ̂

(n)
I

√
T is the volatility of the

composite asset UT =
A(n)

1,T

A(n)
2,T

.

Proof. The proof follows the same lines as that offered by
Margrabe (1978). However, because neither both A(n)

1,0 or A(n)
2,0

is a tradable asset in the market, we derive their values in
Appendices A and B. The variances of lnA(n)

1,0 and lnA(n)
2,0 are

derived in Appendix C, and the covariance between lnA(n)
1,0

and lnA(n)
2,0 is calculated in Appendix D. Finally, we calculate

the volatility term σ̂
(n)
I

√
T of the composite asset UT =

A(n)
1,T

A(n)
2,T

, which is the relative value of A(n)
1,T with respect to A(n)

2,T ,

in Appendix E. �

We further consider the effect of mortality on the market
value of a type-I guarantee in Corollary 1.
Corollary 1. Assume that the financial market is independent
of the employee’s mortality risk. For an employee aged x at time
0, the initial market value of the type-I guarantee with payoff
π̃

(n)
T (I ) at time T is

π̃
(n)
0 (I ) =T px ·

[
A(n)

1,0 N
(

d(n)
1

)
− A(n)

2,0 N
(

d(n)
2

)]
,

where T px denotes the survival probability that an employee
aged x remains alive after T years. T px can be expressed
as Pr (Tx > T ), where the random variable Tx denotes the
remaining life time of an x-year-old employee.

3.2. Multi-period guarantee (type-II guarantee)

In this section, we derive the value of the multi-period
guarantee embedded in the defined contribution pension plan.

We define VT (II) as the terminal account value of the multi-
period guarantee embedded in the defined contribution pension
plan, which is

VT (II) =

T∑
n=1

c · Y0 (1 + i)n−1

×

{
T∏

t=n
max

[
exp

(
R (t − 1, t − 1 + δ)

)
,

exp (Rt )] −

T∏
t=n

exp (Rt )

}
. (9)

To value the multi-period guarantee embedded in the defined
contribution pension plan, we first focus on the value of per
unit of the embedded guarantee. Define π

(n)
T (II) as the time T

value of the type-II guarantee for $1 contributed in the nth year,
n ≤ T ; then, the value of π

(n)
T (II) is

π
(n)
T (II) =

T∏
t=n

max
[
exp

(
R (t − 1, t − 1 + δ)

)
, exp (Rt )

]
−

T∏
t=n

exp (Rt ) . (10)

Expressed in this way, the payoff structure of a multi-period
rate of return guarantee can be viewed as the difference between
the accumulated value of a series of exchange options and the
accumulated realized pension portfolio value. Using the no-
arbitrage pricing principle, the initial market value of π

(n)
0 (II)

can be calculated as
π

(n)
0 (II)

B0
= E Q

0

[
π

(n)
T (II)
BT

]
. The initial value

of VT (II) is equal to V0 (II) =
∑T

n=1 Y0 × c (1 + i)n−1
×

π
(n)
0 (II).

Unfortunately, the analytical formula for π
(n)
0 (II) cannot be

derived for arbitrary values of δ. The analytical formula is only
available for the special case that the interest rate guarantee is
linked to the one-year spot rate, i.e. δ = 1. Therefore, to value a
type-II guarantee when δ 6= 1, the simulation method has to be
employed. In the following proposition, we calculate the initial
market value of the type-II guarantee for the case of δ = 1.
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Proposition 2. The initial market value of the type-II guarantee
with time T payoff as π

(n)
T (II) =

∏T
t=n max

[
exp

(
R (t − 1, t)

)
,

exp (Rt )
]
−
∏T

t=n exp (Rt ) is given by

π
(n)
0 (II) = exp

(
−

∫ n−1

0
f (0, u) du

)

×

{
T∏

t=n

[
A3,0 N (d3 (t)) − A4,0 N (d4 (t)) + A4,0

]
− 1

}
,

where

A3,0 = exp

{
g3 (t) +

σ 2

2λ2

[
1 −

2
λ

(
1 − e−λ

)
+

1
2λ

(
1 − e−2λ

)]}
A4,0 = 1

g3 (t) = g1 (t) −

∫ t

t−1
f (0, u) du −

σ 2

2λ2

×

[
1 +

2
λ

(
e−λt

− e−λ(t−1)
)

−
1

2λ

(
e−2λt

− e−2λ(t−1)
)]

g1 (t) = ln P (0, t − 1) − ln P (0, t)

+
σ 2

λ3

[(
eλ(t−1)

− 1
) (

e−λ(t−1)
− e−λt

)
−

(
e2λ(t−1)

− 1
) (

e−2λ(t−1)
− e−2λt

)
4

]

d3 (t) =
ln
(

A3,0/A4,0
)
+ σ̂ 2

II t/2

σ̂II
√

t

d4 (t) = d3(t) − σ̂II
√

t

σ̂ 2
II t =

σ 2

λ2

[
1 −

2
λ

(
1 − e−λ

)
+

1
2λ

(
1 − e−2λ

)]
+ σ 2

S

+
2ρσσS

λ

[
1 −

(
1 − e−λ

λ

)]
.

