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Abstract We propose a revised mixed-integer program-
ming (MIP) method to directly compute unmarked siphons
with a minimal number of places. This eliminates the need
to deduce a minimal siphon from an unmarked maximal
siphon obtained from the traditional MIP method proposed
by Chu et al. The revised MIP test reports smaller siphons
earlier than larger siphons and adds monitors to basic
siphons before compound siphons. This results in adding
fewer monitors and reaching more states.
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1 Introduction

Deadlock occurs due to mutual waiting for resources
among processes in flexible manufacturing systems
(FMS). Petri nets (PN) can model and analyze such
deadlocks. Siphons are a structural object in PN that, once
unmarked, remain so forever [1–6].

It is well-known that the set of unmarked or empty
places in a dead net forms a siphon. Output transitions of
these empty places are permanently dead since the siphon
stays unmarked forever. This implies that a net is deadlock-
free if all its siphons are never empty.

To avoid deadlocks, every siphon must never be empty
of tokens by adding monitors and control arcs [3].
Unfortunately, the number of siphons grows quickly with
the size of nets; so does the number of monitors required.

The mixed-integer programming (MIP) method avoids the
complete enumeration of siphons.

The MIP method proposed by Chu and Xie [7] detects
deadlocks quickly for structurally bounded nets whose
deadlocks are tied to unmarked siphons. Requiring no explicit
enumeration of siphons, it opens a new avenue for checking
deadlock-freeness of large systems. Its computational effi-
ciency is relatively insensitive [7] to the initial marking and
more efficient than classical state enumeration methods.

The MIP method is able to find an unmarked maximal
siphon in an ordinary Petri net (OPN) (all arcs unit
weighted). It has been applied to design liveness-enforcing
supervisors such as systems of simple sequential processes
with resources (S3PR) [3] for FMS. The MIP method has
been applied to detect deadlocks [8, 9] and remove
redundant monitors [10] (more efficiently than the method
by Uzam et al. [11] based on reachability analysis). Park and
Reveliotis [12] and Huang [13] modified the MIP test for
general Petri nets (GPN) such as systems of simple
sequential processes with general resources requirement.

This method is an iterative approach consisting of two
main stages. At each iteration, find an unmarked maximal
siphon S using a fast deadlock detection technique based on
MIP. From the maximal siphon, efficiently obtain an
unmarked minimal siphon using an algorithm. The first
stage, called siphon control, adds, for each unmarked
siphon, a control place to the original net with its output
arcs to the sink transitions of the minimal siphon. This is to
prevent a minimal siphon from being unmarked. The
second, called augmented siphon control stage, adds a
control place to the modified net with its output arcs to the
source transitions of the net. This is required since adding
control places in the first stage may generate new unmarked
siphons. In addition, the second stage assures no new
unmarked siphons.
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An extra step is required to locate an unmarked minimal
siphon from S by repetitively removing dangling transi-
tions/places without input and/or output nodes. This is
because any minimal siphon and its set of input transitions
always generate a strongly connected (SC) subnet.

For a deadlocked net, unmarked places form an empty
siphon S. This implies that, if all siphons never get emptied,
the net is deadlock-free. We suggest a way to eliminate the
need to deduce a minimal siphon from an unmarked
maximal siphon S after reviewing the MIP method.

The rest of paper is organized as follows: Section 2
presents the preliminaries to understand the paper. The MIP
method and its revision are introduced in Section 3,
followed by discussions in Section 4. Finally, Section 5
concludes the paper.

2 Preliminaries

In this paper, we assume that all nets to which we refer,
unless otherwise mentioned, are OPN. Here, we present
only the definitions used in this paper. A PN (or place/
transition net) is a three-tuple N=(P, T, F) where P={p1,
p2, …, pa} is a set of places; T={t1, t2, …, tb} is a set of
transitions, with P?T≠∅ and P∩T=∅; and F a mapping
from (P×T)?(T×P) to nonnegative integers indicating the
weight of directed arcs between places and transitions. M0:
P→{0, 1, 2, …} denotes an initial marking whose ith
component, M0(pi), represents the number of tokens in
place pi. (N, M0) is called a marked net or a net system.

