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Finding all minimal bad siphons is essential for deadlock control. However, the 

number of siphons grows exponentially with the size of the system. Deadlock occurs due 
to inappropriate resource sharing. Hence most research focused on the problem of mini-
mal siphon extraction covering a set of places representing resources — an NP-Complete 
problem for arbitrary Petri Nets. We develop the theory for efficient extraction of mini-
mal bad siphons for S3PR (systems of simple sequential processes) proposed by Ezpeleta 
et al. The number of minimal bad siphons that needs to be searched is linear to the num-
ber of resources. The rest can be found by adding and deleting common sets of places 
from existing ones significantly reducing the search time. It is very interesting that both 
nets and siphons can be synthesized by first locating a circuit followed by adding han-
dles. 
 
Keywords: Petri nets, siphons, traps, FMS, algorithm, liveness, deadlock 
 
 

1. INTRODUCTION 
 

Liveness in flexible manufacturing systems (FMS) modelled by Petri nets (PN) is 
closely related to siphons [1, 2] whose tokens can be emptied completely. A siphon (trap, 
respectively) is a set of places where tokens can leak out (inject in, respectively). If a 
siphon contains a trap, then tokens in it cannot leak out completely. A bad siphon (BS) is 
a siphon that does not contain a trap. Once a BS is found that can be emptied, output 
transitions of places in the siphon can never be fired. Hence the net is not live. In this 
situation, we can construct a control policy based on the total number of tokens in the 
BS. 

The FMS model consists of a set of working processes (WP, Def. 4) competing for 
resources. A WP models a sequence of operations to manufacture a product. Circular 
wait for resources can bring the system into a deadlock where some WP can never finish. 

Ezpeleta et al. proposed a class of nets called S3PR [1] where each WP is a state 
machine (SM) plus resource places. Their idea is to compute all minimal bad siphons 
(MBS) based on the approaches in [3, 4] with exponential time complexity. Then it finds 
the maximum number of tokens at each idle state followed by a control policy of adding 
control arcs and nodes with tokens. Most recent deadlock control approaches [5-7] ex-
tend Ezpeleta’s work. Efficient methods to compute MBS are urgently needed.  

Because deadlock occurs due to inappropriate resource sharing, all deadlock pre-

Received October 28, 2004; revised February 18, 2005; accepted July 11, 2005.  
Communicated by Ding-Zhu Du. 



DANIEL YUH CHAO 

 

204 

 

vention approaches [5-7] consider only siphons containing resource places. Watanabe et 
al. [3] showed that the minimal siphons extraction problem (MSEP) covering a set Q of 
places for general PN is an NP-Complete problem. They also proposed algorithms to 
enumerate all minimal siphons (MS) containing Q. Esparza [12] proposed a polynomial 
time algorithm for MSEP of free-choice nets (FC). Kemper [13] improved it with a linear 
time algorithm for searching minimal siphons containing a place. However, most FMS 
such as S3PR cannot be modeled by FC. 

References [2, 3] presented algorithms for generating all basis siphons. However, it 
is more efficient to employ MS (the number is usually less) to analyze liveness [1, 14]. 
We search only MBS. In addition, we find that they can be divided into two groups. 
Those in the first are called basic siphons (Def. 6); those in the second (called compound 
siphons) can be derived from the first in terms of formulas, thus reducing the search time 
greatly. For instance, in the example in [1] (Fig. 1), out of the 18 minimal bad siphons, 
we search only 6 and derive the rest 12. Further, these 6 are so simple that we can manu-
ally search them. 

Section 2 presents the basis to understand the paper. It defines S3PR. Section 3 
shows that siphon can be synthesized by constructing handles upon a circuit. Section 4 
computes all compound siphons respectively. Section 5 shows an efficient technique to 
compute all MBS for S3PR. Section 6 compares ours with other approaches. Finally, sec-
tion 7 concludes the paper. However, in order to make the paper as self-contained as pos-
sible, Appendix 1 is included with the definition of the main concepts related to models 
used in this paper. For the sake of discussion continuity, all proofs are reported in 
Appendix 2.    

