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The proof of liveness for various new classes of nets is not intuitive and rather hard 

to understand. We propose to find the maximum class, called non-virtual-net (NV-net) 
that are live as long as all minimal siphons never get empty of tokens and the maximum 
class, called virtual-net (V-net) that may be weakly live if all minimal siphons never get 
empty of tokens. In the future, when a new system is developed, if it is an NV-net, then 
it is live as long as no siphons ever get empty. We show that weakly liveness is closely 
related to a structure called Virtual First Order Structure. We show that both Synchro-
nized Choice Net and Extended Synchronized Choice Net belong to non-virtual-net.  
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1. INTRODUCTION 
 

One of fundamental problems of using Petri nets to model automated systems is the 
detection of deadlocks which can be characterized by siphons and traps [1-3]. However, 
for arbitrary large Petri net models, there is hardly any efficient algorithm for checking 
liveness. A siphon (trap) is a set of places where tokens can leak out (inject in) and may 
never return (leak out) to make it dead. It is known that in a dead net, the set of places 
without tokens forms an empty siphon. Hence to avoid being dead, all siphons should 
never be empty of tokens [4] (the net is called an Nf, see Def. 2).  

However, being never empty of tokens does not guarantee liveness as shown in Fig. 
1 (a). The set of all places form a siphon that contains a token. t1 is not live even though 
both its input places may be marked. There is only one token moving alternatively be-
tween the two input places. The net is called weakly live and denoted Nw. It is live if there 
are two tokens in the net. The path (called virtual path, see Def. 7) from p1 or p2 to t1 
does not contain any node and both p1 and p2 have output transitions other than t1. Such a 
structure is called a Virtual First Order Structure (VFOS, see Def. 8). We will show that 
such a structure makes the net weakly live. 

As a result, proof of liveness based on siphons only applies to special classes of nets 
such as bounded Extended Free Choice net (EFC), Systems of Simple Sequential Proc-
esses with Resources (S3PR) [3], Extended Non-Self controlling nets (ENSeC) [4], Ex-
tended Resource Control Net (ERCN) [5], Synchronized Choice nets (SNC, see Def. 11) 
[6, 7], Extended SNC (ESNC, see Def. 12) [2], etc. 
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Fig. 1. (a) An example of weakly live net where the only siphon never gets empty of tokens; (b) 
The GPN version of that in (a).  

 
The above classes of nets have proven to be live as long as they are Nf. But the proof 

is not intuitive and rather hard to understand. We propose to find the maximal class of 
nets that are live as long as all minimal siphons never get empty of tokens. We call such 
nets non-virtual-net or NV-Net and they do not have any VFOS. The rest of nets are 
called virtual-net or V-net (Fig. 1 (a)). This is convenient because if a new class of Petri 
nets (PN) lies within the set, we don’t have to prove its liveness in a hard and non-intui-
tive way and it is live if every minimal siphon is always marked.  

Section 2 presents the preliminaries. Section 3 presents the problems due to asym-
metrical first-order structure (FOS, see Fig. 2). Section 4 proves the above claim on 
maximal class of nets. Section 5 proves that both SNC (Synchronized Choice nets) and 
ESNC (Extended SNC) belong to NV-net. Section 6 concludes the paper. We assume the 
reader knows about Petri nets [8, 9]. However, in order to make the paper as self-con-
tained as possible, an appendix is included with the definition of the main concepts. For 
sake of discussion continuity, all proofs are reported in Appendix 2. Appendix 3 lists 
the index of terms.  

2. PRELIMINARIES 

Definition 1  A subnet Ni = (Pi, Ti, Fi) of N is generated by X = Pi ∪ Ti, if Fi = F ∩ (X × 
X). It is an O-subnet of N if Ti = Pi•. The O-subnet of a minimal siphon is denoted OD. 

The net in Fig. 1 (a) has only one siphon: P (all places in N). T is the set of all out-
put transitions of places in P and N is the OD. 

Lemma 1 [1, 10]  For a Petri net (N, M0), if there does not exist any firable transition, 
then there exists a token-free siphon at M0. 

Definition 2  A net N where all siphons are never token-free (or empty) is denoted Nf. A 
weakly live net N is denoted Nw. A net N being both Nf and Nw is denoted Nf

w. 