A node x in N=(P, T, F) is either a p∈P or a t∈T. The
postset of node x is x� ¼ y 2 P [ T F x; yð Þ > 0jf g, and its
preset �x ¼ y 2 P [ T F y; xð Þ > 0jf g.

ti is fireable if each place pj in �ti holds no fewer tokens
than the weight wj=F(pj,ti). Firing ti under M0 removes wj

tokens from pj and deposits wk=F(ti,pk) tokens into each
place pk in t�i ; moving the system state from M0 to M1.
Repeating this process, it reaches M′ by firing a sequence of
transitions. M′ is said to be reachable from M0; i.e., M0[σ>
M′. t is potentially fireable if there is a firing sequence to
reach M from M0 such that t is fireable under M. Place p is
said to be M0 if there is a firing sequence to reach M from
potentially marked such that p is marked under M.

A marked PN is pure iff (x,y)∈(P×T)?(T×P), F(x, y)>
0⇒F(y, x)=0. For a pure net, the flow relation can be
represented by the flow matrix A=A++A−, where A+[p, t]=
F(t, p) and A−[p, t]=F(p, t).

OPN are those for which F: (P×T)?(T×P)→{0,1}. An
OPN is called a state machine if ∀t∈T, t�j j ¼ �tj j ¼ 1. GPN
are those for which ∃j, wj>1, or ∃k, wk>1.

R(N, M0) is the set of markings reachable from M0. A
transition t∈T is live under M0 iff ∀M∈R(N, M0), ∃M′∈R(N,
M0), t is fireable under M′. A transition t∈T is dead under

M0 iff ∄M∈R(N, M0), where t is fireable. A PN (N, M0) is
live under M0 iff ∀t∈T, t is live under M0. It is weakly live
under M0 iff N is not live and ∃t∈T, t is live under M0. It is
bounded if ∀M∈R(N, M0), ∀p∈P, the marking at p, M(p)≤k,
where k is a positive integer.

For a PN, a nonempty subset τ of places is called a trap
if t� � �t. A nonempty subset D of places is called a
siphon if �D � D�. That is, every transition having
an output place in D has an input place in D. If
M0 Dð Þ ¼ P

p2D
M0 pð Þ ¼ 0, D is called a token-free or empty

siphon at M0. Otherwise, D is said to be filled. A minimal
siphon Dm does not contain a siphon as a proper subset. It is
called a strict minimal siphon (SMS), denoted by S, if it
does not contain a trap.

An S3PR is defined [3] as the union of a set of nets
Ni ¼ Pi [ p0i

� � [ PRi; Ti;Fi

� �
, sharing common places,

where the following statements are true:

1. p0i is called the process idle place of Ni. Places in
Pi and PRi are called operation and resource places,
respectively.

2. PRi≠∅; Pi≠∅; p0i =2Pi; Pi [ p0i
� �� � \ PRi ¼ ∅; ∀p∈Pi,

∀t′∈p•, ∃rp∈PRi, •t∩PRi= t′•∩PRi={rp}; ∀r∈PRi,
• • r∩ P i = r • •∩ P i ≠ ∅ ; ∀ r ∈ P R i , • r∩ r • = ∅ .
� � p0i
� � \ PRi ¼ p0i

� �
� � \ PRi ¼ ∅.

3. N
0
i is a SC state machine, where N

0
i ¼ Pi [ p0i

� �
;

�

Ti;FiÞ is the resultant net after the places in PRi and
related arcs are removed from Ni.

4. Every circuit of N contains the place p0i .
5. Any two nets Ni and Nj are composable, denoted by

Ni o Nj, if they share a set of common resource places.
Every shared place must be a resource place.

