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Abstract. We study the problem of optimally controlling a multiserver queue-
ing system. Customers arrive in a Poisson fashion and join a single queue,
served by N servers, S1;S2; . . . ;SN . The servers have di¤erent rates. The ser-
vice times at each server are independent and exponentially distributed. The
objective is to determine the policy which minimizes the average number of
customers in the system. We show that any optimal, nonpreemptive policy is of
threshold type, i.e., it assigns a customer to server Si, if this server is the fastest
server available and the number of customers in the queue is mi or more. The
threshold mi may depend on the condition of other (slower) servers at the deci-
sion instant. In order to establish the results, we reformulate the optimal con-
trol problem as a linear program and use a novel argument based on the struc-
ture of the constraint matrix.
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1. Introduction

We consider the queueing system which consists of N parallel heterogeneous
exponential servers. Customers arrive at an infinite capacity bu¤er in a Pois-
son stream of rate l. The bu¤er is served by N servers S1;S2; . . . ;SN , of dif-
ferent capacities, m1; m2; . . . ; mN , respectively. Without loss of generality, we as-
sume that m1 > m2 > � � � > mN > 0. The service requirements are exponentially
distributed, with parameter 1. Thus the time a customer spends at server Si is
exponentially distributed, with parameter mi. To avoid trivial cases, we assume
that 0 < l < m1 þ m2 þ � � � þ mN .

The motivation for studying this model comes from applications in resource
allocation problems and dynamic routing in computer networks and commu-



nication systems. This problem is a generalization of the M=M=2 model with
unequal service rates studied by Lin and Kumar (1984). They have shown that
there exists an optimal policy (i.e., the one that minimizes the mean sojourn
time of customers in the system), which is of threshold type. In other words,
there exists an optimal policy that keeps the faster server busy, whenever pos-
sible, and activates the slower server only when the number of waiting cus-
tomers exceeds a certain threshold. A simple algorithm to calculate the opti-
mal threshold, as a function of the statistical parameters of the model, was
provided in their paper. Agrawala et al. (1984) considered a related problem,
with an arbitrary number, N, of servers, but no arrivals. They have shown that
a threshold type policy minimizes the expected total flow time (sum of all fin-
ishing times). They also provided a simple formula to calculate the threshold
for each server. An extension of this model, for ‘‘small’’ arrival rates is studied
by Rosberg and Makowski (1990). It is shown there that threshold type poli-
cies are still optimal. Other control problems with N servers have been con-
sidered by many researchers, such as Weber (1978), Co¤man et al. (1987), and
Xu, Righter and Shanthikumar (1992). Bertsimas (1995) characterized the re-
gion of achievable performance in a stochastic control problem by formulating
it as a linear or nonlinear programming problem on the performance vectors
that all policies satisfy.

Our goal is to minimize the expected number of customers in the system,
by properly selecting the customer allocation strategy. Whenever one or more
servers become idle, and there are customers waiting for service, one has to
decide whether to forward (or not) customer(s) for service. Idling a slower
server provides one with the opportunity of finishing the customer’s service
earlier, through a faster server (if it becomes available.) Customer allocation
decisions are not based on exact service time requirements, since we assume
that this knowledge does not become available to the decision maker.

We show in this paper that there exists an optimal policy that is of threshold
type, i.e., it assigns a customer to server Si, if this server is the fastest server
available and the number of customers in the queue is mi or more. On the other
hand, it may idle a server, even when there are waiting customers. The thresh-
old mi may depend on the condition of other (slower) servers at the decision
instant.

The term ‘optimal’ is applied over the set of nonanticipative, nonpreemp-
tive policies. If we allow preemptions, the optimal policy has a simple form:
keep all servers busy and preempt the slowest (currently busy) server whenever
a faster server becomes idle; reallocate the preempted customer to the recently
available server. In computer systems preemptions may be allowed; however,
in communication networks preemption of a message is typically not allowed.
We were not able to utilize Dynamic Programming or Stochastic Dominance
arguments, as was done by Lin and Kumar (1984), and Walrand (1984) for
the special case of N ¼ 2. It seems impossible to extend these arguments for
the general case Nb 3. The number of possible actions grows exponentially
with the number of servers; Dynamic Programming arguments must deal with
each action separately. Since the underlying Markov chain is multidimensional
now, sample path matching, which is essential in using Stochastic Dominance
arguments, is no longer possible. We use instead Linear Programming (LP)
arguments to establish this result. As we show in section 4, the constraint ma-
trix, that incorporates queue size constraints, associated with the linear pro-
gram has a special structure; we are able to take advantage of this structure in
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order to prove the threshold type form of optimal policies. Arguments based
on Linear Programming may be used in other models, where Dynamic Pro-
gramming or Stochastic Dominance techniques fail.

The paper is organized as follows. In section 2 we describe the queueing
model of the system and introduce some notation. In section 3 we provide the
LP formulation of the optimal control problem. Finally, in section 4 we dis-
cuss the structure of optimal policies and numerical examples are given in sec-
tion 5. Rather lengthy proofs of technical results are provided in an appendix.

2. The system model

The system consists of a single queue, served by N servers of unequal speed.
Arrivals are Poisson, with rate l. The service discipline is nonpreemptive. Ser-
vice time at server Si is exponential, with rate mi. To ensure stability of the sys-
tem, we assume that l < m1 þ m2 þ � � � þ mN . As mentioned above, we may as-
sume without loss of generality that m1 > m2 > � � � > mN > 0. Let

x0t denote the number of customers waiting in queue, at time t,
xit denote the busy-idle condition of server Si; i ¼ 1; 2; . . . ;N.

If xit ¼ 0, (resp. 1), we say that server Si is idle (resp. busy).
Under the statistical assumptions we adopted, the ðN þ 1Þ-dimensional

vector

xt v ðx0t; x1t; x2t; . . . ; xNtÞ

is a suitable state description for the evolution of the queue content and of the
activity level of the servers. Although xt is a continuous-time Markov Chain,
the number of customers in system is integral and su‰cient to define the cri-
terion for our problem. Then, the state space of the system is

X v f0; 1; . . .g � f0; 1gN :

The decision epochs are the times of transition and described as follows.
Let k be the time point when there is an arrival or a departure at which the
system is observed and decisions may be made. Let T be the collection of all
such k’s.

For each time instant k A T , there is a set Xk of all possible states, i.e., the
total number of customers in the system for our models. For each x A Xk there
is a set Ak;x of feasible alternative actions, e.g., sending a customer to an idle
server or not. Let Ak ¼ 6

x AXk
Ak;x be the set of possible actions at time k.