Definition 3  (Commoner’s Deadlock-Trap Property) [11]: Let (N, M0) be a marked net. 
(N, M0) satisfies the deadlock-trap property, iff the following two conditions hold:  

(1) Every minimal siphon of N contains a trap. 
(2) The maximal trap in each minimal siphon is marked for M0. 
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Fig. 2. The four PN containing the four k. 

 
Condition 1 is referred to as structural Commoner’s property, which is strongly related to 
the liveness properties [11]. 
 
Lemma 2  If a Petri net satisfies the Commoner’s Deadlock-Trap Property, then it is an 
Nf. 

 
Virtual First-Order Structure (VFOS) consists of a special type of FOS that con-

tains two handles. We first present the definitions of handles, bridges, AB-handles, and 
AB-bridges where A and B can be T or P. Roughly speaking, a “handle” is an alternate 
disjoint path between two nodes. A PT-handle starts with a place and ends with a transi-
tion whereas a TP-handle starts with a transition and ends with a place.  
 
Definition 4  Let N = (P, T, F). H1 = [nsn1n2…nkne] and H2 = [nsn’1n’2…n’hne] are ele-
mentary directed paths, ni, n’j ∈ P ∪ T, i = 1, 2, …, k, j = 1, 2, …, h. H1 and H2 are said to 
be mutually complementary. Each is called a handle in N if ni ≠ n’j ∀i, j defined above; ns 
and ne are called the start and the end nodes of H1 and H2, respectively. Note that ns and 
ne may be identical. An elementary directed path B = [na, nb, …, nq] is a bridge from H1 
to H2 if (1) na ∈ H1, nq ∈ H2, na ≠ ns, na ≠ ne, nq ≠ ns, nq ≠ ne and (2) ∀n ∈ B, if n ≠ na, n ≠ 
nq, then n ∉ H1 and n ∉ H2.  

 
In Fig. 3 (a), H1 = [p2 t4 p4 t3] and H2 = [p2 t2 p3 t3] ns = p2, ne = t3. B12 = [t4 p3] is a 

bridge from H1 to H2 and B21 = [t2 p4] a bridge from H2 to H1. 
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(a) The PT-SOS in the net in (c).        (b) The TP-SOS in the net in (d). 
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Fig. 3. Examples of SNC in (c) & (d) where the shaded areas cover the structures involving R1 or 
R2 (Def. 12). Insertion of the dashed lines in (c) & (d) makes all FOS symmetrical respec-
tively. 

 
A handle is an elementary directed path with only its terminal (the start and the end) 

nodes attached (i.e., common) to a subnet. A bridge is an elementary directed path with 
only its start node attached to one handle and the end node to another handle. 

A first-order structure (FOS) contains two handles H1, H2 with identical start 
(called ns) and end nodes (ne); there are no paths from H1 to H2 and vice versa. Depend-
ing on the types of ns and ne, there are four kinds of FOS shown dashed in Figs. 2 (a-d). 
They are called TT-, PP-, TP-, and PT-FOS respectively. A second-order structure (SOS) 
consists of an FOS plus the two bridges between the two handles (with exactly one 
bridge from one handle to the other). 

 
Definition 5  (1) Let Ψ = H1 ∪ H2 denote the union of two graphical objects H1 and H2. 
H1 is a prime handle to H2, if there are no bridges B between H1 and H2 and Ψ is defined 
to be a first-order structure (FOS). Each Hi (i = 1, 2) is called a leg of Ψ. (2) Let ω be an 
FOS (or handle, bridge, path), if its ns ∈ T, ne ∈ P, then ω is called a TP-ω. PT-ω, TT-ω 
and PP-ω can be defined similarly. If ns and ne are of the same type; i.e., both are transi-
tions or places, then ω is said to be symmetrical; otherwise it is asymmetrical. (3) If B12 
and B21 are the only bridge from H1 to H2 and from H2 to H1 respectively, then ϕ = H1 ∪ 
H2 ∪ B12 ∪ B21 is defined to be a second-order structure (SOS) (Figs. 3 (a) and (b)).  