2. PRELIMINARIES 

Definition 1  A subnet Ni = (Pi, Ti, Fi) of N is generated by X = Pi ∪ Ti, if Fi = F ∩ (X × 
X). It is an I–subnet (denoted I) of N if Ti = •Pi. An MBS, denoted Dm, is an MS that does 
not contain a trap. ID is the I–subnet of a Dm. Note that D = P(ID); Dm is the set of places 
in ID. 

We follow [8] for the definitions of handles, bridges, AB-handles, and AB-bridges 
where A and B can be T or P. Roughly speaking, a “handle” is an alternate disjoint path 
between two nodes. A PT-handle starts with a place (as indicated by ‘P’ in ‘PT-’) and 
ends with a transition while a TP-handle starts with a transition and ends with a place. 
 
Definition 2  Let N = (P, T, F). H1 = [nsn1n2…nkne] and H2 = [nsn’1n’2…n’hne] are ele-
mentary directed paths, ni, n’j ∈ P ∪ T, i = 1, 2, …, k, j = 1, 2, …, h. H1 and H2 are said 
to be mutually complementary. Each is called a handle in N if ni ≠ n’j, ∀i, j. Pin(H1) = {p | 
p ∈ H1, p ≠ ns, p ≠ ne} is the set of interior (not terminal) places of H1. The handle H to a 
subnet N’ (similar to the handle of a tea pot) is an elementary directed path from ns in N’ 
to another node ne in N’; any other node in H is not in N’. H is said to be a handle in N’ ∪ 
H. 

In Fig. 1, H1 = [p2 t’2 p’3 t’3 p’4 t’4 p5 t5] and H2 = [p2 t2 p3 t3 p4 t4 p5 t5], ns = p2, ne = t5. 
Pin(H1) = {p’3, p’4, p5}. 
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3. SYNTHESIS OF MBS for S3PR 

Definition 3  A Simple Sequential Process (S2P) is a net N = (P ∪ {p0}, T, F) where: (1) 
P ≠ ∅, p0 ∉ P (p0 is called the process idle or initial or final state); (2) N is strongly connected 
state machine; and (3) every circuit of N contains the place p0. ∀p ∈ P, if |p•| > 1, p is 
called a choice place. 
 
Definition 4  A simple sequential process with resources (S2PR) , also called a working 
processes (WP), is a N = (P ∪ {p0} ∪ R, T, F) so that (1) The subnet generated by X = P 
∪ {p0} ∪ T is an S2P; (2) R ≠ ∅ and P ∪ {p0} ∩ R = ∅; (3) ∀p ∈ P, ∀t ∈ ●p, ∀t’ ∈ p●, 
∃rp ∈ R, ●t ∩ R = t’● ∩ R = {rp}; (4) The two following statements are verified: (a) ∀r 
∈ R, ●●r ∩ P = r●● ∩ P ≠ ∅; (b) ∀r ∈ R, ●r ∩ r ● = ∅; (5) ●●(p0) ∩ R = (p0) ●● ∩ R 
= ∅. ∀p ∈ P ∪ {p0}, p is called a state place. ∀r ∈ R, r is called a resource place. H(r) 
= ●●r ∩ P denotes the set of holders of r (states that use r). ρ(r) = {r} ∪ H(r).  

 
The above models the constraint as follows: (3) allows only one shared resource to 

Fig. 1 [1]. An example of systems of simple sequential processes with resources (S3PR). 
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be used at each state; (4.a) dictates that the resource used in a state be released when 
moving to the next state; (4.b) shows that two adjacent states cannot use the same re-
source and (5) ensures that initial and final state do not use resources.  
 