Proof. For δ = 1, the calculation of the initial market value of
a type-II guarantee involves determining the expected value of
time T payoff π

(n)
T (II) under a risk-neutral probability measure

Q. π
(n)
T (II) is composed of two terms,

∏T
t=n exp (Rt ) and∏T

t=n max
[
exp

(
R (t − 1, t)

)
, exp (Rt )

]
. The initial market

value of the
∏T

t=n exp (Rt ) term, E Q
0

[∏T
t=n eRt B−1

T

]
, which

is the initial value of the accumulated realized pension
portfolio value, appears in Appendix B, and is equal to

exp
(
−
∫ n−1

0 f (0, u) du
)

. We compute the initial value of∏T
t=n max

[
eR(t−1,t), eRt

]
in Appendix F, along with the

initial market value of the guarantee π
(n)
0 (II). �

The following corollary considers the effect of mortality on
the market value of a type-II guarantee.
Corollary 2. Assume that the financial market is independent
of the employee’s mortality risk. For an employee aged x at
time 0, the initial market value of the type-II guarantee with
payoff π̃

(n)
T (II) at time T for the case of δ = 1 is given by

π̃
(n)
0 (II) =T px · exp

(
−

∫ n−1

0
f (0, u) du

)

×

{
T∏

t=n

[
A3,0 N (d3 (t)) − A4,0 N (d4 (t)) + A4,0

]
− 1

}
,

where T px is defined in Corollary 1.

4. Numerical results and sensitivity analysis

We investigate the values for two types of rate of return guar-
antees in this section. In particular, we examine the guarantee
values for the case that the guaranteed rate is the one-year spot
rate, i.e. δ = 1. In the following numerical analyses, we as-
sume that an employee aged 30 will retire at the age of 60
for our base illustration case. The contribution rate is 6% of
salary, the initial yearly wage is 100, and the employee’s salary
grows at 2% annually. Furthermore, we assume that the initial
term structure is flat and fixed at 3%. The most important as-
sumption affecting the value of a guarantee is the dynamics of
the future asset return and the interest rate. For a robustness
check, we carry out a sensitivity analysis for the key parame-
ters underlying the financial models. Continuing the notations
from the previous sections, we set the parameters for the base
illustration case as follows: σs = 0.1, σ f = 0.01, λ = 0.1,

ρ = −0.2, δ = 1.

Table 1 shows the value of the guarantee for the employee
with different working periods. In general, the numerical results
show that a type-I guarantee is cheaper than a type-II guaran-
tee. The effect is more obvious for an employee who works for
a longer period. For example, in the base case, the value of a
type-I guarantee is 23.519; for a type-II guarantee, it is 153.546.
However, for an employee aged 20 years, the value of a type-I
guarantee is 34.565; and 310.709 for a type-II guarantee. The
effect is intuitive. For a type-I guarantee, the effect of large
guaranteed rates in some periods can be mitigated by smaller
guaranteed rates in other periods. However, for a type-II guar-
antee, such mitigation does not work. This calculation implies
that a type-II guarantee is more costly than a type-I guarantee.

In addition, to study the accuracy of our derived formulae
for the two types of interest rate guarantees, we provide
the simulation results based on 50,000 paths along with
the analytical ones in Table 1. The difference between the
simulated values and closed form solutions is tiny. Therefore,
the formulae provide a precise and efficient way to value
the embedded interest rate guarantee, especially when the
employee works for a long period. Using simulations to find
the guarantee values is very time consuming. Thus our derived
explicit pricing formula provides a distinct advantage in terms
of pricing long-duration guarantees.

We investigate the effects of mortality for both males and
females and report the results in Table 2. We analyze the
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Table 1
Value of guarantees with different working periods

Working period Type-I guarantee Type-II guarantee
T V0 (I ) V0 (II)

Formula Simulation Difference Formula Simulation Difference

10 5.128 5.089 0.039 14.309 14.252 0.057
15 9.042 9.036 0.006 32.987 32.947 0.040
20 13.490 13.468 0.022 61.180 61.187 −0.007
25 18.345 18.222 0.123 100.649 100.605 0.044
30 23.519 23.473 0.046 153.546 153.332 0.214
35 28.943 28.807 0.136 222.500 222.438 0.062
40 34.565 34.433 0.132 310.709 310.655 0.054

Table 2
The effect of mortality on the value of guarantees

Working period Male Female
T V0 (I ) V0 (II) T p30 V0 (I ) V0 (II) T p30

10 5.097 14.223 0.9940 5.112 14.265 0.9970
15 8.954 32.668 0.9903 8.999 32.833 0.9953
20 13.290 60.273 0.9852 13.398 60.765 0.9932
25 17.933 98.384 0.9775 18.163 99.647 0.9901
30 22.712 148.281 0.9657 23.163 151.221 0.9849
35 27.371 210.412 0.9457 28.223 216.963 0.9751
40 31.377 282.047 0.9078 32.990 296.545 0.9544

Note: T p30 denotes the survival probability that an employee starts working at the age of 30 and remains alive after T years.
effect of mortality using the UK standard tables for annuitant
and pensioner populations for the period 1991–1994 proposed
by CMI Bureau (1999). For illustration purpose, we present
the methodology of constructing the mortality table by CMI
Bureau (1999) in Appendix G. Comparing the results in Table 2
with those without mortality effect in Table 1, we find that
the mortality effects reduce the value of the guarantee since
the guarantee only applies to those who survive to retirement.
The effect is less significant for females because the survival
probability is higher for females than it is for males of the
same age. The corresponding survival probability for males and
females are listed in Table 2.

In the following tables, we depict the sensitivity analyses
conducted for key parameters. In order to study the effects
of key parameters, we use the case without considering the
mortality effect for illustration. Table 3 shows the values of
the guarantees, given different correlation estimates between
the asset prices and interest rates. All values are increasing
functions of the correlation parameter, because σ̂

(n)
I in

Proposition 1 and σ̂II in Proposition 2 both increase with the
correlation estimate.