6. Transitions in �p0i and p0�i are called source and sink
transitions, respectively.

An example of S3PR is shown in Fig. 2. The following
siphon properties are useful to understand the theory
developed.

Property 1 The set of unmarked places in a dead net forms
a siphon.

Property 2 An OPN is deadlock-free if no minimal siphon
eventually becomes unmarked.

Property 3 A siphon free of tokens at a marking remains
token-free whatever the transition firings. A trap marked by
a marking remains marked.

Property 4 Let S be a minimal siphon. Then, the subnet
induced by S and �S is SC.

Property 5 Let M∈R(N, M0) and siphon S be empty of
tokens under M, and M(p)>0, then (1) p∉S. (2) If 8p 2 �t,
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M(p)>0, then t is enabled and not an output transition of
any place in S; i.e., t=2S�.

3 MIP and its revision

This section introduces the MIP basics via Subsection 3.1
on the constraints in an MIP and Subsection 3.2 on
objective functions. The tracing method to propagate and
obtain variables in an MIP is addressed in Subsection 3.3,
and the revision to obtain minimal unmarked siphons is
addressed in the final subsection 3.4. Examples at the end
of Subsection 3.3 may help the readers understand the
theory.

3.1 Constraints

Definition 1 Let S be a siphon. (1) νp is a binary variable
for p, and νp=1 if p∉S. (2) zt is a binary variable for t, and
zt=1 if t=2S�. Clearly, any p with νp=1 and any t with zt=1
will be removed if the classical algorithm is used. Note that
S={p|νp=0}.

Lemma 1 Let S be a siphon and p∈S. Then, 8t 2� p, (1)
zt=0. (2) νp≥zt.

Proof (1) 8t 2� p, t 2 S� and zt=0. (2) νp is a binary
variable; hence, νp=0 or 1. Thus, νp≥0=zt. █

Based on this lemma, we have

Theorem 1 ∀p∈P, 8t 2� p, νp≥zt.

Proof If p∈S, then, by Lemma 1.2, νp≥zt. If p∉S, then also
νp=1≥zt (=0 or 1). █

The inequality νp≥zt is a constraint used in the MIP test
in [7].

Theorem 2 Let M∈R(N, M0) and siphon S be empty of
tokens under M, and M(p)>0, then (1) νp=1. (2) ∀t∈T,
i f 8p 2 �t, M (p ) > 0 , t h e n ( a ) z t = 1 . ( b ) zt �P

p2�t np � �tj j þ 1.

Proof (1) M(p)>0 implies that p∉S and νp=1. (2.a) t is
enabled and t=2S�; zt=1. (2.b) Since 8p 2 �t, M(p)>0,
we have νp=1 by 1ð Þ ) P

p2�t np ¼ �tj j ) P
p2�t np��tj j þ 1 ¼ 1 ¼ zt by 2:að Þ ) zt �

P
p2�t np � �tj j þ 1. On

the other hand, if 9p 2 �t, M(p)=0,then t is disabled,P
p2�t np � �tj j < 0 and

P
p2�t np � �tj j þ 1 < 1 ¼ zt since

zt is a binary variable. Thus, zt �
P

p2�t np � �tj j þ 1,
whether t is enabled or not. █

The above inequality zt �
P

p2�t np � �tj j þ 1 in Theo-
rem 2.2.b is another constraint used in the MIP test in [7].
Theorem 2.1 implies that, if a place is marked, then νp=1.
Similarly, if a transition is enabled, then zt=1.

Note that, even if t is not enabled, but all of its input
places carry np=1, zt=1 by Theorem 2.2.b. We say that
transition t is pseudoenabled.

Corollary 1 zt=1 for any enabled transition.

Proof When 8p 2 �t, νp=1,
P

p2�t np ¼ �tj j. Theorem 2.2.b
implies that zt=1 for the enabled transition. █

Theorem 3 8p 2 t�, np=1, if zt=1.