Definition 5  A system of S2PR (S3PR) is defined recursively as follows: (1) An S2PR is 
defined as an S3PR; (2) Let Ni = (Pi ∪ Pi

0 ∪ Ri, Ti, Fi), i ∈ {1, 2} be two S3PR so that (P1 
∪ P1

0) ∩ (P2 ∪ P2
0) = ∅, R1 ∩ R2 = PC (≠ ∅) and T1 ∩ T2 = ∅. The net N = (P ∪ {P0} ∪ 

R, T, F) resulting from the composition of N1 and N2 via PC defined as follows: (1) P = P1 
∪ P2; (2) P0 = P1

0 ∪ P2
0; (3) R = R1 ∪ R2; (4) T = T1 ∪ T2 and (5) F = F1 ∪ F2 is also an 

S3PR. A directed path (circuit, subnet) Γ in N is called a resource path (circuit, sub-
net) if ∀p ∈ Γ, p ∈ R.  
 
Lemma 1 [6]  For an S3PR, ρ(r) is both a trap and a siphon. 

An example of S3PR is shown in Fig. 2 where ρ(R1) = {p20, p6, p15}.  

3. SYNTHESIS OF MBS FOR S3PR 

Deadlock occurs when all resources in a circuit are used up since processes mutu-
ally waiting for them indefinitely. Thus, MBS must have something to do with circuits 
with resources as implied by the following lemma: 
 
Lemma 2 [14]  ID is strongly connected and has an elementary circuit. 

Upon the circuit, we construct handles to form the I of an MBS based on Lemma 3. 
 
Lemma 3 [20]  (1) If subnet N’ is the I-subnet of a minimal siphon, then each handle in 
N’ is a PP- or TP- or virtual PT-handle (virtual means containing only two nodes), nei-
ther a TT- nor a nonvirtual PT-handles, and there are none of PP-, TP-, and virtual 
PT-handles to N’. (2) N’ is the I-subnet of a bad siphon D, iff there is a nonvirtual (more 
than two nodes) PT-handle to N’. 
 
Example: In Fig. 1, first find a circuit c = [p21 t8 p25 t18 p21]. Second add TP-handles [t18 
p16 t19 p23] and [t8 p12 t9 p21] plus PP-handles [p21 t11 p2 t12 p21], [p21 t13 p4 t14 p21], and [p21 
t3 p8 t4 p21] to get Dm

18 = {p2, p4, p8, p12, p16, p21, p23} with a nonvirtual PT-handle [p21 t17 
p17 t18] to its c. Such a procedure to form MBS from a circuit is called handle-construc- 
tion. 

 Thus, we synthesize minimal siphons by constructing a circuit followed by handles 
similar to the knitting technique [11]. This is very interesting since both nets and si-
phons can be synthesized by first locating a circuit followed by adding handles. 

Based on Lemma 3, upon merging an r, we try to locate an elementary resource cir-
cuit c. If no c can be found, there is no Dm associated with r. Otherwise, we add a PP- or 
a TP- or a virtual PT- handle to c. Continue this process until no more such handles can 
be found. Deleting all TT-handles from the resulting subnet renders an I-subnet, wherein 
the set of places is a Dm. We then merge another nearby r and repeat the above process 
until all r have been merged. Thus, we merge r from top to bottom (corresponding to the 
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direction in a WP from idle state to final state). This is more efficient than to search r in a 
random fashion.  

The example in Fig. 1 consists of three robots (R1, R2, R3) and four machines (M1 
− M4). We first find the backbone; each separate component is an SM. We then merge 
resource place R1; we cannot find a circuit for the first merge. For the second, we merge 
M3 with no success because it is not minimal since it contains ρ(R1). We then merge R2 
with M3 to find a circuit containing R2 and M3.  

Note that we need to consider a second circuit [p20 t19 p25 t18 p21 t3 p23 t2 p20] con-
taining M1, which is used exclusively for the middle process (WP1). We merge the rest in 
the order of M2, M4, and R3.  

There are two types of circuits that may induce MBS: elementary (e.g., [p21 t13 p24 
t12 p21] in Fig. 1) and compound (i.e., multiple interconnected elementary circuits). The 
corresponding siphons are called basic siphons and compound siphons (see Tables 1 and 
2), denoted cb and cp respectively.  