[p2 t2 p3] and [p2 t3 p3] in Fig. 2 (b) are two prime handles; ns = p2 and ne = p3. Note 
that there are no bridges interconnecting them; hence, they together form an FOS. Since 
ns ∈ P, ne ∈ P, it is symmetrical. 
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3. PROBLEMS DUE TO ASYMMETRICAL FOS 

To discover the maximal class of weakly live nets with nonempty siphons, we dis-
cuss the problem (and its solutions) induced by asymmetrical FOS (AFOS): An AFOS 
may result in unboundedness (or nonliveness). For TP-FOS in Fig. 2 (c), firing ns creates 
two tokens, which will flow to ne; after an infinite number of ns firings, ne becomes un-
bounded (see Fig. 2 (c)). For PT-FOS in Fig. 2 (d), tokens in ns may always flow along a 
handle and become trapped at an input place of ne, causing ne never firable and not live. 
On the contrary, there are no such problems for symmetrical FOS of TT-FOS (Fig. 2 (a)) 
and PP-FOS (Fig. 2 (b)) where the ns and ne are of the same type.  

To consume the extra token, a PT-FOS should follow the above TP-FOS as shown 
in Fig. 4 (a). Note that ne1 (p4) and ns2 (p5) must be in a circuit to be sequential to each 
other. Otherwise, the PT-FOS cannot consume the extra token from the TP-FOS. The net 
is live if the two output transitions t5 and t6 of the ns of the PT FOS are synchronized so 
that t5 and t6 fire alternatively (Fig. 4 (b)).   
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Fig. 4. (a) Combing TP and PT FOS; (b) Adding a regulation circuit (RC) to synchronize t5 and t6. 

 
Another way to fix the problem is to add a PP-handle (dashed line in Fig. 5 (a)) for 

each leg (or handle) of the PT-FOS. This remobilizes the trapped tokens by returning 
them to the siphon via the PP-handle. Such an action is called detrapping and the PT- 
FOS or the PP-handle is a detrapping one. Note that in general the PP-handle may be 
replaced by a live subnet N l (Fig. 5 (h)).  
 
Definition 6  Let H = [nsn1n2…nkne] be a leg of a PT-FOS. Ψ and H’ = [nkn’1n’2…n’qns] 
a PP-handle to Ψ. Both Ψ and H’ are called detrapping. 

 
Note that in general H’ may take different forms than a PP-handle (to simplify the 

presentation in this paper) to make the net an Nf
w. For instance, it may be two or more 

PP-handles to H. The detail will be discussed in a future paper.  
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(a)                   (b)                  (c)                  (d) 

Fig. 5. (a) The O-subnet of Dm, O(Dm) (the whole net), has virtual PT-handles [p6 t7] and [p7 t7]. [p7 
t8 p9] and [p6 t9 p5] are detrapping PP-handles (dashed) of the full detrapping PT-FOS. N is 
an Nf

w. (b) N is not an Nf but is an Nw (weakly live). The Dm = {p1, p2, …, p6} is always 
empty of tokens; (c) Neither Nf nor Nw; (d) The only PT-FOS is not full detrapping. Neither 
Nf nor Nw. 
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Fig. 5. (e) Neither Nf nor Nw despite the presence of the full-detrapping PT-FOS; (f) Neither Nf nor 
Nw despite the presence of the RC; (g) N is an Nf

w. Dm = {p1, p2, …, p7}; (h) N is an Nw, but 
not an Nf. N’ is a maximum live subnet. 

 
Definition 7  A path is virtual if it contains only two nodes. 
 
Definition 8  Ψ is called fully detrapping and Virtual First-Order Structure (VFOS) if 
either (1) both legs are detrapping and nonvirtual or (2) one leg is virtual and another is 
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detrapping and nonvirtual. V-net is the set of nets where there exists VFOS. Otherwise, it 
is NV-net. 

The net in Fig. 5 (a) satisfies Def. 8-(1), while that in Fig. 5 (d) is detrapping but not 
a fully one; it turns fully by replacing the leg [p5 t5 p6 t7] with a virtual [p5 t7] satisfying 
Def. 8-(1). The bold part in Fig. 5 (a) is a VOS and it is a V-net. 
 
Definition 9  The handle H to a strongly connected subnet N’ in N is a directed path 
from ns in N’ to another node ne in N’; any other node in H is not in N’. H is said to be a 
handle in N’ ∪ H. 