Proof If νp=0, then νp<zt against the fact that νp≥zt in
Theorem 1. █

This theorem helps to propagate binary variables in a
forward fashion. Another constraint comes from the state
equation; i.e., M=M0+AX where M∈R(N, M0), A is the
incidence matrix of net N, and X is a firing vector. The
constraints so far obtained are summarized as follows:

zt �
X

p2t� np �
�tj j þ 1 ð1Þ

np � zt; 8 t pð Þ 2 F ð2Þ

np; zt 2 0; 1f g ð3Þ

np ¼ 1; if M pð Þ > 0 ð4Þ

M ¼ M0 þ AX ; M � 0; X � 0; ð5Þ
where A is the incidence matrix of net N.

Note that Eq. (4) is nonlinear; it can be linearized by the
following

np � M pð Þ=SB pð Þ; 8p 2 P ð4′Þ
for a structurally bounded net, where the structural bound (SB
(p)) is defined as SB pð Þ ¼ max M pð Þ Mj ¼ M0 þ AX ;f
M � 0; X � 0g.

When M(p) >0, np ¼ 1 � M pð Þ=SB pð Þ > 0. When
M pð Þ ¼ 0 ¼ M pð Þ=SB pð Þ, np=0 or 1 and again np≥M
(p)/SB(p).

3.2 Objective functions

There are only two possible objective functions: (1)
min-objective function: NMIP Mð Þ ¼ min

P
p2P np, and (2)

Int J Adv Manuf Technol (2009) 45:397–405 399



max-objective function: NMIP Mð Þ ¼ max
P

p2P np. The
following theorems and lemmas help to find the correct
objective function to find empty or unmarked siphons.

Lemma 4 If t is potentially fireable from M0, then np ¼
1 8p 2 t�, if zt=1.

Proof If νp=0, then νp<zt against the fact that νp≥zt in
Theorem 1. █

This lemma also follows from Theorem 3. The following
theorem confirms that zt=1, and hence, νp=1 in the above
lemma.

Theorem 4 (1) If t∈T is potentially fireable under M0, then
zt=1. (2) If p∈P is potentially marked, then νp=1.

Proof Prove by induction, with relation to |σ|, the length of
firing sequence σ. First, prove for |σ|=1, σ=t. t is enabled
under M0. By Theorem 2.1, 8p 2 �t, M0(p)>0, and νp=1.
Thus,

P
p2�t np ¼ �tj j ) P

p2t� np � �tj j þ 1 ¼ 1 ¼ zt. Af-
ter firing t, 8p0 2 t�, M0 becomes M, M(p′)>0, and hence,
n

0
p ¼ 1. Assume the theorem holds for any σ′ such that

|σ′|<|σ|=m; now, prove it also holds for σ, where transition t′
is enabled; i.e., potentially fireable under M0. 8p 2 �t0, let σ″
be the firing sequence such that p is potentially marked.
Thus, νp=1 by the assumption and

P
p2�t np ¼ �tj j )P

p2�t np � �tj j þ 1 ¼ 1 ¼ zt. This proves (1). By Lemma
4, 8p0 2 t0�, n

0
p ¼ 1. This proves (2). █

Corollary 2 ∀t∈T in a SC net, if t is potentially fireable
under M0, then

P
p2P np ¼ Pj j.

Proof By Theorem 4, zt=1. 8p 2 t�, np=1. Since the net is
SC, ∀p∈P, ∃t∈T, such that p 2 t�. Thus, np=1 for every
place p in the net and

P
p2P np ¼ Pj j. █

Thus, if all transitions are potentially fireable from the
initial marking, then all np=1 and S={p|np=0}=∅. One
cannot find any unmarked siphon under M0. This remains so
for any reachable marking M as shown by the next theorem.

Theorem 5 If every t is potentially fireable from an M∈R
(N, M0), then max

P
p2P np ¼ Pj j.