Table 1. Basic siphons. 

Basic 
si-

phons 

places Basic circuits cb Between WP 

Dm
1

 p10, p18,vp22, p26 [p22 t10 p26 t16 p22] WP12, WP3 

Dm
4 p4, p10, p17, p21, p22, p24, p26 [p21 t17 p26 t16 p22 t5 p24 t4 p21] WP11, WP3 

Dm
10 p4, p9, p12, p17, p21, p24 [p21 t13 p24 t4 p21] WP11, WP2 

Dm
16 p2, p4, p8, p13, p17, p21, p26 [p21 t17 p26 t9 p21] WP12, WP3 

Dm
17 p2, p4, p8, p12, p15, p20, p21, p23, p25 [p21 t3 p23 t2 p20 t19 p25 t18 p21] WP11, WP3 

Dm
18 p2, p4, p8, p12, p16, p21, p25 [p21 t8 p25 t18 p21] WP12, WP3 

Table 2. Compound siphons. 

Compound 
siphons Places 

Dm
2 p4, p10, p15, p20, p21, p22, p23, p24, p25, p26 

Dm
3 p4, p10, p16, p21, p22, p24, p25, p26 

Dm
5 p4, p9, p13, p15, p20, p21, p23, p24, p25, p26 

Dm
6 p4, p9, p13, p16, p21, p24, p25, p26 

Dm
7 p4, p9, p13, p17, p21, p24, p26  

Dm
8 p4, p9, p12, p15, p20, p21, p23, p24, p25 

Dm
9 p4, p9, p12, p16, p21, p24, p25 

Dm
11 p2, p4, p8, p10, p15, p20, p21, p22, p23, p25, p26 

Dm
12 p2, p4, p8, p13, p15, p20, p21, p23, p25, p26 

Dm
13 p2, p4, p8, p10, p16, p21, p22, p25, p26 

Dm
14 p2, p4, p8, p13, p16, p21, p25, p26 

Dm
15 p2, p4, p8, p10, p17, p21, p22, p26 
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For compound siphons, some PP-path to a cb
i is another cb

j corresponding to Dm
i and 

Dm 
j respectively. Because Dm

i ∪ Dm
j is another siphon Da, we can obtain a new Dm from 

it by deleting some places which are on TT-handles of I(Da). In other words, compound 
siphons can be derived from basic siphons. It is interesting to see that the basic and com-
pound siphons correspond to elementary and redundant ones in [17]. The following for-
mally defines them: 

Definition 6  An elementary (compound) resource circuit (Def. 5) is called a basic cir-
cuit, denoted cb(cp). The corresponding MBS obtained by the handle-construction proce-
dure is called a basic siphon (compound siphon).  

Note that cb cannot be part of an I(ρ(r)). Otherwise, ID contains only one resource 
place r; it cannot be bad since ρ(r) is both a trap and a siphon [6]. The minimal siphon 
containing M4 is ρ(M4) = {p26, p18, p13}, which is also a trap. The following lemma helps 
to locate a cb.  
 
Lemma 4 [20]  All places in the cb must be resource places. 

Thus we need only search ID where all places in cb are resource places; i.e., cb is a 
resource circuit (Def. 5). Note that cb may appear in a single WP.  

Note that the set of resources shared between WP12 and WP3 is {R1, M3, R2, M4, R3} 
listed in the order from top to bottom. That between WP11 and WP3 is A = {R1, R2, R3}. 
We say that the circuits extend between two adjacent processes. This is true (Table 1) for 
the S3PR model in Fig. 1, which we will assume in this paper. Note that the set A is 
smaller than that used by WP12. There is an elementary circuit c covering each pair of 
two successive resources in the set.  

There is at most k’ − 1 cb where k’ is the cardinality of the above set. This is in gen-
eral true and eases the task of cb search. Although there may be cb that span multiple WP, 
they are much fewer than the aforementioned cb in most cases. Hence the number cb to 
search is O(n). Since all places in a cb are resources, we can remove all state places and 
their incident arcs and apply well-known algorithms [18] to search elementary directed 
circuits. 