Table 4 describes how the values of both guarantees change
with σ . Two effects come up when σ becomes higher. First,
high guaranteed rates appear more frequently. Second, high
short rates also emerge more often and actual rates of return in
the risk-neutral world tend to be higher. As these effects work
together, the values do not necessarily monotonically change
with σ . Table 5 indicates that the values are not very sensitive to
the exponentially decaying parameter (λ) under the base case.
For example, as λ increases from 0.025 to 0.25, the value of
Table 3
Value of guarantees with different correlation estimates

Correlation estimates Type-I guarantee Type-II guarantee
ρ V0 (I ) V0 (II)

−1 22.588 144.700
−0.8 22.825 146.918
−0.6 23.059 149.132
−0.4 23.290 151.341
−0.2 23.519 153.546
0 23.745 155.748
0.2 23.970 157.945
0.4 24.192 160.139
0.6 24.412 162.330
0.8 24.630 164.518
1 24.845 166.703

Table 4
Value of guarantees with different forward rate volatility estimates

Forward rate volatility Type-I guarantee Type-II guarantee
σ V0 (I ) V0 (II)

0 23.709 155.396
0.005 23.605 154.383
0.01 23.519 153.546
0.015 23.450 152.885
0.02 23.400 152.400
0.025 23.368 152.091
0.03 23.354 151.958
0.035 23.359 152.001
0.04 23.382 152.221
0.045 23.423 152.618

the type-I guarantee only increases 0.01, and the value of the
type-II guarantee only increases 0.1.
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Table 5
Value of guarantees with different estimates of exponentially decaying
parameters

Decaying volatility parameters Type-I guarantee Type-II guarantee
λ V0 (I ) V0 (II)

0.025 23.515 153.511
0.05 23.517 153.523
0.075 23.518 153.535
0.1 23.519 153.546
0.125 23.520 153.558
0.15 23.521 153.569
0.175 23.522 153.581
0.2 23.524 153.592
0.225 23.525 153.603
0.25 23.526 153.614

Table 6
Value of guarantees with different asset return volatility estimates

Asset return volatility Type-I guarantee Type-II guarantee
σS V0 (I ) V0 (II)

0.02 4.731 21.690
0.04 9.407 46.834
0.06 14.128 76.717
0.08 18.838 111.972
0.1 23.519 153.546
0.12 28.159 202.597
0.14 32.749 260.504
0.16 37.281 328.909
0.18 41.746 409.753
0.2 46.137 505.334

The effects of the volatility of the asset return on the value
of the guarantee are presented in Table 6. The values of both
guarantees increase with the volatility of the asset return. This
pattern is more significant for type-II than for type-I guarantees,
due to the method used to calculate the guarantee. Regarding
these parameters we exam in the sensitive analysis, it reflects
that the asset return volatility estimate is the most sensitive
parameter to the value of guarantees.

5. Conclusion

In recent years, defined contribution pension plans have
emerged as a major part of the retirement income system.
To transfer part of the investment risk inherent in DC plans
from employees to another entity, guarantees commonly have
been embedded in DC plans. Therefore, the way in which
the guarantee is valued is very critical for the pension plan
provider. The difficulty associated with valuing the guarantee
embedded in a pension plan is that any such valuation must
cope with the contributions made at different time points during
the employee’s work duration.

In this research, we tackle a specific type of rate of
return guarantee linked to δ-year spot rates, a type of pension
guarantee that the previous literature has not investigated. We
assume that the asset price follows the geometric Brownian
motion and the interest rate dynamic follows the HJM interest
rate model with exponentially decaying volatility. The two
processes can be correlated through their random terms. We
employ Margrabe (1978) option pricing model to find the
values of guarantees. For the guaranteed rate to be the δ-
year spot rate, we derive a closed-form formula for valuing
maturity interest rate guarantees. The explicit formula does
not always exist for multi-period guarantees. We thus provide
an analytical formula for multi-period guarantees under the
special case that the guaranteed rate is the one-year spot rate.
Using a closed-form solution to value pension guarantees offers
the benefits of succinctness and decreased computing time.
Because an employee’s work duration usually is very long,
a simulation framework requires far more time to value the
guarantee embedded in the long-duration contract than would
the closed-form solution.

In our numerical analysis, for an illustration purpose, we
present the results for the special case only. We demonstrate
the accuracy of our closed-form solutions with simulated
results. In addition, the effect of deterministic mortality on the
value of guarantee is investigated through the UK experience
for annuitant and pensioner populations. We find that the
mortality effect is not significant for females. However, we
only consider the effect of mortality on deterministic basis.
Recently, the mortality risk has been widely discussed by
employing a stochastic mortality model in the literature, for
example Renshaw and Haberman (2006), Cairns et al. (2006)
and Cairns et al. (2007). The unanticipated change of mortality
pattern may play an important role in valuing the long duration
guarantees. The stochastic mortality effect is thus worth further
investigating. We also provide sensitivity analyses for the key
parameters that drive the values of both guarantees, and find
that type-II guarantees are more costly than type-I guarantees,
especially for long-term employees. The value of the guarantee
is sensitive to the changes of the asset return volatility estimates
and the effect is more obvious for type-II guarantees. Thus,
the provider of the guarantee cannot ignore the parameter risk
when valuing the guarantee and should be especially careful in
valuing type-II guarantees.