Thus, Xk and Ak for our model are discrete and X ¼ 6
k
Xk.

Although our problem is a continuous time MDP involving infinite count-
able number of states, state transitions and control selections take place at dis-
crete times only. Thus we choose to consider the discrete-time problem. In
specific, under the assumption we adopted, it observes:

(a) the process is statistically stationary;
(b) if the system is in state x A Xk and control a A Ak is applied, the next state

will be y with probability qðyjx; aÞ;
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(c) the time interval t between the transition to state x and transition to the
next state is exponentially distributed with parameter nðx; aÞ; that is the
probability density function of t is independent of earlier transition times,
states, and controls;

(d) the parameters nðx; aÞ are uniformly bounded in the sense that for n ¼ l þPN
i¼1 mi, we have

nðx; aÞa n <y; Ex; a:

The uniformization procedure for transforming a continuous MDP to a dis-
crete MDP is described in Lippman (1975) in detail.

To define the discrete-time decision process for our problem, consider that
at any given instant, each server is working either on a real customer, if the
server is active, or on a dummy customer, if the server is idle. Dummy cus-
tomers always return to the queue upon completing service and incur no con-
tribution to delay. Transitions are associated either with arrivals or with service
completions at one of the servers serving a customer – either real or dummy.
These transitions occur according to a Poisson process of n. A transition due
to an arrival occurs with probability l=n, whereas a transition due to service
completion at server i occurs with probability mi=n.

The M=M=N model can be statistically described by a continuous-time
Markov chain, the transitions of which occur at arrival and service completion
instants. We convert a continuous time MDP problem with transition rate
nðxk; akÞ and discounted factor 0 < a < 1 into a discrete-time Markov process
with discounted factor

b ¼ n

aþ n
:

Notice that the action taken in every stage is unchanged during the uniformi-
zation procedure. It is well-known that a uniformizable continuous time MDP
can be replaced by a discrete-time MDP if the criterion is expected discounted
and average cost. The optimal stationary policies will be the same for both
processes, see Serfozo (1979).

Knowledge of the system state at transition instants only, su‰ces to char-
acterize the state evolution completely. Let, therefore, xk be the system state at
time tk, when the k-th transition (i.e., arrival or service completion) occurs.
Let xk denote the k-th transition and let vk; zk denote control variables that
represent actions taken at the k-th transition instant. We will define these vari-
ables shortly. The evolution of the system is described by the following equa-
tion:

xkþ1 ¼ xk þ xkþ1 
 zkþ1 þ vkþ1B; ð1Þ

where x0 v x ¼ ðx0; x1; . . . ; xNÞ is the initial state of the system and B is a
ðN þ 1Þ by N constant matrix (to be defined later.) The multiplication be-
tween xk and zk is componentwise (i.e., the ith element of the product xk 
 zk
is equal to xki � zki).

The control variables fzkg specify whether a transition should be allowed
or not; the control variables fvkg describe how customers are assigned to ser-
vers. For example, assume that all vectors have dimensionality one. Then, a
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control value zkþ1 ¼ 0 (resp. 1) could be used to disable (resp. allow) the tran-
sition xkþ1. Suppose that xk denotes the condition of a server. Then a control
value vk ¼ 1 (resp. 0) could be used to denote assignment of a customer to a
server (resp. idling of the server).

A policy p is any (nonanticipative, nonpreemptive) rule, which at every
time k decides whether to activate one or more idle servers, given that the
queue is nonempty. We will refer to allocation decisions as actions of the
policy.

Let kxkkv x0
k þ x1

k þ � � � þ xN
k denote the total number of customers in the

system (queue plus servers,) at time k. Given a discount factor b > 0 while as-
suming that the system starts from state x0 ¼ x, at time k ¼ 0. We define the
expected, b-discounted cost, incurred by policy p, as

J p
b ðxÞvE p

x

Xy
k¼0

bkkxkk
" #

; x A X ð2Þ

Here E p
x denotes expectation with respect to the probability law of the process

xk, when the policy p is used and the initial state is x. A scheduling policy
which is optimal for the b-discounted problem associated with (2) is called a b-
optimal policy. Since the total number of customers in the system changes lin-
early by at most one at every transition, the optimal policy for (2) exists. We are
primarily interested in the average cost criterion; however, in view of the results
in the paper written by Lippman (1973), one can work with the discounted cost
criterion (2) first, and then obtain the results for the average cost case by simple
limiting arguments.

As mentioned in the introduction, we are interested in finding the policy
which minimizes the expected number of customers in the system. From Lit-
tle’s law, the same policy will minimize the average time a typical customer
spends in the system. We will call a policy optimal, if it minimizes the cost
given in equation (2). Under the stability condition l < m1 þ � � � þ mN , there
exists an optimal policy for this problem that is Markov, deterministic and
stationary. This was shown by Lippman (1973).

It was not possible to extend the Dynamic Programming or Stochastic
Dominance arguments in order to study optimal policies for this model. We
resorted to Linear Programming based arguments instead. Equation (1) was
the basis for the LP reformulation. The threshold policy, the optimality of
which we want to show, stipulates that a server must be always activated when
x0 bmi, where mi is the optimal threshold associated with Si. As we shall see
in more detail in the next section, this property translates into the following
proper of the solution of the LP: if it is optimal to have vi ¼ 1 for x0, then it is
again optimal to have vi ¼ 1 for x0 þ 1.

3. LP formulation

Our intention is to determine the optimal rule for selection of the control vari-
ables zk; vk. Under the statistical assumptions we adopted, the problem be-
comes a Markovian Decision Process (MDP) problem. It is well known that
an MDP problem is equivalent to a linear program, possibly with an infinite
number of variables. This may be referred to Ross (1983). Details of the re-
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formulation may be also found in Rosberg, Varaiya and Walrand (1982), and
Viniotis (1988).

In summary, our approach is to study the properties of the linear program
one may obtain by considering all the sample paths (generated by eq. (1)) as
constraints, and the cost (generated by eq. (2)) as objective function. As we
will see, the constraint matrix we obtain from the sample paths of the system
has a very special structure, which enables us to state and prove the threshold
properties of optimal policies. In that sense, our approach di¤ers from that
given by Ross (1983), for example.

In order to avoid technical di‰culties that arise when one considers linear
programs with an infinite number of variables (namely, duality gaps,) we will
consider a finite horizon problem first. Throughout this discussion, the hori-
zon has a fixed value n, and thus only a finite number of variables is involved.
We then will derive the results for (the discrete version of ) cost functional (2)
by letting the horizon approach infinity.