Proof From Corollary 2,
P

p2P np ¼ Pj j, which is the
maximal of

P
p2P np corresponding to an empty siphon

since S={p|np=0}. █

This theorem immediately leads to the following:

Corollary 3 (1) If there is an M∈R(N, M0) such that every t
is potentially fireable from M, then the MIP method with

max-objective function produces an incorrect solution of
empty siphon. (2) The MIP method is able to produce an
empty siphon only if ∀M∈R(N, M0), there is a transition
that is not potentially fireable.

Proof (1) By Theorem 5, max
P

p2P np ¼ Pj j and S=
{p|np=0}=∅, which may not always hold. (2) Assume
contrarily that all transitions are potentially fireable, and
then by (1), only a null siphon can be obtained—
contradiction. █

Therefore, if the objective function NMIP Mð Þ ¼
max

P
p2P np is chosen, one would not be able to obtain

unmarked siphons if all transitions are potentially fireable
under the initial marking (true for a well-designed FMS).
On the other hand, the maximal siphon unmarked at a given
marking can be determined by the following MIP problem,
and there exist siphons unmarked at M iff NMIP(M)<|P|:

NMIP Mð Þ ¼ min
X

p2P np

under constraints 1–4 and

M ¼ M0 þ AX ; M � 0; X � 0;

where A is the incidence matrix of net N.
Note that Eq. 4 implies that νp=1 if M(p)>0 and νp=1 or

0 if M(p)=0. To minimize
P

p2P np, νp=0 if M(p)=0. Also,
from (1), zt≥0 when

P
p2�t np � �tj j þ 1e0; zt=0 or 1. We

pick zt=0 to have more νp=0 since νp≥zt=0, ∀(t p)∈F by
(2). If zt=1, then νp=1, and the objective function becomes
bigger.

Based on the above results, we can conclude that there is
no unmarked siphon in a net system N=(P, T, F, M) if
NMIP(M)=min

P
p2P np ¼ Pj j is true, which implies S=

{p|νp=0}=7 . To find maximal unmarked siphons, the
method (in the next subsection) to trace a net to find all νp
is helpful for finding NMIP(M).

3.3 Manual tracing

Instead of relying on a computer to compute νp and zt, it is
desirable to manually trace the net to propagate binary
variables given a marking M. When the values of νp or zt
cannot be precisely determined by the constraints 1–5; i.e.,
(1) νp=0 or 1 or (2) zt=0 or 1, this uncertainty is called
binary ambiguity. Careless assignments of νp or zt in case of
binary ambiguity may result in conflicting binary values of
νp or zt. For instance, in Fig. 1a, M0(p3)=0. If one assigns
νp3=0, it would conflict with the νp3=1 obtained using
Theorem 4 since p3 is potentially marked from M0.

There are two cases where one can assign νp∀p∈P and
zt∀t∈T easily. First, if all transitions are potentially fireable,
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then all νp=zt=1. Second, if the net is deadlocked, then all
νp=0 if M(p)=0 and νp=1 otherwise. There is no need to
propagate and update binary variables—called immediate
assignment contrasting to that (called propagating assign-
ment) below where some initial guesses are made. In this
case, use constraints 1–5 to propagate and update other
binary variables.

For other cases, it is unclear how to assign all νp and zt.
First, assign (1) νp=1 if M(p)=1 and (2) zt=1 if t is
enabled. Then, propagate assigned binary variables to those
unassigned under no binary ambiguity. That is, if a
transition is enabled, then assign zt=1 (Corollary 1). If
νp=0, then 8t 2 �p, zt=0 (constraint 2). For the unassigned
νp or zt, one has to resolve the binary ambiguity to assign zt

for a disabled transition or assign νp for an unmarked place
p whose input zt=0[νp≥zt=0 (t p)∈F].