In the light of the analysis in this paper, we point out
some areas and issues to carry out for further research.
First, we do not investigate the issues of parameter risk
and mortality risk, which would be a valuable extension in
further research. Second, we assume that the diffusion factor
in the HJM framework is exponentially decaying. However, a
more flexible volatility structure for valuing the interest rate
guarantee is worth studying. Third, from the point of view of a
pension plan provider, hedging the risks associated with issuing
relative guarantees linked to spot rates is critical. Therefore,
explorations of suitable hedging strategies could help ensure
the financial safety of a pension fund.

Appendix A

In this appendix, we show the initial guaranteed accumu-
lative value A(n)

1,0, the time 0 market value of the guaranteed
accumulative value for $1 contributed in the nth year. Define

a risk-free money market account B• as Bt = exp
(∫ t

0 rudu
)

.

Following Eq. (6), the δ-year spot rate at time t − 1 is
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R (t − 1, t − 1 + δ) = −
ln P (t − 1, t − 1 + δ)

(t − 1 + δ) − (t − 1)

=
ln P (0, t − 1) − ln P (0, t − 1 + δ)

δ

+
σ 2

λ3δ

[(
eλ(t−1)

− 1
) (

e−λ(t−1)
− e−λ(t−1+δ)

)
−

(
e2λ(t−1)

− 1
) (

e−2λ(t−1)
− e−2λ(t−1+δ)

)
4

]

+

(
1 − e−λδ

λδ

)
σ

∫ t−1

0
e−λ(t−1−v)dWv.

Let

g1 (t) =
ln P (0, t − 1) − ln P (0, t − 1 + δ)

δ

+
σ 2

λ3δ

[(
eλ(t−1)

− 1
) (

e−λ(t−1)
− e−λ(t−1+δ)

)
−

(
e2λ(t−1)

− 1
) (

e−2λ(t−1)
− e−2λ(t−1+δ)

)
4

]

which would be a constant. Therefore, R (t − 1, t − 1 + δ) =

g1 (t) +

(
1−e−λδ

λδ

)
σ
∫ t−1

0 e−λ(t−1−v)dWv.

The time T value of the payoff from the type-I
guarantee for $1 contributed in the nth year is A(n)

1,T =∏T
t=n exp

(
R (t − 1, t − 1 + δ)

)
. By the martingale pricing

theory, we know that
A(n)

1,0
B0

= E Q
0

(
A(n)

1,T
BT

)
, where the expectation

is taken under a risk-neutral probability measure Q, conditional
on the information up to time 0.

Because B0 = 1,

A(n)
1,0 = E Q

0

(
A(n)

1,T

BT

)

= E Q
0

(
T∏

t=n
exp

(
R (t − 1, t − 1 + δ)

)
/BT

)

= E Q
0

{
exp

[
T∑

t=n

(
g1 (t) +

(
1 − e−λδ

λδ

)
σ

×

∫ t−1

0
e−λ(t−1−v)dWv

)

−

∫ T

0

(
f (0, u) +

σ 2

2λ2

(
1 − e−λu)2

+ σ

∫ u

0
e−λ(u−v)dWv

)
du

]}
.

We further define g2 (n, T ) =
∑T

t=n g1 (t) −
∫ T

0 f (0, u) du −∫ T
0

σ 2

2λ2

(
1 − e−λu

)2
du =

∑T
t=n g1 (t) −

∫ T
0 f (0, u) du −

σ 2

2λ2[
T −

2
λ

(
1 − e−λT

)
+

1
2λ

(
1 − e−2λT

)]
, which is a constant,
and then note that

A(n)
1,0 = E Q

0

[
exp

(
g2 (n, T ) +

(
1 − e−λδ

λδ

)

×

T∑
t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)

− σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

)]

= exp

{
g2 (n, T ) +

1
2

(
1 − e−λδ

λδ

)2

× VarQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)]}

× exp
{

1
2

VarQ
0

[
σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]}
× exp

{
−

(
1 − e−λδ

λδ

)

× CovQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)
,

σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]}
.

We then calculate (i) VarQ
0

[∑T
t=n

(
σ
∫ t−1

0 e−λ(t−1−v)dWv

)]
,

(ii) VarQ
0

[
σ
∫ T

0

∫ u
0 e−λ(u−v)dWvdu

]
, and (iii) CovQ

0[∑T
t=n

(
σ
∫ t−1

0 e−λ(t−1−v)dWv

)
, σ
∫ T

0

∫ u
0 e−λ(u−v)dWvdu

]
.

(i)

VarQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)]

= σ 2
T∑

i=n

T∑
j=n

CovQ
0

(∫ i−1

0
e−λ(i−1−v)dWv,

∫ j−1

0
e−λ( j−1−v)dWv

)

= σ 2
T∑

i=n

T∑
j=n

∫ min(i−1, j−1)

0
e−λ(i+ j−2−2v)dv

=
σ 2

2λ

T∑
i=n

T∑
j=n

e−λ(i+ j−2)
(

e2λ min(i−1, j−1)
− 1

)
,

(ii)

VarQ
0

[
σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]
= VarQ

0

[
σ

∫ T

0

∫ T

v

e−λ(u−v)dudWv

]
= VarQ

0

[
σ

λ

∫ T

0

(
1 − e−λ(T −v)

)
dWv

]
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=
σ 2

λ2

∫ T

0

(
1 − e−λ(T −v)