We describe now the LP reformulation. The idea is similar to that presented
by Rosberg, Varaiya and Walrand (1982). We need a few definitions first. Let
ok represent the kth transition of the queueing system (i.e., the kth jump of the
Markov chain). Let Wv fA;D1; . . . ;DNg be the set of all transitions. Here A
represents an arrival and Di represents a departure from server Si (potentially
a ‘‘dummy’’ one, if the server is idle.) Denote the basic sample space for the
MDP problem as

Wn v fon v ðo1;o2; . . . ;onÞ : oi A Wg:

We define ok and Wk for 2a k < n in a similar manner. When a particu-
lar transition, say the lth one, of an element ok of Wk has to be singled out,
ok will be alternately denoted as ok�1ol . . . : Let Prð�Þ denote the probability
distribution on Wn.

Let Fn denote the s-field generated by a random variable fn and consist of
all on. Define a process f as a sequence of random variables f ¼ð f1; f2; . . . ; fnÞ,
where fk is Fk-measurable for every k. We can regard fk as a function on Wk.

Let xðoÞ represent the change in the system state, incurred by transition o.
The function x is given by

xðoÞ ¼

ð1; 0; . . . ; 0Þ; o ¼ A,

ð0;�1; . . . ; 0Þ; o ¼ D1,

..

.

ð0; 0; . . . ;�1Þ; o ¼ DN .

8>>>><
>>>>:

Define the transition process x̂x as

x̂x ¼ ðx1; x2; . . . ; xnÞ;

where xkðokÞv xðokÞ.
Define a transition (or multiplicative) control, as the process

z ¼ ðz1; z2; . . . ; znÞ
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Here zkðokÞv zkðokÞ and each zkðokÞ is a N þ 1-dimensional vector,

zkðokÞv ðz0kðokÞ; z1kðokÞ; . . . ; zNk ðokÞÞ;

where

z0kðokÞ controls transitions of the queue size, and
zikðokÞ controls transitions of server Si, i ¼ 1; . . . ;N.

As mentioned before, zikðokÞ specifies whether the transition ok is allowed
to a¤ect the ith element of the state vector or not. Since in this model arrivals
are not controlled, we have

z0kðokÞ ¼ 1; ok ¼ A,

0; ok 0A.

	
ð3Þ

It is more natural to define allocation of customers to idle server(s) as the only
control in this system. The standard uniformization procedure shown by Lipp-
man (1975), which is used to convert the problem to a discrete time one, how-
ever, forces us to introduce these ‘‘artificial’’ control variables at departure in-
stants. Thus, departures are controlled and we let in general

zikðokÞ ¼ A ½0; 1�; ok ¼ Di; i ¼ 1; . . . ;N,

0; ok 0Di.

	
ð4Þ

Define a server allocation (or additive) control, as the process

v ¼ ðv1; v2; . . . ; vnÞ:

Here vkðokÞv vkðokÞ and each vkðokÞ is a N-dimensional vector,

vkðokÞv ðv1kðokÞ; . . . ; vNk ðokÞÞ;

where vikðokÞ acts on the condition of server Si; i ¼ 1; . . . ;N. We have

vikðokÞ A ½0; 1� ok A fA;D1; . . . ;DNg: ð5Þ

Remark: It seems ‘‘more natural’’ to require that zikðokÞ; vikðokÞ A f0; 1g; since
we either block or not a transition, assign or not a customer to a server. By
allowing these variables to take fractional values, we ‘‘enlarge’’ the action
space; in fact, from eq. (2) or (6) below, we can see that we allow for fractional
customers in the queueing system. This enlargement of the action space is nec-
essary for the linear program formulation of the problem. Without it, the prob-
lem becomes an Integer Programming problem. However, this enlargement will
be legitimate, if we show that the resulting linear program admits an integer-
valued solution (see Lemma 1).

Define next the trajectory x̂x, that corresponds to an initial state x, as the
process

x̂x ¼ ðx1; x2; . . . ; xnÞ;
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where x0 v x and

xkþ1ðokþ1Þ ¼ xkðokÞ þ zkþ1ðokþ1Þ 
 xkþ1ðokþ1Þ þ vkþ1ðokþ1ÞB: ð6Þ

In scalar notation, the queue size evolves as

x0
kþ1ðokþ1Þ ¼ x0

kðokÞ þ x0kþ1ðokþ1Þz0kþ1ðokþ1Þ

� v1kþ1ðokþ1Þ � � � � � vNkþ1ðokþ1Þ; ð6aÞ

(i.e., the queue size at the next ‘‘event’’ okþ1 is given by the previous queue
size plus one, if okþ1 was an arrival, minus the number of customers allocated
to servers.) The server condition evolves as

xi
kþ1ðokþ1Þ ¼ xi

kðokÞ þ x i
kþ1ðokþ1Þzikþ1ðokþ1Þ

þ vikþ1ðokþ1Þ; i ¼ 1; . . . ;N: ð6bÞ

(i.e., the next state of server Si is its previous one minus 1, if okþ1 was an
(allowed) departure from this server, plus an allocated customer, if any).

In eq. (6), matrix B has the form

Bv

0
BBBB@

�1 þ1 . . . 0

�1 0 . . . 0

. .
.

�1 0 . . . þ1

1
CCCCA

i.e., the first column contains entries that are all equal to �1; the remaining
columns form an identity matrix.

We will refer to the vector ðz; vÞ as a policy. Suppose that the system starts
from state x at time k ¼ 0, and is allowed to ‘‘move’’ for n steps (i.e., perform
n transitions). Define the (b-discounted, finite horizon, expected) cost of policy
ðz; vÞ, as

Jnðx; z; vÞvE
Xn�1

k¼0

bkðx0
k þ x1

k þ � � � þ xN
k Þ; ð7Þ

We can rewrite the state trajectory equation (6) as a function of the initial state
as

x0
kþ1ðokþ1Þ ¼ x0 þ

Xkþ1

j¼1

z0j ðo jÞx0j ðo jÞ �
Xkþ1

j¼1

v1j ðo jÞ � � � � �
Xkþ1

j¼1

vNj ðo jÞ

xi
kþ1ðokþ1Þ ¼ xi þ

Xkþ1

j¼1

zij ðo jÞx i
j ðo jÞ þ

Xkþ1

j¼1

vij ðo jÞ; i ¼ 1; . . . ;N:
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Then, we may rewrite the cost in eq (7) as

Jnðx; z; vÞ ¼ ð1þ � � � þ b n�1Þðx0 þ x1 þ � � � þ xNÞ

þ
Xn�1

k¼1

X
ok AWk

½g0kðokÞz0kðokÞ

þ g1kðokÞz1kðokÞ þ � � � þ gNk ðokÞzNk ðokÞ�; ð7aÞ

where the constants g ikðokÞ depend on system parameters only. More specifi-
cally,

g ikðokÞvPrðokÞðbk þ � � � þ bn�1Þx i
kðokÞ; i ¼ 0; 1; 2; . . . ;N:

For example, we have

g0kðokÞ ¼ PrðokÞðbk þ � � � þ b n�1Þ; ok ¼ A,

0; ok 0A.