Depending on the values assigned, one of the objective
functions may be achieved. For instance, if one assigns zt=
1 to a disabled transition, then 8p 2 t�, νp=1. If one assigns
zt=0 to a disabled transition, then 8p 2 t�, νp=0 or 1 based
on constraint 2, which needs to be resolved. If an
unresolved νp is assigned with 1, the objective function
value is increased by 1. Otherwise, if it is assigned with 0,
the objective function value is unchanged. As a result, a
uniform assignment of 1 to unresolved νp may result in an
objective function to reach its maximum. On the other
hand, a uniform assignment of 0 to unresolved νp may
result in an objective function to reach its minimum.

p1

t1

p2

p3

p5

t2
t3

t4

All transitions are potentially fireable. 

p4

t5

p1

t1

p2

p3

t2
t3

t4

t2 and t4 are potentially fireable. The rest 
are dead. 

p4

t5

p1

t1

p2

p3

t2
t3

t4

A dead net 

p4

t5

a b

c

Fig. 1 a All transitions are
potentially fireable. b A dead
net. c t2 and t4 are potentially
fireable. The rest are dead
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The following rules are useful for manual tracing:

Tracing Rules

1. p∈P, if M(p)>0, then νp=1.
2. t∈T, if t is enabled, then zt=1.
3. ∀t∈•p, (a) if νp=0, then zt=0, (b) if νp=1, then zt=0

or 1.
4. ∀p∈t•, (a) if zt=1, νp=1, (b) if zt=0, then νp=0 or 1.
5. t∈T, if t is disabled, then (a) zt=0 if ∃p∈t•, νp=0. (b) zt=

0 or 1, if ∀p∈t•, νp=1.
6. p∈P, if M(p)=0, then (a) νp=1 if ∃t∈•p, zt=1. (b) νp=0

or 1, if ∀t∈•p, zt=0.

Examples The three nets in Fig. 1a–c have the same
structure but different initial markings. All transitions in
Fig. 1a are potentially fireable (even though they are not
live); hence, all νp=zt=1.

P
p2P np ¼ Pj j. The net in Fig. 1b

is dead and all νp=0 if M(p)=0 (only νp4=1) and all zt=0.
In Fig. 1c,

P
p2P np ¼ 1. Only t4 is potentially fireable

(zt4=1), and the rest of the transitions t are dead and
disabled (zt=0 or 1). Resolving the binary ambiguity by
setting zt=1 is equivalent to pseudoenabling the disabled
transition t and by Lemma 4, νp=1 for all their output
places p 2 t�. As a result, Σp∈P νp=|P| and the siphon
obtained is an empty set. On the other hand, resolving the
binary ambiguity by setting zt=0 sets νp=0 for all their
output places p 2 t�. As a result, the set of places with νp=0
is an empty siphon. Note that the obtained siphon is larger
than the minimal S={p1, p2, p5}. This example clearly
indicates that, to find unmarked siphons, one should always
resolve the binary ambiguity by setting zt=0 for disabled
transitions.

3.4 Revised MIP test

Since there are only two objective functions and the min-
objective function needs an extra step to extract minimal
siphons, the only choice is to maximize (instead of
minimize)

P
p2P np.

P
p2P np is maximized if we set νp=1

if M(p)=0 ∀p∈P. However, we will always get NMIP Mð Þ ¼
max

P
p2P np ¼ Pj j with no unmarked siphons. To prevent

this, we add one more constraint:

X
p2P np < Pj j ð6Þ

so that NMIP(M)<|P|. This way, νp=1 iff p∉S. MaximizingP
p2P np minimizes the number of places in S and, thus,

leads to a minimal siphon.
To maximize

P
p2P np, νp=1 if M(p)=0 and p is not in S.

Also, from constraint 1, zt≥0 when
P

p2�t np � �tj j þ 1o0;

zt=0 or 1. We pick zt=1 to have more νp=1 since νp≥zt,
∀(t p)∈F by constraint 2.