4. COMPUTATION OF COMPOUND SIPHONS for S3PR 

The idea is based on the following: 
 
Lemma 5 [12]  The union of two siphons D1 ∪ D2 is another siphon. 

Thus, new Dm may be constructed by the deletion of a set of places from the union 
of two basic siphons. For instance, in Table 3 we merge M4 to create Dm

16 containing R2 
and M4. We can then generate Dm

5 − Dm
7, Dm

12, Dm
14 from Dm

8 − Dm
10, Dm

17, Dm
18 respec-

tively by adding the minimal siphon that contains M4, ρ(M4) and deleting the set of 
places P4 = {p12, p18} — no need to find TT- and PT-paths again.  

 
Note that all Dm

8 − Dm
10, Dm

17, Dm
18 contain R2; hence, all I of the union of ρ(M4) 

and Dm
8 − Dm

10, Dm
17, Dm

18 share the same TT-handle [t8 p12 t9] and PT-handle [p26 t16 p18 
t17]. 
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We call M4 a seed (SD), Dm
8 the Companion Dm (CP), and P4 the Common Deletion 

(CD). New Dm(=ρ(SD) ∪ CP \ CD) formed in this fashion are listed in Table 3.  

Table 3. New Dm generated based on the formula: Dm = Dm
c ∪ ρ(SD) \ CD. 

Note that Dm
10 = ρ(R2) ∪ ρ(M2) \ CD, Dm

16 = ρ(R2) ∪ ρ(M4) \ CD, Dm
1 = ρ(R3) ∪ ρ(M4) \ CD. No need to 

search these Dm; hence reducing the search time greatly. 

Seed (SD) Companion Dc(CP) Common Deletions (CD) New Dm 
Dm

18 {p2, p3, p8} Dm
9= Dm

18 ∪ ρ(M2) \ CD M2 
Dm

17 {p2, p3, p8} Dm
8= Dm

17 ∪ ρ(M2) \ CD 
Dm

10 {p18, p12} Dm
7

 = Dm
10 ∪ ρ(M4) \ CD 

Dm
18 {p18, p12} Dm

14= Dm
18 ∪ ρ(M4) \ CD 

Dm
17 {p18, p12} Dm

12= Dm
17 ∪ ρ(M4) \ CD 

Dm
9 {p18, p12} Dm

6= Dm
9 ∪ ρ(M4) \ CD 

M4 

Dm
8 {p18, p12} Dm

5= Dm
8 ∪ ρ(M4) \ CD 

Dm
16 {p13, p19} Dm

15= Dm
16 ∪ ρ(R3) \ CD 

Dm
14 {p13, p19} Dm

13= Dm
14 ∪ ρ(R3) \ CD 

Dm
12 {p13, p19} Dm

11= Dm
12 ∪ ρ(R3) \ CD 

Dm
6 {p13, p19} Dm

3= Dm
6 ∪ ρ(R3) \ CD 

R3 

Dm
5 {p13, p19} Dm

3= Dm
5 ∪ ρ(R3) \ CD 

The theory is briefed below. Recall that there is an elementary circuit c covering 
each pair of two successive resources shared between two adjacent WP. Let the resources 
from top to bottom be r1, r2, r3, …, rk corresponding to cb

1, cb
2, …, cb

i, …, cb
k-1

 
respectively. When we reach cb

i, all compound siphons cp (with ID = Ip and D = Dp) that 
contains cb

i-1 can join cb
i to form a new cp’ (with ID = Ip’) and a new compound siphon 

Dp’. Let ID
i = (I(ρ(ri) ∪ I(ρ(ri+1)) \ Γ where Γ is the set of PT-handles to cb

i. Also Di = ρ(ri) 
∪ ρ(ri+1) \ CS

1i ir r +  where CS
1i ir r + is the set of interior places (i.e., no end nodes) Pin in Γ and 

called complementary siphon in [17]. 
Note that one PT-handle becomes a TT-handle (e.g., [t8 p12 t9] mentioned earlier) in 