	
ð8Þ

g ikðokÞ ¼ �PrðokÞðbk þ � � � þ bn�1Þ; ok ¼ Di; i ¼ 1; . . . ;N,

0; ok 0Di.

	
ð9Þ

The reader may consult Viniotis (1988) for more details. Since we do not
control arrivals, we get from equation (7a) that the cost associated with policy
ðz; vÞ can be rewritten as

Jnðx; z; vÞ ¼ ð1þ � � � þ b n�1Þðx0 þ x1 þ � � � þ xNÞ

þ
Xn�1

k¼1

ðbk þ � � � þ b n�1Þ
X

ok AW k

ok¼A

PrðokÞ

þ
Xn�1

k¼1

X
ok AWk

ok¼D1

g1kðokÞz1kðokÞ

þ � � � þ
Xn�1

k¼1

X
ok AWk

ok¼DN

gNk ðokÞzNk ðokÞ: ð10Þ

Hence the optimal ðz; vÞ policy is the one which minimizes the right hand side
of equation (10). Notice that the controls fvikðokÞg, which denote customer
assignment to the servers, do not appear directly in eq. (10); they do appear in
the constraints, however. The minimization is constrained, since for example a
policy which results in negative queue sizes is not feasible.

Let jaj denote the absolute value of the real number a. Since the coe‰cients
g ikðokÞ are nonpositive, the optimal policy can be found as the solution to the
following linear program:

Threshold control policies for heterogeneous server systems 129



max
fz i

k
ðokÞg;fv i

k
ðokÞg

Xn�1

k¼1

X
ok AW k

ok¼D1

jg1kðokÞjz1kðokÞ

þ � � � þ
Xn�1

k¼1

X
ok AWk

ok¼DN

jgNk ðokÞjzNk ðokÞ ð11Þ

The constraints of the linear program (11) are the following:
For each element ok A Wk, where 1a ka n, the selected policy ðz; vÞ must

result in:

(a) Nonnegative queue size,

x0 þ
Xk

j¼1

z0j ðo jÞx0j ðo jÞ �
Xk

j¼1

v1j ðo jÞ � � � � �
Xk

j¼1

vNj ðo jÞb 0 ð12Þ

(b) Nonnegative server condition,

xi þ
Xk
j¼1

zij ðo jÞx i
j ðo jÞ þ

Xk�1

j¼1

vij ðo jÞb 0; i ¼ 1; . . . ;N: ð13Þ

(c) Not ‘‘overfull’’ server condition,

xi þ
Xk

j¼1

zij ðo jÞx i
j ðo jÞþ

Xk�1

j¼1

vij ðo jÞ þ vikðokÞa1; i ¼ 1; . . . ;N: ð14Þ

Notice that two separate conditions are imposed on the server state xi
kþ1:

one before an action is taken (relation 13) and one after an action is taken
(relation 14). A single condition like

1b xi
kþ1ðokþ1Þb 0; ð15Þ

does not su‰ce, since we may possibly have that

xi
kðokÞ þ x i

kþ1ðokþ1Þzikþ1ðokþ1Þ ¼ �1 and vikþ1ðokþ1Þ ¼ 1;

which fulfills condition (15), but is clearly not feasible.
From eqs. (6a)–(6b), and the constraints (a), (b), (c) imposed on queue size

and server conditions, it is easy to see that taking zkðokÞ ¼ zkðokÞ in section
3, amounts to restricting our attention to Markovian policies only. This is no
loss of generality, however, since it is known that for this problem there exists
an optimal policy which is Markovian.

The linear program (11), with constraints as in (12)–(14), is the basis for
the results we present in section 4. The key idea is to study the structure of the
constraint set and show that the linear program admits an optimal solution of
a specific form.
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4. The structure of optimal policies

Observe that in the linear program (11), only the zikðokÞ variables appear in
the objective function. Thus we will at first focus our attention to constraints
(13)–(14). The variables vikðokÞ, which appear in constraint (12) (and of course
constraints (13)–(14),) will be treated initially as fixed parameters, the value of
which is simply chosen to satisfy the constraints. Later we will determine their
optimal values.

Suppose that the system is in state ðx0; x1; . . . ; xNÞ at time t ¼ 0. This ini-
tial state is fixed throughout this discussion. A decision is made to allocate a
customer to server Si, and thus the system moves into state ðx0 �

PN
i¼1 v

i;
x1 þ v1; . . . ; xN þ vNÞ. From eqs (13) and (14), we see that (for a fixed value
of the variables vikðokÞ,) the optimal selection of fz1kðokÞ; . . . ; zNk ðokÞg vari-
ables should satisfy the constraints

v1 þ
Xk�1

l¼1

v1l ðo lÞ þ v1kðokÞ � 1a
Xk

l¼1
ol¼D1

z1l ðo lÞa v1 þ
Xk�1

l¼1

v1l ðo lÞ ð16Þ

..

.

vN þ
Xk�1

l¼1

vNl ðo lÞ þ vNk ðokÞ � 1a
Xk

l¼1
ol¼DN

zNl ðo lÞa vN þ
Xk�1

l¼1

vNl ðo lÞ ð17Þ

Of course, the customer allocation variables fv1kðokÞ; . . . ; vNk ðokÞg should
satisfy the additional constraints

Xk

j¼0

v1j ðo jÞ þ � � � þ
Xk
j¼0

vNj ðo jÞa x0 þ
Xk

j¼1

x0j ðo jÞ; ð18Þ

vi a 1� xi; i ¼ 1; . . . ;N: ð18aÞ

In the following three Lemmas we investigate the structure of the constraints
and of the optimal solution. The proof of Lemma 1 is given in the appendix.

Lemma 1: The constraints zij ðo jÞ; vij ðo jÞ A ½0; 1�, and the constraints in ineqs.
(12), (13), (14), (18a) form a totally unimodular matrix.

Remark: An immediate consequence of Lemma 1 is that the optimal solution
of the linear program (11) is integer-valued. A similar proof can be found in
Nemhauser and Wolsey (1988). The ‘‘enlargement’’ of the action space, and
the reformulation of the problem as a linear program, instead of a more nat-
ural integer program, is therefore justified.