In Fig. 5 (a), H = [p6 t7], N’ = N\[p6 t7], and H is a handle to N’ and a handle in N (a 
V-net). Note that to avoid being trapped again, the ns of the PP-handle must be the input 
place (p6, p7) of ne (t7) of the PT-FOS. This creates virtual paths ([p6 t7], [p7 t7]) (i.e., only 
two nodes in each. see Def. 7). We say that the O-subnet (N in Fig. 5 (a)) of a minimal 
siphon Dm, OD has virtual PT-handles (VPTH). 

 Thus the O-subnet of Dm, OD, has VFOS. This triggers the idea that V-net is the 
maximal class of nets that may be weakly live if all minimal siphons are never empty. 
This is proved by developing a set of lemmas and by looking first at a maximum live 
subnet in a weakly live net. 
 
Lemma 3  Any handle H in an O-subnet OD of a minimal siphon Dm must be a PP- or a 
TP- or a virtual PT-handle.  

In Fig. 1, N is an OD where there are neither nonvirtual PT- nor TT-handles; [p2 t5 p1] 
is a PP-handle, [t1 p4 t3 p2] a TP-handle, and [p2 t1] a virtual PT-handle. The net N in Fig. 
3 (d) is an NV-net. The set P is a siphon and N is its O-subnet which has four VPTH 
(dashed). Thus, by Definition 8, N seems to be a V-net. This is wrong since the siphon P 
is not minimal and it contains two minimal siphons, {p5, p6, p7} and {p5, p7, p8} respec-
tively.  

4. THEORY 

This section shows that NV-net is the maximal class of nets that as long as all si-
phons of an NV-net N are never empty, N is live by looking first at a maximal live subnet 
in a weakly live net. 

The net in Fig. 1 is a V-net and an Nf
w (both Nf and Nw). A V-net (Figs. 5 (a, e-g)) 

may not be weakly live (Figs. 5 (e) and (f) since some siphons can become empty). The 
V-nets in Figs. 5 (a) and (g) are Nf (also Nf

w); no minimal siphons can get empty. The rest 
are not Nf since they have empty siphons. A weakly live (Figs. 5 (a, b), and (g)) net may 
not be a V-net. The nets in Figs. 5 (c, d) and (e, f) are neither live nor weakly live. The 
following lemma is useful to prove Lemma 4. 
 
Definition 10  Let N’ be a maximum strongly connected live subnet in a weakly live N, 
a node with inputs in N’ is called an output of N’ (denoted Ωo) and a node with outputs in 
N’ is called an input of N’ (denoted Ωi). 
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Fig. 6. (a) t1 is not live N’ is a maximum strongly connected live subnet; (b) {p1, p2} is an empty 
siphon; (c) t1 and t2 are output transitions (Ωo) of N’ and N’’ respectively and not live. There 
are no empty siphons; (d) Here is an net with no detrapping PT-FOS or VFOS. t1, t2, …, tk 
are dead. {p1, p2, …, pk} is an empty siphon; hence it is not an Nf. N1, N2, …, Nk are maxi-
mum strongly live subnets. 

 
In Fig. 6 (c), t1 and t2 are both Ωo and t1 is an Ωi.  

 
Lemma 4  There exists a maximum strongly live subnet N’ in an Nf

w, ∃t ∈ p•, p ∈ N’, t 
is an Ωo and the ne of a VFOS. 
 
Corollary 1  An Nf

w cannot be an NV-net. 
The nets in Figs. 5 (a) and (g) are both Nf

w and V-net. 
 
Lemma 5  A V-net may be weakly live if it is an Nf. 

The net in Fig. 1 is both an Nf
w and a V-net. 

 
Theorem 1  Any NV-net N is live if all minimal siphons are never empty. 
 
Theorem 2  (1) V-net is the maximal class of nets that may be weakly live if all mini-
mal siphons are never empty. (2) NV-net is the maximal class of nets that are live as long 
as all minimal siphons are never empty. 
 
Lemma 6  In an Nf

w, there exists a minimal siphon whose O-subnet OD has at least two 
virtual PT-handles (VPTH) with the same end node ne. 
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5. PROOF OF SNC AND ESNC BEING NV 

This section shows that both Synchronized Choice Nets (SNC) and Extended Syn-
chronized Choice Nets (ESNC) belong to NV-net. Hence they are live iff they are Nf. 
First we define SNC and ESNC. 
 