ID’ for D’ and hence should also be deleted from Ip ∪ I(ρ(ri+1)), i.e., Ip’ = (Ip ∪ I(ρ(ri+1)) \ 
Γ and Dp’ = (Dp ∪ ρ(ri+1)) \ CS

1i ir r + . Comparing this with the formula earlier, we have CP 
= Dp, SD = ri+1, and CD = CS

1i ir r + .  
We now propose a rough algorithm to find all MBS: 
 

Algorithm 1  Dm Computation Algorithm for S3PR 
1. Find all cb. 
2. Find all basic siphons using the handle-construction procedure. 
3. Find all copound siphons using the formula: Dm= Dm

c ∪ ρ(SD) \ CD. 
 
A more detail and efficient algorithm is proposed in the next section. 
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5. EFFICIENT TECHNIQUE FOR S3PR  

Based on the theory presented in last two sections, we will present one efficient 
technique for computer implementation. It locates Dm in a local and incremental fashion. 
We first present a problem for the handle-construction procedure.   

An example is shown in Fig. 1 to find Dm
17. We first locate the circuit [p20 t19 p25 t18 

p21 t3 p23 t2 p20] followed by TP-handles [t3 p8 t4 p21], [t19 p15 t20 p20] and [t8 p12 t9 p21]; 
PP-handles [p21 t11 p2 t12 p21] and [p21 t13 p4 t14 p21]. Now if we add PP-handle [p20 t1 p6 t7 
p20], we will hit virtual PT-handle [p6 t2] and it is not minimal since it contains ρ(R1).  
This implies we should undo the addition of [p20 t1 p6 t7 p20] where the place p6∉Dm

17.  
Hence, we add PP-handle [p25 t7 p20] instead. We stop here since the rest are all TT- or 
PT-handles (termed case 1).  

This problem of undoing can be avoided by adding PP-handles of the form [r t r’] 
(i.e., [p25 t7 p20]) prior to other kinds of PP-handles ([p20 t1 p6 t7 p20]). This is performed in 
Step 3 of the following algorithm. The correctness of which is proved in Theorem 1. 

 
Algorithm 2  Dm Search Algorithm for S3PR 
1. Add a new r’.   
2. Find a new cb’ that contains r’. If cb’ is not found, go to step 1 and repeat. 
3. Add all PP-handles of the form [r t r’] followed by the rest of PP-handles and all 

TP-handles to cb’. Denote the resulting net I’ (I-subnet) where the set of places Dm
n 

= P(I’). If Dm
n contains a ρ(r), r ∈ cb’, then it is not minimal, go to step 1 and re-

peat. 
4. Delete all TT- and nonvirtual PT-paths (except their terminal nodes) in Ie ∪ I’ 

where Ie is the I-subnet of any existing Dm
e that contains a place in cb’ to form a 

new I”. 
5. Go to step 2 and repeat until all resource places have been added. 

 
Since the I-subnet of any Dm is strongly connected, it must contain at least one cir-

cuit cb’ to be found at step 2. The rest in I-subnets are handles to cb’ as in Lemma 3. The 
correctness of this algorithm is established in the following theorem.  
 
Theorem 1  Algorithm 2 computes all minimal bad siphons. 

The time complexity c(k) at the kth iteration step is dominated by step 4. We have 
c(k) = c(k − 1) + (c(k − 1) + 1) in the worst case since c(k − 1) new Dm are created from 
c(k − 1) existing Dm and a new Dm is created from the new cb’. Solving this equation, we 
have the total time complexity of O(2n’), where n’ is the total number of resource places. 
Suppose we have h working processes (WP) and each WP has f choice processes. In the 
worst case, each of n’ resource places is shared by all processes in all WP. The total 
number of places in the net is around n = fhn’ since each state in WP uses exactly one 
resource place. Thus, O(2n) = O((2n’)fh) — a substantial improvement. We only need to 
search linear number of MBS. The rest can be computed by adding and deleting common 
sets of places from existing ones with search time significantly reduced.  
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6. COMPARISON WITH OTHER APPROACHES 

Esparza [12] proposed a polynomial time algorithm for MSEP of free-choice nets. 
Kemper [13] improved it with a linear time algorithm for searching minimal siphons con-
taining a place. However, most FMS such as S3PR cannot be modeled by free choice 
nets. 