We investigate next the relationship between the optimal z variables and
the chosen v values. This relationship (see Lemma 2,) is the key step towards
formulating a new LP, with a more simplified, suitably structured constraint
matrix.
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Naturally, for each server the assignments between two consecutive depar-
tures can be only made at most once. Let op denote the pth transition in the
sample path o j�1. Define l 
ðo j�1Þ as

l 
ðo j�1Þv max
p

fpa j � 1 : op ¼ Dig;

or 0 if such a p does not exist. Also, we define vi0ðo0Þ ¼ vi. Let 6Di denote any
transition that is not a departure from server Si. Then, for a given i, 1a iaN,
and o j, where oj ¼ 6Di, we must have that

Xj

k¼l 
ðo j�1Þ
vikðokÞa 1: ð19Þ

Lemma 2: Suppose that fvikðokÞg are chosen to satisfy constraints (16), (17),
(18) and (18a). Then the optimal solution f~zzikðokÞg of program (11) is given
by:

~zzij ðo j�1DiÞ ¼
Xj�1

k¼l 
ðo j�1Þ
vikðokÞ:

The lower bound of the summation in eq. (19) is as explained above. Intui-
tively, at time j, the transition control ‘‘clears out’’ the customer that has been
assigned to server Si, since the last time that server became idle. One can ver-
ify, with a little algebra, that the optimal value of ~zzij ð�Þ in (19) satisfies the right
hand side of inequality (16)–(17) with equality.

Observe that since

Xj�1

k¼l 
ðo j�1Þ
vikðokÞ þ vij ðo j�1 6DiÞa 1;

we have that
P j�1

k¼l 
ðo j�1Þ v
i
kðokÞa 1; and thus 0a ~zzij ðo j�1DiÞa 1, which does

not violate the constraints zij ðo jÞ A ½0; 1�.
We are now ready to express the original objective function in (11), in terms

of the server allocation variables fvikðokÞg only. In order to establish a suit-
able structure for the constraint matrix, let v denote a vector that contains all
the variables fvikðokÞg, for all k;ok. A convenient ordering of these variables,
that gives matrix A a special structure, can be derived in the following way:

Order first the set W as fA;D1; . . . ;DNg. Order Wk; k > 1 as follows: fix an
element of the already ordered set Wk�1. To that element, append in sequence,
all elements of W, in order to generate Wk. For example, the ordered space W2

is given below

W2 ¼ fAA;D1A; . . . ;DNA;AD1; . . . ;DND1;ADN ; . . . ;DNDNg:

Define cij ðo jÞ as the coe‰cient of the variable vij ðo jÞ in the objective function
(20). Let c denote the corresponding cost coe‰cient vector. Then, the optimal
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customer assignment variables are given by the solution of the following linear
program:

max
fv i

j
ðo jÞg

c � v ð20Þ

A � va bðx0Þ ð21Þ

0a
Xj

k¼l 
ðo j�1Þ
vikðokÞa 1

where 1a iaN; o j ¼ o j�1 6Di:

The value of cij ðo jÞ in terms of the original cost coe‰cients g ikðokÞ is given
in the following Lemma. However, its proof can be derived by straightforward
algebraic manipulations.

Lemma 3: The coe‰cient cij ðo jÞ, associated with the variable vij ðo jÞ, in the
linear program (20), is given by

cij ðo jÞ ¼ Prðo jÞ
Xn

k¼jþ1

bk½1� ð1� PrðDiÞÞk�j�:

Moreover,

cij ðo jÞ >
X
o

cijþ1ðo joÞ:

Note: The expression for cij ðo jÞ is really just cij ðo jÞ ¼ Eðb jþXi þ � � � þ b nÞ,
where Xi is the service time of a job assigned to server Si at time j. We inter-
pret this sum to be 0 if j þ Xi > n. The formulation of the objective function,
(20), should be understood as follows. The idea is that if customer p arrives
a time j and then sits in the queue until time n, its total discounted holding
cost is b j þ � � � þ b n. So the problem of minimizing total expected discounted
holding costs is equivalent to one in which we pay this cost at the start and
then try to maximize a compensating total expected reward, where a reward
of b jþXi þ � � � þ bn accrues when one assigns a customer to server Si at time j.

The form of the vector b and the constraint matrix A are constructed as
follows. In ineq. (21) we have one constraint for every k and ok, where 1a
ka n and ok A Wk. A convenient form for the constraint matrix A is obtained
if we list these constraints in n groups, with the constraints for W first and the
constraints for Wn last. Within group k, the order is specified by the enumer-
ation of Wk. The form of A for the special case N ¼ 2, n ¼ 3 is given in section
4. The form of the right hand side vector bðx0Þ is obtained as follows: consider
the constraint for the sample path ok. From eq (18) we have immediately that
the corresponding element, biðx0Þ of bðx0Þ where i is associated with a specific
ok, is given by,

biðx0Þ ¼ x0 þ
Xk

j¼1

x0j ðo jÞ
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For more details about systematic orderings of b; c;A, for more complex
queueing systems, the reader is referred to Viniotis (1988).

For the purposes of this discussion, it su‰ces to mention that the right hand
side vector b is a function of the initial queue size x0. Observe that constraints
(16)–(17) of the original LP are already satisfied by the solution in (19). Thus,
the constraints we have to consider, are the queue size constraints (21) and the
server constraints (19). In these constraints, only server allocation variables
appear. The set of constraints in (21) has a special ‘‘block diagonal’’ structure.
According to this structure, constraints (19) is easy to be calculated with direct
algebra. This structure can be visualized in terms of a block diagonal matrix I,
which we define below. Let ev ð1; . . . ; 1Þ, i.e., let e be a row vector with all N
entries equal to 1. Define the block diagonal identity matrix I as follows:

I ¼

e

e

. .
.

e

0
BBB@

1
CCCA

Matrix I has N þ 1 rows (i.e., as many as the number of state transitions,)
and N � ðN þ 1Þ columns. The form of the constraint matrix A for a general
horizon is easily derived by its special structure. We show here the matrix for
the simple to visualize case of N ¼ 2 servers, and a horizon n ¼ 3. Entries that
are not shown are equal to zero.

A ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1

1 1 I

1 1 I I

1 1 I 0 I

1 1 I 0 0 I

1 1 I I 0 0 I

1 1 I 0 I 0 0 I

1 1 I 0 0 I 0 0 I

1 1 I I 0 0 0 0 0 I

1 1 I 0 I 0 0 0 0 0 I

1 1 I 0 0 I 0 0 0 0 0 I

1 1 I I 0 0 0 0 0 0 0 0 I

1 1 I 0 I 0 0 0 0 0 0 0 0 I

1 1 I 0 0 I 0 0 0 0 0 0 0 0 I

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð22Þ

In eq (22), a 0 represents a matrix with all entries equal to zero; a boldface 1
represents a column vector with both (in general all N ) entries equal to one.
Observe that the first 2 (in general N ) columns of A correspond to the assign-
ment variables vi, i.e., the initial server allocations.