)2
dv

=
σ 2

λ2

[
T −

2
λ

(
1 − e−λT

)
+

1
2λ

(
1 − e−2λT

)]
,

(iii)

CovQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)
,

σ

∫ T

0

∫ u

0
e−λ(u−v)dWvdu

]

=

T∑
t=n

CovQ
0

[
σ

∫ t−1

0
e−λ(t−1−v)dWv,

σ

λ

×

∫ T

0

(
1 − e−λ(T −v)

)
dWv

]

=
σ 2

λ

T∑
t=n

CovQ
0

[∫ t−1

0
e−λ(t−1−v)dWv ,

∫ T

0

(
1 − e−λ(T −v)

)
dWv

]

=
σ 2

λ

T∑
t=n

[∫ t−1

0

(
e−λ(t−1−v)

− e−λ(T +t−1−2v)
)

dv

]

=
σ 2

λ2

T∑
t=n

[
1 − e−λ(t−1)

−

(
e−λ(T −t+1)

− e−λ(T +t−1)

2

)]

=
σ 2

λ2

[
(T − n + 1) −

(
e−λT

− e−λ(n−1)

e−λ − 1

)

−

(
1 − e−λ(T −n+1)

2(eλ − 1)

)
+

(
e−2λT

− e−λ(T +n−1)

2(e−λ − 1)

)]
.

Appendix B

In this appendix we demonstrate that the initial realized
accumulative value A(n)

2,0, or the time 0 market value of the
realized accumulative value of investing $1 in the nth year in
the pension portfolio, can be calculated analytically as A(n)

2,0 =

exp
(
−
∫ n−1

0 f (0, u) du
)

.

By the martingale pricing theory,
A(n)

2,0
B0

= E Q
0

(
A(n)

2,T
BT

)
.

Therefore, A(n)
2,0 = E Q

0

(
A(n)

2,T
BT

)
= E Q

0

(
ST

Sn−1
B−1

T

)
=

E Q
0

[
ST

Sn−1
exp

(
−
∫ T

0 rudu
)]

. ST , or the portfolio value at time

T , is equal to S0 exp
(∫ T

0 rudu −
1
2σ 2

S T + σS ZT

)
, the solution

to the SDE of Eq. (3).

Because A(n)
2,0 = E Q

0 {exp[−
∫ n−1

0 rudu −
1
2σ 2

S (T − n + 1)

+ σS(ZT − Zn−1)]}, after substituting Eq. (5) into ru and
defining g4 (n, T ) as −

∫ n−1
0 [ f (0, u) +

σ 2

2λ2 (1 − e−λu)2
]du
−
1
2σ 2

S (T − n + 1), we get

A(n)
2,0 = E Q

0

[
exp

(
g4 (n, T )

− σ

∫ n−1

0

∫ u

0
e−λ(u−v)dWvdu + σS

∫ T

n−1
dZv

)]

= E Q
0

[
exp

(
g4 (n, T )

−
σ

λ

∫ n−1

0

(
1 − e−λ(n−1−v)

)
dWv

+ σS

∫ T

n−1
dZv

)]

= exp

[
g4 (n, T )

+
1
2

VarQ
0

(
−

σ

λ

∫ n−1

0

(
1 − e−λ(n−1−v)

)
dWv

+ σS

∫ T

n−1
dZv

)]

= exp

[
g4 (n, T )

+
1
2

VarQ
0

(
σ

λ

∫ n−1

0

(
1 − e−λ(n−1−v)

)
dWv

)

+
1
2

VarQ
0

(
σS

∫ T

n−1
dZv

)]

= exp

[
g4 (n, T )

+
1
2

(
σ 2

λ2

∫ n−1

0

(
1 − e−λ(n−1−v)

)2
dv

)

+
1
2

(
σ 2

S

∫ T

n−1
dv

)]

= exp

[
−

∫ n−1

0
f (0, u) du

]
.

The last equality sign holds as∫ n−1

0

(
1 − e−λ(n−1−v)

)2
dv =

∫ n−1

0
(1 − e−λu)2du.

Appendix C

In this appendix, we calculate the variances of ln A(n)
1,T and

ln A(n)
2,T .

First,

VarQ
0

(
ln A(n)

1,T

)
= VarQ

0

[
ln

T∏
t=n

exp
(
R (t − 1, t − 1 + δ)

)]
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= VarQ
0

[
T∑

t=n
R (t − 1, t − 1 + δ)

]

= VarQ
0

[
T∑

t=n

((
1 − e−λδ

λδ

)

× σ

∫ t−1

0
e−λ(t−1−v)dWv

)]

=

(
1 − e−λδ

λδ

)2

× VarQ
0

[
T∑

t=n

(
σ

∫ t−1

0
e−λ(t−1−v)dWv

)]

=
σ 2

2λ

(
1 − e−λδ

λδ

)2 T∑
i=n

T∑
j=n

e−λ(i+ j−2)

×

(
e2λ min(i−1, j−1)

− 1
)

.

The justification for the last equality sign is provided in
Appendix A.

Second, we derive the variance of ln A(n)
2,T .