Definition 11  A strongly connected net is SNC (Synchronized Choice net) if it satisfies 
the two requirements R1 and R2 where R1: every PT-handle to a certain circuit has a 
TP-bridge from its complementary PT-handle to itself and R2: every TP-handle to a cer-
tain circuit has a PT-bridge from its complementary TP-handle to itself. 

Figs. 3 (c) and (d) are examples of SNC where the shaded areas cover the structures 
involving R1 or R2. In Fig. 3 (c), the only two PT-handles H1 = [p2 t4 p4 t3] and H2 = [p2 t2 
p3 t3] start from the same place p2 but they join at a transition t3. To satisfy R1, there is a 
TP-bridge B12 = [t4 p3] from H1 to H2 and a TP-bridge B21 = [t2 p4] from H2 to H1. In Fig. 
3 (d), the only two TP-handles H1 = [t5 p6 t6 p7] and H2 = [t5 p8 t8 p7] start from the same 
transition t5 but they join at a place p7. To satisfy R2, there is a PT-bridge B12 = [p6 t8] 
from H1 to H2 and a PT-bridge B21 = [p8 t6] from H2 to H1. 

 
Before we prove Theorem 3, we have  

 
Lemma 7  All first-order structures (FOS) in an SNC are symmetrical. 
 
Theorem 3  SNC belongs to NV.  

 
We now turn to ESNC. An example is shown in Fig. 4 (b). 

 
Definition 12 [4]  (1) A composite first-order structure (CFOS) Z = Ψ1 ∪ Ψ2 ∪ … ∪ 
Ψk is a set of first-order structures Ψ1, Ψ2, …, Ψk, k ≥ 2, that are (a) interconnected; that 
is, ∀Ψi, ∃ Ψj such that Ψi ∩ Ψj ≠ φ, if i ≠ j and (b) ∀ CFOS Zi, Zj, 1 ≥ |Zi ∩ Zj|, if i ≠ j. (2) 
If all Ψi  is of TP (PT) type, then it is a TP (PT) composite first-order structure with 
symbol ZT (ZP). 

A CFOS is the largest subnet that can be reduced to a weighted arc with two end 
nodes. To this end, any Z must intersect with any other by at most one node; i.e., ∀Zi, Zj, 
1 ≥ |Zi ∩ Zj|, if i ≠ j. Examples of CFOS are shown in Fig. 4 (b) where Z1 and Z2 are a ZT 

and ZP, respectively. In a CFOS, no Ψi is followed completely by another Ψj. 
A PT-CFOS will make the net not live. One way to make it live is to add a regula-

tion circuit (RC, Fig. 4 (b)). Such a structure is no longer a CFOS; however, for brevity, 
we shall still refer to it as CFOS.  

The net (Fig. 4 (b)) can be transformed into a General Petri net (GPN, Fig. 4 (c)) 
according to the following rule. 
 
Rule of Transformation to GPN [4]: Replace every CFOS by a single arc with two 
ends being ns and ne and the arc weight being |Z| which is the number of handles from ns 
to ne of Z. 
 
Definition 13 [4]  Weighted SNC (WSNC) is a General Petri net (GPN), whose OPN 
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(ordinary PN) version; i.e., by making all arc weights unity, is an Synchronized Choice 
Nets (SNC) (see Def. 11). ESNC (Extended SNC) is the class of nets that can be trans-
formed into WSNC. 

One can consider WSNC the reduced representation of ESNC and the ESNC the 
expanded one of the WSNC. 
 
Theorem 4 [4] (1) An ESNC, whose transformed net WSNC is a Weighted Marked 
Graph (WMG), is well-behaved (WB); i.e., bounded and live, iff the WSNC is WB. (2) 
ESNC belongs to NV. 

 
The following lemma offers an alternative proof that asymmetric choice net (AC) 

satisfying the Commoner’s deadlock trap property is live by showing that any AC is an 
NV-net.  
 
Lemma 8  (1) Any V-net is not an AC. (2) Any AC is live if it satisfies the Commoner’s 
deadlock trap property. 

 However, if N is a live AC, it is not necessary that it satisfy the Commoner’s dead-
lock trap property. For instance, the net in Fig. 4 (b) is both an AC and an NV-net; Dm = 
{p1, p2, p3, p4, p5, p6} does not contain a trap. 
 