For instance, for the net in Fig. 2, we may get maximal
unmarked siphon S={p4, p6, p7, p8, p9, p10, p11}, which is
not minimal. Note that zt7=0 implies νp7≥zt7=0 by
constraint 2. If we pick νp7=1 to maximize, p7 would no
longer be in S since νp7=1 {p7∉S}. Additionally, S/{p7} is a
minimal siphon.

If the net never has any unmarked siphon, thenP
p2P np ¼ Pj j and violates inequality 6 and the MIP test

would result in no feasible solutions. Experimental results
indicate that such an infeasibility conclusion can be
obtained quickly.

The revised MIP test is summarized below.

NMIP Mð Þ ¼ max
X

p2P np

zt �
X

p2t� np �
�tj j þ 1 ð1′Þ

np � zt; 8 t pð Þ 2 F ð2′Þ

np; zt 2 0; 1f g ð3′Þ

np � M pð Þ=SB pð Þ; 8p 2 P ð4′Þ

N2 N1 t5 

t6 

p5

r1 

r2 

p1

t1 

p2 

t2 

t3 

p3 

p7 

t7 

p8 

p6 

p9 

t8 

1 

t4 

p4 

p10 

p11 

5 

5 

r3 

2 

2 

Fig. 2 Example
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X
p2P np < Pj j ð5′Þ

M ¼ M0 þ AX ; M � 0; X � 0 ð6′Þ
The net is deadlock-free if no solution is declared under

the MIP test. Otherwise, a random minimal unmarked

siphon S with a minimal number of places in S is reported.
The following theorem proves the correctness.

Theorem 6 Any feasible solution from the above revised
MIP test is a minimal unmarked siphon.

Proof Note that the feasible solution corresponds to an
unmarked siphon S under a certain reachable marking M
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since inequalities 1′–4′ and 5′ are the same as those of
traditional MIP. Assume that it is not minimal; then S
contains a minimal siphon S′ as a proper subset. Then there
exists a reachable dead marking M′ such that νp=0 iff p∈S′.
Obviously, it is a new feasible solution where NMIP(M′)>
NMIP(M), violating the fact that NMIP(M) is the maximal
among all solutions meeting inequalities 1′–4′ and 5′. █

Example For the net in Fig. 2, the revised MIP test reports
minimal S1={p9, p10, p3, p6} unmarked at the first run. We
then add monitor VS1 and control arcs as shown in Fig. 3a.
The second run reports minimal S2={p10, p11, p4, p7}
unmarked. There is no need to run a second program to get
minimal siphons. We then add monitor VS2 and control arcs
as shown in Fig. 3b. If we set M0(p1)=M0(p11)=1, no
siphons can become empty, and the MIP test declares no
solution since max

P
p2P np ¼ Pj j.

On the other hand, following the traditional MIP
method, one may find S

0
3 ¼ p9; p10; p11; p3; p4; p6f g as a

maximal unmarked siphon, from which we obtain S3={p9,
p10, p11, p4, p6} as an unmarked minimal siphon and add a
monitor VS3 and some control arcs as shown in Fig. 3c.
Next, we obtain S

0
1 ¼ p9; p10; p3; p4; p6; p8f g as a maximal

unmarked siphon, from which we obtain S1={p9, p10, p3,
p6} as an unmarked minimal siphon and add a monitor VS1

and some control arcs. Finally, the MIP test reports S
0
2 ¼

p10; p11; p4; p7; p3; p6f g as a maximal unmarked siphon and
add a monitor VS3, from which we obtain S2={p10, p11,
p4, p7} as an unmarked minimal siphon and add a monitor
VS2 and some control arcs as shown in Fig. 3d. It is easy to
see that the traditional method results in one additional
monitor VS3, which is redundant and can be removed. In
addition, it takes extra steps and time to find unmarked
minimal siphons S1–S3 from maximal unmarked siphons
S

0
1–S

0
3.