VarQ
0

(
ln A(n)

2,T

)
= VarQ

0

[
ln
(

ST

Sn−1

)]
= VarQ

0

[∫ T

n−1
rudu −

1
2
σ 2

S (T − n + 1)

+ σS (ZT − Zn−1)

]

= VarQ
0

(
σ

∫ T

n−1

∫ u

0
e−λ(u−v)dWvdu + σS

∫ T

n−1
dZv

)
= VarQ

0

(
σ

∫ n−1

0

∫ T

n−1
e−λ(u−v)dudWv

+ σ

∫ T

n−1

∫ T

v

e−λ(u−v)dudWv + σS

∫ T

n−1
dZv

)

= VarQ
0

[
−

σ

λ

(
e−λT

− e−λ(n−1)
) ∫ n−1

0
eλvdWv

−
σ

λ

∫ T

n−1

(
e−λ(T −v)

− 1
)

dWv + σS

∫ T

n−1
dZv

]

= VarQ
0

[
−

σ

λ

(
e−λT

− e−λ(n−1)
) ∫ n−1

0
eλvdWv

]

+ VarQ
0

[
σS

∫ T

n−1
dZv

]
+ VarQ

0

[
−

σ

λ

∫ T

n−1

(
e−λ(T −v)

− 1
)

dWv

]
+ 2CovQ

0

[
−

σ

λ

∫ T

n−1

(
e−λ(T −v)

− 1
)

dWv ,

σS

∫ T

n−1
dZv

]

=
σ 2

2λ3

[
e−λT

− e−λ(n−1)
]2 [

e2λ(n−1)
− 1

]
+

σ 2

λ2

[
(T − n + 1) −

(
2(1 − e−λ(T −n+1))

λ

)

+

(
1 − e−2λ(T −n+1)

2λ

)]

+ σ 2
S (T − n + 1) +

2ρσσS

λ

[
(T − n + 1)

−

(
1 − e−λ(T −n+1)

λ

)]
.

Appendix D

In this section, we show how to compute CovQ
0

[ln A(n)
1,T , ln A(n)

2,T ] :

CovQ
0

(
ln A(n)

1,T , ln A(n)
2,T

)
= CovQ

0

(
ln

T∏
t=n

exp
(
R (t − 1, t − 1 + δ)

)
, ln

(
ST

Sn−1

))

= CovQ
0

[
T∑

t=n
R (t − 1, t − 1 + δ) ,

∫ T

n−1
rudu

+ σS (ZT − Zn−1)

]

= CovQ
0

[
T∑

t=n

((
1 − e−λδ

λδ

)
σ

∫ t−1

0
e−λ(t−1−v)dWv

)
,

−
σ

λ

(
e−λT

− e−λ(n−1)
) ∫ n−1

0
eλvdWv

−
σ

λ

∫ T

n−1

(
e−λ(T −v)

− 1
)

dWv + σS

∫ T

n−1
dZv

]

=

(
1 − e−λδ

λδ

)
·
σ 2

λ
·

(
−e−λT

+ e−λ(n−1)
)

×

T∑
t=n

CovQ
0

[∫ t−1

0
e−λ(t−1−v)dWv,

∫ n−1

0
eλvdWv

]

+

(
1 − e−λδ

λδ

)
·
σ 2

λ

×

T∑
t=n

CovQ
0

[∫ t−1

0
e−λ(t−1−v)dWv,

−

∫ T

n−1

(
e−λ(T −v)

− 1
)

dWv

]

+

(
1 − e−λδ

λδ

)
· σσS ·

T∑
t=n

CovQ
0

×

[∫ t−1

0
e−λ(t−1−v)dWv,

∫ T

n−1
dZv

]
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=

(
1 − e−λδ

λδ

)
·
σ 2

λ
·

(
−e−λT

+ e−λ(n−1)
)

×

T∑
t=n

∫ n−1

0
e−λ(t−1−2v)dv +

(
1 − e−λδ

λδ

)

×
σ 2

λ

T∑
t=n

∫ t−1

n−1
e−λ(t−1−v)

(
1 − e−λ(T −v)

)
dv

+

(
1 − e−λδ

λδ

)
· σσS ×

T∑
t=n

∫ t−1

n−1
e−λ(t−1−v)ρdv

= σ

(
1 − e−λδ

λδ

) T∑
t=n

[(
1 − e−λ(t−n)

λ

)(σ

λ
+ ρσS

)
+

σ

2λ2

(
e−λ(T +t−1)

+ e−λ(t−n)

− e−λ(t+n−2)
− e−λ(T −t+1)

)]
.

Appendix E

We derive the volatility term σ̂
(n)
I

√
T of the composite asset

UT =
A(n)

1,T

A(n)
2,T

. Because we reduce the valuation problem of a type-

I guarantee to the valuation of a standard European call option
on a single lognormally distributed underlying asset U• with
unit strike price, the value of σ̂

(n)
I represents a crucial input to

our option pricing formula.
Because σ̂

(n)
I

√
T is the volatility of the composite asset

UT , UT =
A(n)

1,T

A(n)
2,T

, by Ito’s lemma, the variance of ln UT is given

by(
σ̂

(n)
I

)2
T = VarQ

0

(
ln A(n)

1,T

)
+ VarQ

0

(
ln A(n)

2,T

)
− 2CovQ

0

(
ln A(n)

1,T , ln A(n)
2,T

)
= (T − n + 1)

(
σ 2

f

3
+ σ 2

S − ρσ f σS

)
.

Appendix F

In this appendix, we derive the initial market value of the
first term of π

(n)
T (II) for the special case of δ = 1.