Definition 14 [1]  A path (Γ = [n1 n2 … nk], k ≥ 1) is conflict-free iff ∀ni ∈ T, j ≠ i − 1, nj 
∉ ●ni.  
 
Definition 15  A Petri net PN is Extended Non-self Controlling (ENSeC) iff, for every 
pair of transitions t1 and t2 such that •t1 ∩ •t2 ≠ φ, there does not exist a conflict-free path 
leading from t1 to t2. 

 
Note that the weakly V-net in Fig. 5 (a) is an Extended Non Self-Controlling Net 

because every directed path between the only two output transitions of p5 passes p5 and 
hence is not conflict-free. But according to [1], any ENSec is live if it is also an Nf − con-
tradiction.   

6. CONCLUSION 

We have proved that NV-net is the maximal class of nets that are live as long as all 
siphons are never empty by first studying the properties of a maximal live subnet in a 
weakly live net. We found that weakly liveness is closely related to a structure called 
virtual first order structure (VFOS). We have also derived the necessary condition for an 
Nf (i.e., all siphons never token-free) to be also an Nw (i.e., weakly live); that is, the net 
must be a V-net that has VFOS.  
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APPENDIX 1. PETRI NET-RELATED DEFINITIONS 

A Petri net (or Place/Transition net) is a 3–tuple N = (P, T, F) is defined as a net 
where P = {p1, p2, …, pa} be a set of places, T = {t1, t2, …, tb} a set of transitions, with P 
∪ T ≠ ∅ and P ∩ T = ∅; F a mapping from (P × T) ∪ (T × P) to nonnegative integers 
indicating the weight of directed arcs between places and transitions. M0: P → {0, 1, 
2, …} denotes an initial marking whose ith component, m0(pi), represents the number of 
tokens in place pi.  

A node x in N = (P, T, F) is either a p ∈ P or a t ∈ T. The post-set of node x is x• = 
{y ∈ P ∪ T | F(x, y) > 0}, and its pre-set •x = {y ∈ P ∪ T | F(y, x) > 0}. A is the incidence 
matrix of a net with m places and n transitions: A = [aij]; a b × a matrix of integers and its 
typical entry is given by aij = aij

+ − aij
- where aij

- = F(ti, pj) is the weight of the arc from 
transition ti to its output place pj, and aij

+ = F(pj, ti) is the weight of the arc to transition ti 
from its input place pj.   

ti is firable if each place pj in •t holds no less tokens than the weight wj = F(pj, ti). 
Firing ti under M0 removes wj tokens from pj and deposits wk = F(ti, pk) tokens into each 
place pk in t•; moving the system state from M0 to M1. Repeating this process, it reaches 
M’ by firing a sequence of transitions. M’ is said to be reachable from M0; i.e., M0[σ > 
M’.  

Ordinary Petri nets (OPN) are those for which F: (P × T) ∪ (T × P) → {0, 1}. An 
OPN is called a marked graph (MG) if ∀p ∈ P, |p•| = |•p| = 1. It is an extended free 
choice net (EFC) if ∀p1, p2 ∈ P, p1• ∩ p2• ≠ φ ⇒ p1• = p2•. It is an asymmetric choice 
net (AC) if ∀p1 ∩ p2• ≠ φ ⇒ p1• ⊆ p2• or p1• ⊇ p2•. General Petri Nets (GPN) are those 
for which ∃j, wj > 1, or ∃k, wk > 1. A Weighted Marked Graph (WMG) is a GPN and a 
MG if all arc weights are reduced to one.  

R(M0) is the set of markings reachable from M0. A transition t ∈ T is live under M0 
iff ∀M ∈ R(M0), ∃M’ ∈ R(M), t is firable under M’. A transition t ∈ T is dead under M0 
iff  M ∈ R(M0) where t is firable. A net PN is live under M0 iff ∀t ∈ T, t is live under M0. 
It is weakly live under M0 iff ∃t ∈ T and PN is not live. It is bounded if ∀M ∈ R(M0), ∀p 
∈ P, ∃k, a positive integer, the marking at p, m(p) ≤ k.  