This can be explained below and is true in general. Let
S1p ¼ S1 \ P ¼ p3; p6f g, S2p ¼ S2 \ P ¼ p4; p7f g, a n d
S3p ¼ S3 \ P ¼ p4; p6f g. S1p \ S3p ¼ p6f g, S2p \ S3p ¼ p4f g.
To be marked, min M(S1)=min M(S2)=min M(S3)=1. Let
M(S1)=M(p3)=M(S2)=M(p7)=1, then M(S3)=0. Note
M p3ð Þ þM p7ð Þ þM p10ð Þ ¼ M0 p10ð Þ. Thus, if M0(p10)=1,
then it is not true that M(p3)=M(p7)=1. If M(S1)=M(p3)=1
and M(p7)=0, then M(p4)=M(S3)=1 in order for M(S2)=1.
If M(S2)=M(p7)=1 and M(p3)=0, then M(p6)=M(S3)=1
in order for M(S1)=1. In both cases, M(S3)=1. Thus, if
M0(p10)=1, then S3 is controlled as long as both S1 and S2
are controlled. As a result, only two monitors are required
using the revised MIP technique.

On the other hand, if we add monitor VS3 first, then
M S3ð Þ ¼ 1 ¼ M p4ð Þ þM p6ð Þ. If M(S3)=M(p6)=1 and M
(p4)=0, then it is possible that M(p7)=1, M(S1)=M(p3)=0.
Thus, we need to add a monitor (VS1) for S1. Similarly, if
M(S3)=M(p6)=1 and M(p4)=0, then it is possible that M

(p3)=1, M(S2)=M(p7)=0. Thus, we need to add a monitor
(VS2) for S2. As a result, there are three monitors using the
traditional MIP technique.

4 Discussion

The proposed approach helps to reduce the number of MIP
iterations [14] and to reach more states, as explained below.
To maximize the number of good states, the original un-
controlled model should be disturbed as little as possible and
each SMS S should be allowed to reach its limit state; i.e., M
(S) reaches its minimal value while M(S)>0. A monitor VS
and control arcs are added to achieve this minimal value.

There are two kinds of new SMS. If there are no resource
places, the new SMS is called a control siphon since all
places that are shared between processes are monitor or
control places. Otherwise, it is called a mixture siphon.

If one carefully selects a sequence of unmarked siphons
to add monitors, the number of monitors required can be
reduced. This also reduces the number of MIP iterations
required to add all monitors to complete the control.

For instance, in an earlier paper [15], we propose to
synthesize elementary (dependent) siphons for an S3PR from
resource (compound) circuits. They are also called basic
(compound) siphons. Several basic siphons make up a
compound siphon. We show that, if all such basic siphons
are controlled under a certain condition, so is some
compound siphon, which then needs no monitor. The
converse is not true; even though a compound siphon is
controlled, all basic siphons remain uncontrolled and
monitors are needed for each of them.

The size of basic siphons is obviously smaller than that
of compound siphons. Hence, the controlled system gets
less disturbed and reaches more states for basic siphons
than for compound siphons. Thus, the revised MIP test
reports smaller siphons earlier than larger siphons and adds
monitors to basic siphons before compound siphons. This
results in adding few monitors and reaching more states.
This work (1) relieves the problem of siphon enumeration,
which grows exponentially, and (2) reduces the number of
subsequent time-consuming MIP iterations.

5 Conclusions

The classical MIP efficiently finds unmarked maximal
siphons. An extra step is required to obtain minimal
unmarked siphons, upon which monitors are added to
prevent the siphon from becoming unmarked.

We propose a direct MIP method to eliminate the extra
step to compute minimal unmarked siphons. The revised
MIP method does not assume the net is an S3PR, and

404 Int J Adv Manuf Technol (2009) 45:397–405



hence, the method works for arbitrary OPN, which is more
general than S3PR.
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