Specifically, E Q
0 [
∏T

t=n max(exp(R(t − 1, t)), exp(Rt )) ×

B−1
T ], the first term of E Q

0 [
π

(n)
T (II)
BT

], is calculated as

E Q
0

[
e−

∫ T
0 rudu

×

T∏
t=n

max
(
exp

(
R (t − 1, t)

)
, exp (Rt )

)]

= E Q
0

[
e−

∫ T
0 rudu

×

T∏
t=n

max
(

eR(t−1,t),
St

St−1

)]

= E Q
0

[
e−

∫ n−1
0 rudu

×

T∏
t=n

e−
∫ t

t−1 rudu
×

T∏
t=n

max

(
e

g1(t)+
(

1−e−λ

λ

)
σ
∫ t−1

0 e−λ(t−1−v)dWv
,

e
∫ t

t−1 rudu−
1
2 σ 2

s +σs(Zt −Zt−1)

)]

= E Q
0

[
e−

∫ n−1
0 rudu

×

T∏
t=n

max
(

e
−
∫ t

t−1 rudu+g1(t)+
(

1−e−λ

λ

)
σ
∫ t−1

0 e−λ(t−1−v)dWv
,

e−
1
2 σ 2

s +σs(Zt −Zt−1)
)]

,

where

−

∫ t

t−1
rudu + g1 (t) +

(
1 − e−λ

λ

)
σ

∫ t−1

0
e−λ(t−1−v)dWv

= −

∫ t

t−1

(
f (0, u) +

σ 2

2λ2

(
1 − e−λu)2

+ σ

∫ u

0
e−λ(u−v)dWv

)
du

+ g1 (t) +
σ
(
e−λ(t−1)

− e−λt
)

λ

∫ t−1

0
eλvdWv

= g3 (t) − σ

∫ t

t−1

∫ u

0
e−λ(u−v)dWvdu

+
σ
(
e−λ(t−1)

− e−λt
)

λ

∫ t−1

0
eλvdWv

= g3 (t) −
σ

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dWv, (11)

and g3 (t) is defined as

g3 (t) = −

∫ t

t−1
f (0, u) du

−

∫ t

t−1

σ 2

2λ2

(
1 − e−λu)2 du + g1(t)

= −

∫ t

t−1
f (0, u) du −

σ 2

2λ2

[
1 +

2
λ

(
e−λt

− e−λ(t−1)
)

−
1

2λ

(
e−2λt

− e−2λ(t−1)
)]

+ g1(t).

The last equality sign of Eq. (11) holds as

σ

∫ t

t−1

∫ u

0
e−λ(u−v)dWvdu

= σ

(∫ t−1

0

∫ t

t−1
e−λ(u−v)dudWv

+

∫ t

t−1

∫ t

v

e−λ(u−v)dudWv

)

= σ

(∫ t−1

0

(
e−λ(t−1)

− e−λt
)

eλv

λ
dWv
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+

∫ t

t−1

(
e−λv

− e−λt
)

eλv

λ
dWv

)

=
σ
(
e−λ(t−1)

− e−λt
)

λ

∫ t−1

0
eλvdWv

+
σ

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dWv.

Therefore, the first term of E Q
0

[
π

(n)
T (II)
BT

]
becomes

E Q
0

[
e−

∫ n−1
0 ru du

×

T∏
t=n

max

(
e
−
∫ t

t−1 ru du+g1(t)+
(

1−e−λ

λ

)
σ
∫ t−1

0 e−λ(t−1−v)dWv
,

e−
1
2 σ 2

s +σs(Zt −Zt−1)

)]

= E Q
0

[
e−

∫ n−1
0 ru du

×

T∏
t=n

max

(
eg3(t)− σ

λ

∫ t
t−1

(
1−e−λ(t−v)

)
dWv , e−

1
2 σ 2

s +σs(Zt −Zt−1)

)]
= E Q

0

[
e−

∫ n−1
0 ru du

]
×

T∏
t=n

E Q
0

[
max

(
eg3(t)− σ

λ

∫ t
t−1

(
1−e−λ(t−v)

)
dWv ,

e−
1
2 σ 2

s +σs(Zt −Zt−1)

)]
. (12)

It is easy to determine that E Q
0

[
e−

∫ n−1
0 rudu

]
= e−

∫ n−1
0 f (0,u)du .

The payoff structure inside the second expectation of Eq. (12),

max
(

eg3(t)−
σ
λ

∫ t
t−1

(
1−e−λ(t−v)

)
dWv , e−

1
2 σ 2

s +σs(Zt −Zt−1)
)

, can be

viewed as that of an exchange option. If both underlying as-
sets of the exchange option are lognormally distributed, we
can employ the formula derived by Margrabe (1978) and fol-
low the same line of proof as in Proposition 1 to derive
the initial market value of the multi-period rate of return
guarantee.

Let

X t = g3 (t) −
σ

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dWv

and

Yt = −
1
2
σ 2

S + σS (Z t − Z t−1) .

Because both X t and Yt are normally distributed, eX t

and eYt are lognormally distributed, and the value of

E Q
0

[
max

(
eg3(t)−

σ
λ

∫ t
t−1

(
1−e−λ(t−v)

)
dWv , e−

1
2 σ 2

s +σs(Zt −Zt−1)
)]

can be derived by using Margrabe (1978) formula. We first
compute the variances of X t and Yt and the covariance between
them as follows:

VarQ
0 (X t ) = VarQ

0

(
−

σ

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dWv

)
=

σ 2

λ2

∫ t

t−1

(
1 − e−λ(t−v)

)2
dv

=
σ 2

λ2

(
1 −

2
λ

(
1 − e−λ

)
+

1
2λ

(
1 − e−2λ

))
VarQ

0 (Yt ) = VarQ
0 (σS (Z t − Z t−1)) = σ 2

S

and

CovQ
0 (X t , Yt )

= CovQ
0

(
−

σ

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dWv, σS

∫ t

t−1
dZv

)
= −

σσS

λ
CovQ

0

(∫ t

t−1

(
1 − e−λ(t−v)

)
dWv,∫ t

t−1
ρdWv +

√
1 − ρ2dŴv

)
= −

ρσσS

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dv

= −
ρσσS

λ

(
1 −

1 − e−λ

λ

)
.