An elementary directed path Γ in N is a graphical object containing a sequence of 
nodes n1n2 … ni … nk and the single arc between each two successive nodes (i.e., ni+1 ∈ 
ni•) in the sequence with the notation: Γ = [n1 n2 … nk], k ≥ 1, such that ni ≠ nj for i ≠ j. 
An elementary circuit c in N is Γ = [n1 n2 … nk], k > 1 such that ni = nj, 1 ≤ i ≤ j ≤ k, im-
plies that i = 1 and j = k.  

For a Petri net (N, M0), a non-empty subset D(τ) of places is called a siphon (trap) if 
•D ⊆ D• (τ• ⊆ •τ), i.e., every transition having an output (input) place in D(τ) has an  
input (output) place in D(τ). If M0(D) = ∑

∈Dp

m0(p) = 0, D is called a token-free or empty  

siphon at M0. A minimal siphon Dm does not contain a siphon as a proper subset. 
An integer vector Y (X, respectively) is called an S- (T-, respectively) invariant iff Y 

(X, respectively) ≠ 0 and AY = 0 (ATX = 0, respectively) where A is the incidence matrix. 
When Y > 0, the set of places p such that Y(p) > 0 is called the support of the S-invariant 
and is defined as P(Y). If there is a firing sequence containing all the transitions t ∈ T, 
such that M0 can be recovered, the Petri net is said to be consistent.  
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APPENDIX 2. PROOFS 

Proof of Lemma 2: The two conditions in Definition 3 imply that all minimal siphons 
never become empty of tokens; hence it is an Nf.                                
 
Proof of Lemma 3: Assume contrary and then H must be non-virtual PT- or TT-handles. 
All places in H can be deleted from the siphon; the rest of the places still form a siphon 
violating the fact that Dm is a minimal siphon.                                   
 
Proof of Lemma 4: There exists a dead transition t1 ∈ T whose two input places are in N’. 
The net in Fig. 6 (a) has a single N’ and t1 is the ne (called ne

d) of a VFOS since both of 
its input places in N’ are in live circuits in N’. To challenge the lemma, we make t1 not an 
ne

d
 and not live by an empty circuit c = [p1 t1 p2 t2 p1] as in Fig. 6 (b). But {p1, p2} is an 

empty siphon and N is not an Nf. To make it an Nf, we should insert another N’ in c. A 
variant of this action is shown in Fig. 6 (c). Note that both t1 and t2 are not live. This ac-
tion cannot be continued indefinitely since the net size is finite. It terminates by (1) mak-
ing t2 an ne

d to discontinue the challenge as shown in Fig. 6 (c). Note that both N’ and N” 
are maximum strongly live subnets. t1 and t2 are output dead transitions of N’ and N” 
respectively. But only t2 is the ne of a VFOS. (2) returning to an earlier N’ as in Fig. 6 (d). 
In this case, there exists an empty Dm and violates the fact that N is an Nf.            
 
Proof of Corollary 1: It follows from Lemma 4.                                
 
Proof of Lemma 5: There exists a virtual first order structure (VFOS) in N that can be 
marked such that its ne is not live. Since all siphons are marked, it cannot be dead by 
Lemma 1 and hence it is weakly live, an Nw.                                   
 
Proof of Theorem 1: Let N be an NV-net. By Corollary 1, N is not an Nf

w. By Lemma 1, 
N is not dead if it is an Nf. Now N is neither dead nor weakly live, it must be live.      
 
Proof of Theorem 2: Both (1) and (2) follow from Theorem 1 that any NV-net must be 
live if it is an Nf (i.e., all minimal siphons are never empty). For an Nf, it is either (a) 
weakly live or (b) live. For (a), it must have VFOS and hence is a V-net. If it is not a 
V-net, then it is an NV-net and can never be weakly live. Hence V-net is the maximal 
class of nets that may be weakly live if it is an Nf. For (b), it can be either a V-net or an 
NV-net. But there exists a M0 such that a V-net is weakly live. Hence it does not satisfy 
the condition that it is live as long as all minimal siphons are never empty. And only 
NV-net (the maximal class) meets the condition.                                
 