Before the main results is derived, we will make use of the following intui-
tive Lemma.
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Lemma 4: There exists an optimal policy that activates faster than slower ser-
vers, whenever possible.

Proof: Suppose that at some time k, 0a ka n� 1, it is feasible to activate
server Si or Sj; in other words, both vikðokÞ ¼ 1 and v

j
kðokÞ ¼ 1 are feasible.

Suppose that server Si is faster than server Sj , i.e., mi > mj . From Lemma 3,
since PrðDiÞ > PrðDjÞ, we have that

cikðokÞ > c
j
kðo

kÞ: ð23Þ

Consider two vectors s and s, such that

sikðokÞ ¼ 1; s
j
kðo

kÞ ¼ 0;

sikðokÞ ¼ 0; s
j
kðo

kÞ ¼ 1;

that have all other elements equal. The form of matrix A (eq. (22),) suggests
that the variables vikðokÞ and v

j
kðokÞ appear together in every constraint.

Therefore, both vectors s and s are feasible solutions. From ineq. (23), we
can immediately see that solution s gives a larger objective function value.
Therefore, a faster rather than a slower server should be activated whenever
possible. q.e.d.

Based on this lemma, we derive a maximal expected reward at each time.
Consider a customer is assigned to server Si at time j if Si is the fastest server
available at time j. According to eq (20), this will lead to the customer obtain
a expected reward cij ðo jÞ. However, if he is held in queue and considered to
obtain a maximal future reward at time j þ 1, i.e. he will be assigned to any
faster server available at time j þ 1 despite that Si is idle at time j. The ex-
pected maximal reward at time j þ 1, R i

j , is

Xi

l¼1

cljþ1ðo jDlÞ þ
XN
l¼iþ1

cijþ1ðo jDlÞ þ cijþ1ðo jAÞ:

Generally, if cij ðo jÞbR i
j , the customer should be assigned to Si at time j for

an optimal policy, because by Lemma 3 the relation cikðokÞbR i
k holds for

every k > j. However, if cij ðo jÞ < R i
j , the optimal policy is not to activate Si

at time j, but may activate it later which can be some time k > j. Notice that
if server Si is not activated at time j, it is not necessary to be activated at time
j þ 1, because the relation cijþ1ðo jþ1Þ < R i

jþ1 may also be applied. Though,
both cij ðo jÞ and R i

j are not functions of the initial queue sizes, the initial queue
sizes play a role in decisions such that the server Si may be activated at time k
where j < k < n. This will be explained in the following lemma by looking
into the structure of A with eq (19) and eq (21). Moreover, the time k is non-
increasing with the initial queue sizes. We are now ready to associate proper-
ties of the optimal customer allocation policy, to properties of the constraint
matrix A. Let ~vv denote the optimal policy when the initial queue size is x0 and
server Si is free. Let v denote the optimal policy when server Si is again free
but the initial queue size is x0 þ 1. The particular structure of A is essential in
the proof of the following fundamental result:
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Lemma 5: Suppose that for initial queue size x0, and a given server configuration,
it is optimal to have ~vvi ¼ 1, i.e., activate server Si. Then, for queue size x0 þ 1
and the same server configuration, it is optimal to have vi ¼ 1.

Proof: We prove it by considering the following two cases.

Case 1: If ci bR i
0, then clearly the optimal policy v should activate Si, i.e.

vi ¼ 1 since ~vv activates Si, i.e. ~vv
i ¼ 1.

Case 2: If ci < R i
0, then assume vi is equal to 0 when the initial queue size is

x0 þ 1, while ~vvi ¼ 1 when the initial queue size is x0. From Lemma 4, policy v
may also idle other servers, faster than server Si. Let Si1 be the fastest such
server, where i1 a i. Suppose therefore, that v j ¼ 0, for i1 a j. We will arrive
at a contradiction, derived from this assumption.

Since ~vv is optimal and ~vvi1 ¼ 1, there are at least two customers are avail-
able to be assigned at some k > 0. We will first show that server Si1 must be
activated for at least one ok, with 1a ka n� 1. To see this, let us check
the feasibility and optimality of the assignment vi1k ðokÞ ¼ 1, for some k > 0.
Clearly, if vi1k ðokÞ ¼ 0, for all k and all ok, 1a ka n� 1, the objective
function can be improved. Consider for example any path on�1. Since policy v
idles server Sj, jb i1 at time 0, it must idle them at all times k > 0 also. Thus,
along the path on�1, we have

Av
XN
i¼1

~vvi þ
XN
i¼1

Xn�1

j¼1

~vvij ðo jÞ >
XN
i¼1

vi þ
XN
i¼1

Xn�1

j¼1

vij ðo jÞvB:

However, since Aa x0 þ
Pn�1

j¼1 x0j ðo jÞ, we conclude that Ba x0 þ 1þ
Pn�1

j¼1 �
x0j ðo jÞ, and thus letting vi1n�1ðon�1Þ ¼ 1 is feasible.

Consider a particular event uk1 where the integer k1 has the smallest pos-
sible value such that vi1k1ðu

k1Þ ¼ 1, but vi1k ðokÞ ¼ 0, for all ok A Wk and k < k1.
Furthermore, B is strictly less than A, we have that vi1k1ðu

k1�1oÞ ¼ 1, for every
o A W. From this fact and Lemma 3, we will show that the value of k1 can be
decreased (i.e., activation of server Si1 must be done earlier). By induction, it
follows that policy v must activate server Si1 at time k ¼ 0, and we arrive at
the desired contradiction.

It follows that v must activate server Si at time k ¼ 0. Using the same ar-
guments, we may further improve the optimal solution by induction which is

vi1þ1 ¼ vi1þ2 ¼ � � � ¼ vi ¼ 1; q:e:d:

Essentially Lemma 5 says that there exists an optimal policy that is of
threshold type; note that the optimal threshold for server Si may depend on
the condition of the other servers. The next theorem follows immediately from
Lemma 5.

Theorem: There exists an optimal policy, for the discounted, finite horizon prob-
lem, that is of threshold type, with thresholds that depend on (slower) server
condition.
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We now extend this result for the average cost case. Let miðnÞ denote the
optimal threshold for server Si, when the horizon is n. We first show that the
optimal thresholds are nondecreasing functions of the horizon, and thus they
possess a limiting (finite) value.

