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A reliable estimation of loss probabilities is essen-
tial for calculating value at risk and expected 
shortfall. Typically, a full valuation approach is 
favored in the estimation process because it yields 
a very accurate price of financial instruments. 
Monte Carlo simulation is often used in con-
junction with a full valuation approach because 
the market scenarios can be generated from the 
stochastic model of the risk factors; however, the 
computational cost of a full valuation approach is 
high. In this article, a fast importance sampling 
procedure is proposed for estimating loss prob-
abilities using a full valuation approach. The 
foundation of the algorithm uses a special matrix 
decomposition technique, the spectral decomposi-
tion, which identifies the key factor that drives 
the dependence structure of the risk factors. Fur-
thermore, the monotonic property between the key 
factor and the portfolio loss exceeding the loss 
threshold provides the guidelines for selection of 
appropriate importance sampling distributions. In 
particular, the technique of zero-variance changes 
of measure is adopted for selection of importance 
sampling distribution for the key factor. The like-
lihood ratio of the importance sampling estimator 
is less than one for every sample path generated, 
and therefore, we guarantee the algorithm facili-
tates variance reduction over naive simulation. 
The performance improves immensely when 
moving the loss threshold to more extreme values 
or when taking the dependence structure to more 
correlated situations. Numerical results indicate 
that the estimator exhibits a constant coefficient 

of variation that suggests the importance sampling 
estimator has bounded relative error.

Value at risk (VaR) and expected 
shortfall (ES) are both popular 
risk management tools applied to 
market exposure to ensure that 

banks have sufficient capital during stressful 
market events. VaR describes the threshold 
of portfolio losses for a given probability as 
a single value for measuring risk (Wilson 
[1999], Jorion [2007], Alexander [2009], Hull 
[2012]). Artzner et al. [1997, 1999] pointed 
out that any risk measure that satisfies the four 
properties—drift invariance, homogeneity, 
monotonicity, and subadditivity—is known 
as coherent. However, VaR is not a coherent 
risk measure because it fails to fulfill the sub-
additivity criterion. ES is a widely used alter-
native coherent risk measure that evaluates 
portfolio average losses exceeding VaR.

Comprehensively, a reliable risk mea-
sure relies on accurate estimation of port-
folio loss, and the calculation is relatively 
straightforward if given the loss distribu-
tion. However, estimating a loss distribution 
can be time-consuming because portfolio 
losses are aggregated from the return of each 
instrument. Generally, the behaviors of risk 
factors are based on specific market models. 
Monte Carlo simulation is the predominant 
numerical method used to define different 
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market models because it exhibits parametric f lexibility 
to assimilate to different market conditions. In Monte 
Carlo simulation, risk factor scenarios are generated 
from more elaborate market models, for example, a 
Brownian motion calibrated to historical covariance of 
instrument returns. However, Monte Carlo simulation 
is also the most computationally intensive method, in 
particular, for calculation of VaR and ES, because a large 
loss is a rare event. This article proposes a fast Monte 
Carlo simulation algorithm that improves the efficiency 
of estimating VaR and ES.

Let V(t) be the value of the portfolio at time t, then 
define V(t) as a function of the risk factors S(t), thus 
V(t) = V(S(t)). Set the holding period to be Δt and the 
value of the portfolio at time t + Δt be V(t + Δt). This 
article defines the loss in the portfolio value during the 
holding period as follows:

 ( ) ( ) ( ( )) ( ( ))L V V) V ( t V)) t( t(V ) Δ = (V ( t)) + Δ  (1)

VaR is used to measure the magnitude of the loss at a 
specific confidence level (1 − α), such as 95% or 99%. 
For a given probability α, VaR xα is defined as

 P( =) αα  (2)

xα is the (1 − α)th percentile of the loss distribution; 
thus, the estimation of xα presents a quantile estima-
tion problem. A direct simulation method for generating 
quantile estimations must consider the loss distribu-
tion. However, it is convenient to compute the large 
loss probability and subsequently estimate the quantile 
(Glasserman et al. [2000]). In this article, the problem of 
interest is to estimate the large loss probability p, when 
considering a large loss threshold b. Define

 ( )p P b(P  (3)

It is obvious that if an eff icient method is used 
to compute p for any b, then the calculation of xα is 
straightforward.

From a statistical perspective, xα is defined as the 
(1 − α) th quantile associated with the loss distribution 
L, and ES is the conditional expectation of the truncated 
loss distribution at the confidence level α. Define

 
[ | ]

( )
E[ L x

E

P(
[ ];L L x

=]xα
α

 (4)

where the denominator is the large loss probability. 
To calculate the ES, we must determine the value of 
the numerator, namely, expected loss above threshold, 
E [L; L > xα]. Because xα is unknown, it is diff icult 
to generate a direct simulation method to calculate 
E[L; L > xα]. An accurate estimation of E[L; L > xα] 
requires numerous replications for the tail distribution. 
As a result, rather than estimating precise xα and loss dis-
tribution, [ ; ]/ ( ))E[ L b P( b]/ (b P(  yields a good approxi-
mation of ES when P(L > b) ≈ α. Thus, this article 
focuses on developing a fast algorithm for evaluating 
E[L;L > b] and P(L > b) for any given loss threshold b. 
In particular, without generating a complete loss distri-
bution, this article contributes a direct simulation algo-
rithm for accurately estimating E[L;L > b] and P(L > b) 
by Monte Carlo simulation.