Proof of Lemma 6: Assume contrary and then OD has none or one VPTH. If there is only 
one virtual PT-handle H in OD, then OD\H is not strongly connected contradicting Def. 9. 
Thus OD has no VPTH and it is an NV-net and it cannot be weakly live by Theorem 1 − 
contradiction.                                                            
 
Proof of Lemma 7: The action of R1 and R2 repairs the PT- and TP-asymmetry respec- 
tively so that all FOS involved becomes symmetrical.                            
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Proof of Theorem 3: Since all FOS in an SNC are symmetrical, there is no virtual first 
order structure (VFOS) and it is an NV-net.                                    

 
Proof of Theorem 4: (1) See the proof of Theorem 1 in [2]. (2) The reduced ESNC is an 
SNC. A set of PT-handles can be reduced to a single but weighted PT-arc. There are no 
virtual first order structures (VFOS) by the definition of ZP and it is an NV-net.       
 
Proof of Lemma 8: (1) Any V-net contains a VFOS. For the VFOS in Fig. 5 (a), p6• ∩ 
p7• = {t7} ≠ φ, p6• = {t7, t9}, p7• = {t7, t8}, neither p6• ⊂ p7• nor p7• ⊂ p6•; hence the net 
is not an AC. (2) By (1), any AC is an NV-net. Hence it is live if it satisfies the Com-
moner’s deadlock trap property.                                             

APPENDIX 3. INDEX OF TERMS 

Ψ: FOS (Def. 5) 
Ωi: Input transition of a maximum strongly connected live subnet N’ (Def. 10) 
Ωo: Output transition of a maximum strongly connected live subnet N’(Def. 10) 
AC: Asymmetric choice net (Appendix 1) 
AFOS: Asymmetric first-order structure (Def. 5) 
B12 (B21): The bridge from H1 to H2 (H2 to H1) (Def. 4) 
CFOS: Composite first-order structure (Def. 12) 
D: A siphon (Appendix 1) 
Dm: A minimal siphon (Appendix 1) 
ENSeC: Extended Non-self Controlling net (Def. 15) 
ESNC: Extended SNC (Def. 13) 
EFC: Extended free choice net (Appendix 1) 
FOS: First-order structure (Def. 5) 
GPN: General Petri net (Appendix 1) 
H: Handle (Def. 4) 
M0: Initial marking (Appendix 1) 
N: A Petri net (Appendix 1) 
ne: The end node of a handle H or bridge B or FOS or SOS 
ns: The start node of a handle H or bridge B or FOS or SOS 
Nf: Net with all siphons never empty (Def. 2) 
Nw: Weakly live net (Def. 2) 
Nf

w: Both Nf and Nw (Def. 2) 
NV-net: Non-virtual-net (Def. 2) 
OD: O-subnet of a siphon D (Def. 1) 
OPN: Ordinary Petri net (Appendix 1) 
P: The set of places in N (Appendix 1) 
PN: Petri net (Appendix 1) 
PP-handle: A handle from a place to a place 
PT-handle: A handle from a place to a transition 
PP-FOS: A FOS with ns∈P and ne∈P. (Def. 5) 
PT-FOS: A FOS with ns∈P and ne∈T (Def. 5) 
PT-SOS: SOS with ns∈P and ne∈T (Def. 5) 



DANIEL YUH CHAO 

 

384 

 

R1 (R2): Rule 1 (2) (Def. 11) 
RC: Regulation circuit (RC) 
SNC: Synchronized Choice Nets (Def. 11) 
S3PR: Systems of Simple Sequential Processes with Resources 
SOS: Second-order structure (Def. 5) 
TP-FOS: FOS with ns ∈ T and ne ∈ P (Def. 5) 
TP-handle: Handle from a transition to a place (Def. 5) 
TP-SOS: SOS with ns∈T and ne ∈ P (Def. 5) 
TT-FOS: FOS with ns∈T and ne ∈ T (Def. 5) 
TT-handle: Handle from a transition to a transition (Def. 5) 
VFOS: First order structure (Def. 8) 
V-net: Virtual-net (Def. 2) 
VPTH: Virtual PT-handle 
WMG: Weighted Marked Graph (Appendix 1) 
WSNC: Weighted SNC (Def. 13) 
Y: S-invariant (Appendix 1) 
Z: CFOS (Def. 12) 
ZT: TP composite first-order structure (Def. 12) 
ZP: PT composite first-order structure (Def. 12) 
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