Lemma 6: The optimal threshold for server Si is a nondecreasing, bounded func-
tion of the horizon n.

Proof: When the horizon increases (to nþ 1), the basic linear program (20) is
a¤ected as follows:

. N � jWjnþ1 more variables of the form vinþ1ðonþ1Þ are introduced.. All the cost coe‰cients are increased (by a factor bnþ1½1�ð1�PrðDiÞÞnþ1�j�.)

. The constraint matrix A has now jWjnþ1 more rows and N � jWjnþ1 more col-
umns.

Consider an initial state ðx0; . . . ; 0; . . .Þ in which it is optimal to activate server
Si, when the horizon is n. It is of course possible that c j

nþ1ðonþ1Þ > ci, for
some 1a jaN; j0 i. Consider now a feasible solution s with the following
property:

. si ¼ 0,. s
j
nþ1ðonþ1Þ ¼ 1,

. all other elements of s are equal to those of ~vv, where ~vv is an optimal solution
for the LP problem with horizon, nþ 1.

Since c j
nþ1ðonþ1Þ > ci, s improves the objective function. Therefore, when the

horizon increases, it may no longer be optimal to activate server Si at that
initial state. In other words,

miðnÞamiðnþ 1Þ;

and the limit as the horizon approaches y exists. Finiteness of the limit is eas-
ily shown via a stochastic coupling argument similar to that presented for the
N ¼ 2 case in Walrand (Lemma 3.2b, 1984). q.e.d.

Remark: For an infinite horizon, the proof is a straightforward extension of
the sample path argument given in Walrand (1984), for the special case of
N ¼ 2 servers. We present below the proof for a finite horizon, and an arbi-
trary number of servers. Under the stability condition l < m1 þ � � � mN , we
posed in the introduction, the Markov chain that the optimal policy induces is
ergodic. The main result of this paper follows easily as a special case of cor-
ollary (1) in Lippman (1973).

Proposition: There exists a policy that minimizes the average number of jobs in
the M=M=N queueing system with heterogeneous servers and it is of threshold
type, with thresholds that may depend on (slower) server condition.

Remark: It is intuitive that the thresholds mi are nonincreasing functions of
the service rates; in other words, we have that m1 am2 a � � � amN . This fact
is a direct consequence of Lemma 4.
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5. Computational experiments

The thresholds can be found using computations on the LP or Dynamic Pro-
gramming Equations (DPE). In this section, the threshold phenomenon is
shown by three test problems. However, there is a memory problem with both
the DPE and LP formulations. This is because it is hard to observe the thresh-
old behavior of optimal policies with varied horizons through both techniques,
since the number of variables and constraints goes exponentially with hori-
zons. As least, we are able to run a computer program of LP with horizons up
to 7. Hence, this restricts us to investigate a single multiserver queueing sys-
tem, only.

Three di¤erent test problems were run, and their results are shown in the
tables below. The initial state is specified at the first row in each test problem.
With every horizon n, the row of letters, e.g. eghhh, represents the actions to
be taken as the number of customers in the queue grows from 1 to 5. The ac-
tions are depicted by letters a, b, c, d, e, f, g, and h each representing the state
after actions 000; 001; 010; . . . ; 111, respectively. For example, the state after
action 000 means not to feed anyone, 100 means feed server S1 only, while 011
means feed servers S2 and S3.

Table 3.1. Test problem one

Initial state ðx1; x2; x3Þ ¼ ð0; 0; 0Þ

ðm1; m2; m3Þ n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

ð1:0; 0:1; 0:01Þ eghhh eeghh eeegh eeegg eeeeg eeeeg

ð1:0; 0:1; 0:01Þ eghhh eeghh eeggh eeegg eeegg eeegg

ð5:0; 2:0; 0:50Þ eghhh egghh egggh egggh eeggg eeggg

Table 3.2. Test problem two

Initial state ðx1; x2; x3Þ ¼ ð1; 0; 0Þ

ðm1; m2; m3Þ n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

ð1:0; 0:1; 0:01Þ cdddd acddd aacdd aaccd aaacc aaacc

ð1:0; 0:1; 0:01Þ cdddd acddd accdd aaccd aaccc aaccc

ð5:0; 2:0; 0:50Þ cdddd ccddd cccdd cccdd acccd acccd

Table 3.3. Test problem three

Initial state ðx1; x2; x3Þ ¼ ð1; 0; 1Þ

ðm1; m2; m3Þ n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

ð1:0; 0:1; 0:01Þ ccccc acccc aaccc aaccc aaacc aaacc

ð1:0; 0:1; 0:01Þ ccccc acccc acccc aaccc aaccc aaccc

ð5:0; 2:0; 0:50Þ ccccc ccccc ccccc ccccc ccccc acccc
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For each row, the threshold structure is clear in each test problem; the
threshold numbers are nondecreasing by horizon n. It is worthwhile to notice
that the threshold numbers are weakly a¤ected by the slow server conditions.
For example, given l ¼ 0:9, b ¼ 1:0, n ¼ 6, and x0 ¼ 1, it is optimal to acti-
vate server S2 at x3 ¼ 1, but it is optimal not to activate server S2 at x3 ¼ 0.
These results are consistent with that solved by DPE in Sanyal (1990) where
bounds and algorithmic procedures to approximate the optimal thresholds
were investigated.

6. Conclusions

We have shown that the optimal customer allocation policy, for a system with
N heterogeneous servers, is of threshold type. We have made novel use of
linear programming arguments, in order to establish this result. The threshold
for activating a server may depend on the condition of slower servers. We were
not able to study this dependence using LP arguments. We strongly believe that
the dependence is weak (i.e., the threshold is not sensitive to the condition of
slower servers.) We suspect that the optimal threshold may vary by at most 1
when the condition of a slower server changes.

We strongly believe that similar, LP based arguments, can be used to es-
tablish the form of optimal policies in related optimal queueing control models
as well. From the implementation point of view, computation or approxima-
tion of the optimal thresholds is an interesting question. Numerical experi-
ments given in section 5 show the threshold structure of an M=M=3 with un-
equal service rates.

Appendix
A proof for totally unimodularity of queueing constraint matrix

We shall show that the constraints zij ðo jÞ; vij ðo jÞ A ½0; 1� and the constraints
(12), (13), (14) and (18a) form a totally unimodular matrix. As explained in
Nemhauser and Wolsey (1988), if the matrix F is totally unimodular, then the
matrix [F I] is totally unimodular, where I is an identity matrix. Since the con-
straints (18a) only form an identity matrix in the whole constraint matrix, we
shall consider the constraints (12), (13), and (14).