Chue and Xie [14] proposed a linear programming approach that requires the ex-
amination of all minimal siphons. Its efficiency depends on the number of minimal si-
phons. Unfortunately, it is well known that the total number of minimal siphons grows 
quickly beyond practical limits and that, in worst case, it grows exponentially in the 
number of nodes. They showed that, under the assumption of structural boundness, it is 
possible to check deadlock-freeness or empty siphons without generating minimal si-
phons based on the mixed integer linear programming approach (MIP).  

One way to reduce the complexity of the linear programming approach is to find ef-
ficient algorithms for generating minimal bad siphons without generating other siphons 
such as that proposed by Jeng et al. [15]. However it has to obtain a maximum siphon 
first. 

Reference [16] employed the sign incidence matrix in [4] to compute the set of si-
phons containing a given resource place. However the siphons found may also be traps 
and time complexity is not derived. If a minimal siphon contains a marked trap, then it 
will never become empty of tokens. Efficient algorithms should extract MBS rather than 
minimal siphons. 

We search only MBS. In addition, many MBS can be derived from existing ones in 
terms of formulas, thus reducing the search time greatly. For instance, in the example in 
[1], out of the 18 MBS, we search only 6 and derive the rest 12. Further, these 6 are so 
simple that we can manually search them. 

7. CONCLUSION 

 We have proposed a new technique to extract MBS for S3PR. Due to the special 
structure characteristics of S3PR, we can first construct basic circuits cb. Upon each cb, 
we can add all TP- and PP-handles to form a basic siphon. From which, we can then de-
rive the rest of minimal bad siphons. All these steps can be expressed in terms of formu-
las and hence, is easily subject to computer implementation in a very efficient way com-
pared with all current techniques. 

Because only one resource is used in each job stage and the processes are modeled 
using SM in S3PR, its modeling power is limited. It cannot model iteration statements 
(loop) in each sequential process (SP) as in [8] and the relationships of synchronization 
and communication in SP. At any state of a process, it cannot use multi-sets of resources. 
If models other than SM are employed, then deadlocks may occur even within a local 
process. Our SNC (synchronized choice nets) model [9-11] removes these drawbacks. 
Finding all MBS for SNC- based FMS is a difficult problem. We attack it first for S3PR. 

Future work should extend the technique to SNC-based FMS where each local 
process is an SNC rather than SM in S3PR. SNC [9, 11] covers well-behaved (live, 
bounded and reversible) free choice nets yet it is not included in asymmetric choice nets. 
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An SNC allows internal choices and concurrency. Therefore it can model not only as-
sembly operations with multiple parts, but also parallel activity and synchronization. 
Hence, it is more general and powerful than S3PR. And it [19] covers extended resource 
control net merged net (ERCN*) [8] as a subset which cannot model cases where an as-
sembly operation is performed on several different parts coming from separate preceding 
processes. 

Finally, it is very interesting that both nets and siphons can be synthesized by 
constructing handles upon a circuit! 
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APPENDIX 1. PETRI NET-RELATED DEFINITIONS 

A Petri net (or Place/Transition net) is a 3–tuple N = (P, T, F), where P = {p1, p2, …, 
pa} is a set of places, T = {t1, t2, …, tb} a set of transitions, with P ∪ T ≠ ∅ and P ∩ T = 
∅ and F a mapping from (P × T) ∪ (T × P) to nonnegative integers indicating the weight 
of directed arcs between places and transitions. M0: P → {0, 1, 2, …} denotes an initial 
marking whose ith component, m0(pi), represents the number of tokens in place pi. N is 
strongly connected iff there is a directed path from any node to any other node. 