Next, we define two new assets, A3,t = eX t Bt and A4,t =

eYt Bt , and follow Margrabe (1978) to obtain

E Q
0

[
max

(
eX t , eYt

)]
= E Q

0

[
B−1

t max
(

A3,t , A4,t
)]

= E Q
0

[
B−1

t max
(

A3,t − A4,t , 0
)]

+ E Q
0

[
B−1

t A4,t

]
= A3,0 N (d3 (t)) − A4,0 N (d4 (t)) + A4,0,

where

d3 (t) =
ln
(

A3,0/A4,0
)
+ σ̂ 2

II t/2

σ̂II
√

t

d4 (t) = d3 (t) − σ̂II
√

t,

and σ̂II
√

t is the volatility term of the composite asset
A(n)

3,t

A(n)
4,t

,

calculated as

σ̂ 2
II t = VarQ

0

[
ln
(

A3,t

A4,t

)]
= VarQ

0

[
ln
(

eX t

eYt

)]
= VarQ

0 (X t ) + VarQ
0 (Yt ) − 2CovQ

0 (X t , Yt )

=
σ 2

λ2

(
1 −

2
λ

(
1 − e−λ

)
+

1
2λ

(
1 − e−2λ

))
+ σ 2

S +
2ρσσS

λ

(
1 −

1 − e−λ

λ

)
.
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Because A3,t and A4,t are not tradable assets in the market, we
derive their initial market values, A3,0 and A4,0, as follows:

A3,0 = E Q
0

[
A3,t

Bt

]
= E Q

0

[
eX t
]

= E Q
0

[
exp

(
g3 (t) −

σ

λ

∫ t

t−1

(
1 − e−λ(t−v)

)
dWv

)]
= exp

[
g3 (t) +

σ 2

2λ2 VarQ
0

(∫ t

t−1

(
1 − e−λ(t−v)

)
dWv

)]
= exp

[
g3 (t) +

σ 2

2λ2

∫ t

t−1

(
1 − e−λ(t−v)

)2
dv

]
= exp

[
g3 (t) +

σ 2

2λ2

(
1 −

2
λ

(
1 − e−λ

)
+

1
2λ

(
1 − e−2λ

))]
A4,0 = E Q

0

[
A4,t

Bt

]
= E Q

0

[
eYt
]

= e0
= 1.

Finally, as Eq. (12) shows, the initial market value of
the multi-period rate of return guarantee π

(n)
0 (II) equals

e−
∫ n−1

0 f (0,u)du
×
∏T

t=n E Q
0

[
max

(
eX t , eYt

)]
− e−

∫ n−1
0 f (0,u)du ,

and we have derived that E Q
0

[
max

(
eX t , eYt

)]
= A3,0 N (d3(t))

− A4,0 N (d4 (t)) + A4,0. Therefore, it follows that

π
(n)
0 (II) = exp

(
−

∫ n−1

0
f (0, u) du

)

×

{
T∏

t=n

[
A3,0 N (d3 (t)) − A4,0 N (d4 (t)) + A4,0

]
− 1

}
.

Appendix G

In the numerical analysis, we analyze the effect of mortality
using the UK standard tables for annuitant and pensioner
populations for the period 1991–1994 proposed by CMI Bureau
(1999). We describe the methodology for constructing T px , the
survival probability that an employee aged x remains alive after
T years, as follows.

CMI Bureau calculates the base mortality rates (qx ) first,
where qx is the probability of dying in one year for an employee

aged x . By definition, qx = 1 − exp
(
−
∫ 1

0 µx+sds
)

, where

µx+s is the hazard rate. According to the report issued by CMI
Bureau (1999), µx+s is expressed as

µx+s = a1 + a2γ + exp
{

b1 + b2γ + b3

(
2γ 2

− 1
)}

,

where γ = (x + s − 70)/50. In our numerical results, we
consider two parameter sets: (i) a1 = 0.0003, a2 = 0,
b1 = −5.265363, b2 = 6.683129, and b3 = −0.9 for female
pensioners; (ii) a1 = 0.00014429, a2 = −0.00040629, b1 =

−4.399861, b2 = 5.568973, and b3 = −0.654909 for male
pensioners. These parameter estimates are firstly obtained from
CMI Bureau (1999).

The projected mortality rates (qx,t ) is obtained by
considering the reduction factor (RF(x, t)), which is qx,t =

qx · RF(x, t). The projected mortality improvement factor for
age x at time t by CMI Bureau (1999) is expressed as

RF(x, t) = α(x) + [1 − α(x)] · [1 − β(x)]t/20

α(x) =


0.13 x < 60

1 + 0.87 ·
x − 110

50
60 ≤ x < 110

1 x ≥ 110

β(x) =


0.55 x < 60
(110 − x) · 0.55 + (x − 60) · 0.29

50
60 ≤ x < 110

0.29 x ≥ 110.

Therefore, the survival probability can be calculated as T px =

(1 − qx )(1 − qx+1,1) · · · (1 − qx+T −1,T −1).
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