By the ordering of v, we arrange z by the same manner as

z ¼ ðz1; z2; . . . ; znÞ:

Note that the cardinality of vk is jvkj ¼ NðN þ 1Þk and that of zk is jzkj ¼
NðN þ 1Þk�1, for kb 1. In total, the cardinality of v is jvj ¼ Nð1þ ðN þ 1Þþ
� � � þ ðN þ 1ÞnÞ and that of z is jzj ¼ Nð1þ ðN þ 1Þ þ � � � þ ðN þ 1Þn�1Þ. De-
note by q the number of variables. Then q ¼ jvj þ jzj. Denote by p the number
of constraints. Then p ¼ 3½ðN þ 1Þ þ ðN þ 1Þ2 þ � � � þ ðN þ 1Þn� þ 1. Let ma-
trix Q consist of constraints (12), (13), and (14). The size of Q is therefore
p� q. Since each server’s contraints are decoupled and the control variables v
and z arranged as ðz vÞ in each row, we consider the following matrix. Let
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Q ¼

0
BBBBBBBBBBBBBB@

Qð12Þv1 . . . . . . Qð12ÞvN

Qð13Þz1 Qð13Þv1

Qð14Þz1 Qð14Þv1

Qð13Þz2 Qð13Þv2

Qð14Þz2 Qð14Þv2

. .
. . .

.

Qð13ÞzN Qð13ÞvN

Qð14ÞzN Qð14ÞvN

1
CCCCCCCCCCCCCCA

where the submatrix Qð12Þv i consists of the coe‰cients of v for constraint (12),
and Qð13Þz i ;Qð13Þv i ;Qð14Þz i ;Qð14Þv i correspond to the constraints (13), (14) with
respect to variables zi, vi, for i ¼ 1; 2; . . . ;N. Observe that Qð12Þv i , Qð13Þz i ,
Qð14Þv i contain zeros and þ1 elements, but Qð13Þv i , and Qð14Þz i contain zeros
and �1 elements for 1a iaN. Denote the l-th element of a column c by ðcÞl .
Then

Qð jÞv1 ¼ Qð jÞv2 ¼ � � � ¼ Qð jÞvN for j ¼ ð12Þ; ð13Þ; ð14Þ;

Qð jÞz1 ¼ Qð jÞz2 ¼ � � � ¼ Qð jÞzN for j ¼ ð13Þ; ð14Þ:

We shall concentrate our attention to the submatrices Qð jÞv1 for j ¼ ð12Þ, (13),
(14) and Qð jÞz1 for j ¼ ð13Þ and (14). As a matter of fact, these five di¤erent
submatrices are the sets of constraints in terms of the combination of the tran-
sitions of the Markov chains. They have the following property.

Lemma 7: Let ei, ej be two columns belonging to one of those five submatrices as
described above, with i < j. If there exists a l such that ðeiÞl , ðejÞl are nonzeros,
then ðcjÞk 0 0 ) ðciÞk 0 0 for every k.

Proof: Case 1: Suppose ei; ej A Qð12Þv1 . Let the l-th constraint in Qð12Þv1 corre-
spond to a fixed history o1;o2; . . . ;oi; . . . ;oj. From eq. (12), we have

v1 þ v11ðo1Þ þ v12ðo1o2Þ þ � � � þ v1i ðo1o2 . . .oiÞ

þ � � � þ v1j ðo1o2 . . .ojÞa x0 þ
Xj

k¼1

x0kðokÞ

where column ej refers to the coe‰cients of v1j ðo1 . . .oi . . .ojÞ. If another
constraint, say the k-th one, contains o1 . . .oi . . .oj as part of the history on,
then it necessarily contains o1 . . .oi. Therefore ðeiÞk ¼ ðejÞk. The submatrices
Qð13Þv1 and Qð14Þv1 can be treated in the same way.

Case 2: If ei; ej A Qð13Þz1 , let the lth constrain in Qð13Þz1 correspond to a fixed
history o1;o2; . . . ;oi; . . . ;oj: From eq. (13), we have
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�½z11ðo1Þxðo1Þ þ � � � þ z1i ðo1o2 . . .oiÞxðoiÞ

þ � � � þ z1j ðo1o2 . . .ojÞxðojÞ� �
Xj�1

k¼1

v1kðokÞa x1

with xðoiÞ ¼ xðojÞ ¼ 1. Therefore the same argument in Case 1 is applied.
Then it asserts that any two columns in submatrix Qð:Þ: of Q will be either
‘disjoint’ or ‘contained’ one into the other (in the sense that their nonzero
elements do so). q.e.d.

Proof of Lemma 1: Since Q is a matrix with entries 1;�1, and 0;Q is totally
unimodular if and only if each collection of columns of Q can be split into two
parts such that the sum of the columns in one part minus the sum of the col-
umns in the other part is a vector with entries 1;�1 and 0 only. This proof is
provided in Nemhauser and Wolsey (1988). Thus let K be an arbitrary col-
lection of columns of Q. Partition K as K ¼ Kv WKz, where Kv and Kz contain
columns in which nonzero entries correspond to variables v and z respectively.
Let U v

1 ;U
v
2 ;U

z
1 and U z

2 be the columns that are initially assigned as zeroes,
and will be computed in the following. Arrange the columns in increasing or-
der of horizon in set Kv and Kz individually. Now add the first column in Kv to
U v

1 . If the second column in Kv has a common nonzero with the first column,
put (add) it into U v

2 ; otherwise put (add) it into U v
1 . This arrangement guar-

antees that Kv has been split into two parts, U v
1 and U v

2 such that U v
1 �U v

2 is a
vector with ones and zeros corresponding to contraints (12) and (14) but with
�1 and 0 corresponding to contraints (13).

Repeat the procedure arranging this time the set Kz. Thus Kz ¼ U z
1 WU z

2 ,

withU z
1 �U z

2 a column vector with�1 and 0 corresponding to constraints (14)
but 1 and 0 corresponding to constraints (13). In conclusion, after the process,
we have

U z
1 �U z

2 U v
1 �U v

2

0 1 or 0

ð13Þ 1 or 0 �1 or 0

ð14Þ �1 or 0 1 or 0

: :

ð13Þ 1 or 0 �1 or 0

ð14Þ �1 or 0 1 or 0:

Let U1 ¼ U z
1 þU v

1 and U2 ¼ U v
2 þU z

2 . Therefore U1 �U2 ¼ U v
1 þU z

1�
ðU v

2 þU v
2 Þ ¼ U v

1 �U v
2 þU z

1 �U z
2 contains 1;�1, and 0 only. Thus Q is to-

tally unimodular. q.e.d.
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