A node x in N = (P, T, F) is either a p ∈ P or a t ∈ T. The post-set of node x is x• = 
{y ∈ P ∪ T | F(x, y) > 0}, and its pre-set •x = {y ∈ P ∪ T | F(y, x) > 0}.  

ti is firable if each place pj in •ti holds no less tokens than the weight wj = F(pj, ti). 
Firing ti under M0 removes wj tokens from pj and deposits wk = F(ti, pk) tokens into each 
place pk in ti•; moving the system state from M0 to M1. Repeating this process, it reaches 
M’ by firing a sequence of transitions. M’ is said to be reachable from M0; i.e., M0[σ > 
M’.     

Ordinary Petri Nets (OPN) are those for which F: (P × T) ∪ (T × P) → {0, 1}. An 
OPN is called a State Machine (SM) if ∀t ∈ T, |t•| = |•t| = 1. It is a Free Choice net (FC) 
if ∀p1, p2 ∈ P, p1• ∩ p2• ≠ φ ⇒ |p1•| = | p2•| = 1. It is an Asymmetric Choice net (AC) if 
∀p1• ∩ p2• ≠ φ ⇒ p1● ⊆ p2● or p1● ⊇ p2●.  

R(M0) is the set of markings reachable from M0. A transition t ∈ T is live under M0 
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iff ∀M ∈ R(M0), ∃M’∈ R(M), t is firable under M’. A transition t ∈ T is dead under M0 iff 
M ∈ R(M0) where t is firable. A PN is live under M0 iff ∀t ∈ T, t is live under M0. It is 

bounded if ∀M ∈ R(M0), ∀p ∈ P, the marking at p, m(p) ≤ k, where k is a positive inte-
ger.    

Let Γ = [n1 n2 … nk], k ≥ 1, denote a graphical object containing a sequence of 
nodes and the single arc between each two successive nodes in the sequence. Γ is called 
an elementary directed path in N if ∀(i, j), 1 ≤ i < j ≤ k, ni ≠ nj. Γ is called an elementary 
circuit c in N if ∀(i, j), 1 ≤ i ≤ j ≤ k, ni = nj implies that i = 1 and j = k.  

For a Petri net (N, M0), a non-empty subset D(τ) of places is called a siphon (trap) if 
●D ⊆ D● (τ● ⊆ ●τ), i.e., every transition having an output (input) place in D(τ) has an 
input (output) place in D(τ). If M0(D) = 0 ( ) 0,

p D
m p

∈

=∑ D is called a empty siphon at M0. 

A minimal siphon does not contain a siphon as a proper subset. D is called a bad siphon 
(BS) if it does not contain a trap. 

APPENDIX 2. PROOFS 

Proof of Theorem 1: If the Dm
n found in step 3 is minimal, step 4 will compute the rest 

of new Dm. Hence steps 3-4 compute all minimal bad siphons containing the new re-
source place r. Step 5 guarantees the same computation be repeated for all resource 
places. Hence it computes all minimal bad siphons.                              
 
 

Daniel Yuh Chao (趙玉) received the Ph.D. degree from in 
Electrical Engineering and Computer Science from the University 
of California, Berkeley in 1987. From 1987-1988, he worked at 
Bell Laboratories. Since 1988, he joined the Computer and In-
formation Science Department of New Jersey Institute. Since 
1994, he joined the Management and Information Science De-
partment of National Chengchi University as an Associate Pro-
fessor. Since February, 1997, he has been promoted to a full pro-
fessor. His research interest was in the application of Petri nets to 
the design and synthesis of communication protocols and the 

CAD implementation of a multi-function Petri net graphic tool. He has published 102 
(including 32 journals) papers in the area of communication protocols, Petri nets, DQDB, 
networks, FMS, data flow graphs, and neural networks. 