The central idea of VaR estimation is to model the 
dynamic behavior of the risk factors to which the port-
folio is exposed and to translate the changes in the risk 
factors into the changes in portfolio values. The classic 
VaR estimation method, the RiskMetrics method pro-
posed by J.P. Morgan (Longerstaey [1996]), assumes the 
change in the value of the portfolio is driven by cor-
related risk factors, and thus portfolio value is a linear 
combination of the risk factors. The RiskMetrics method 
also assumes that the change in the value of the portfolio 
is normally distributed so that the VaR can be easily esti-
mated, in which the required parameter is the covariance 
matrix of the risk factors. However, two factors define 
the assumption’s shortcomings: First, portfolio value is 
not always a perfectly linear function of the risk factors, 
for example, in the case of option portfolios. Second, 
the risk factors exhibit a heavy tailed distribution rather 
than a normal distribution in real markets.

To generalize the model setting in the RiskMet-
rics method, literature on VaR estimations can be sep-
arated into two streams: One stream targets relaxing 
of model assumptions on the portfolio value, which 
is not a linear combination of the risk factors. In this 
stream, a specific quadratic function is widely used for 
approximation of portfolios losses. The approximation 
method is known as the delta-gamma approach based 
on the Taylor series expansion method to include qua-
dratic effects (Rouvinez [1997]; Wilson [1999]). Yueh 
and Wong [2010] applied the Fourier transformation 
technique to derive an analytical expression for VaR and 
ES dependent on quadratic approximation of portfolio 
loss. Based on historical observations, however, another 
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literature stream has considered that the true market 
is more volatile than is theoretically expected and the 
market returns exhibit a skewed, leptokurtic, or heavy-
tailed distribution. Hull and White [1998] relaxed the 
normal distribution assumption by proposing a trans-
formation model for VaR estimation, in which the risk 
factors can be any distribution, but the model requires 
the transformed new risk factors to follow a multivariate 
normal distribution.

This article contributes to both streams of literature. 
Instead of using an approximation to solve the nonlinear 
relationship between portfolio value and the risk fac-
tors, the full valuation evaluates accurate portfolio value 
at each time point. Typically, the full valuation is an 
optimal choice for calculation of VaR and ES because it 
yields a very accurate price for the instruments. Through 
accurate valuations of individual instruments, the risk 
factor scenarios are simulated so that portfolio value 
can be determined. Monte Carlo simulation uses his-
torical data with more f lexibility than the delta-gamma 
approach. After fitting a parametric model of the risk 
factors with stochastic volatility and return distributions 
preferably, one can simulate risk factor scenarios that can 
be defined in the model. The delta-gamma approach 
allows approximation of the risk factor dynamics, yet it 
uses partial valuation, which has a limited definition of 
risk factor scenarios based on the sensitivity parameters 
and the covariance matrix of historical data.

However, there are only a few samples drawn 
having L > b. When b is large, L > b corresponds to 
“rare events.” Importance sampling is a technique well 
suited for improving the efficiency of rare events simula-
tion (Hammersley and Handscomb [1964]; Glynn and 
Iglehart [1989]; Glasserman [2004]). The basic idea of 
importance sampling is to replace the original density 
in Monte Carlo simulation by an alternative density for 
increasing the probability of rare event occurrence. For 
example, let X be a random variable with a density f. 
Given the goal of computing P(X > 0), we want to 
calculate an expectation of the form E{I(X > 0)} where 
I(⋅) is an indicator of the event of interests and E is 
the expectation associated with the original density f. 
Importance sampling involves choosing a sampling den-
sity g where there exists a likelihood ratio (or Radon-
Nikodym derivative) � such that

 ( 0) ) ( 0) ( ) ( )I( f (f X( X( X g)�)0) X( >  (5)

where

�( )
)

( )
f X(
g X(

=

We then have

�P E( )0X { }( 0)X 0) { }�( 0)I( X0 0)

where �E  is the expectation associated with density g. 
One can then sample �( 0)I( ( )X  in the simulation 
from the importance sampling density g and estimate 
P(X > 0) by the sample mean of �( 0)I( ( )X . The 
selection of the new density should be executed care-
fully, however, because simulation under an inappro-
priate density can increase estimator variance. In high 
dimension space, this problem is even more serious 
due to the variance of the likelihood ratio blowing up 
(Asmussen and Glynn [2007]). In implementing impor-
tance sampling, the key is to select an efficient impor-
tance sampling density g* that ensures the importance 
sampling estimator has smaller variance (Asmussen and 
Glynn [2007]). Importance sampling has been studied in 
various applications (Glynn and Iglehart [1989]; Heidel-
berger [1995]; Glasserman [2004]). Regarding deriva-
tive valuation applications, Chiang et al. [2007], Chen 
and Glasserman [2008], and Joshi and Kainth [2004] 
have adopted importance sampling approaches to value 
basket default swaps.

Glasserman et al. [2000] developed stratified sam-
pling and importance sampling variance reduction tech-
niques for VaR. They assumed that the changes in the 
risk factors are normally distributed. Glasserman et al. 
[2002] extended the techniques to fit a heavy-tailed dis-
tribution. These techniques exploited the delta-gamma 
approach, which is not restricted by the assumption that 
portfolio losses move linearly with the changes in the 
risk factors. Hoogerheide et al. [2010] proposed an adap-
tive importance sampling method for forecasting VaR 
and ES in a Bayesian framework, which approximated 
the optimal importance sampling density by multi-step 
“high loss” scenarios.

The proposed algorithm calculates the accurate 
portfolio value at each time point, compared with the 
delta-gamma approximation. Also, the assumption of 
our algorithm is that the dependency structure of the 
risk factors is driven by a multivariate normal distribu-
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tion. For example, the marginal distribution of each 
risk factor can be any distribution (Hull and White 
[1998]). Our approach focuses on the tail of loss dis-
tribution and simulates the excess (beyond threshold) 
portfolio losses directly without performing additional 
calculation for the complete loss distribution. In the 
case of estimating VaR and ES, simulation of the risk 
factors is also in a high dimension space. This article 
proposes a dimension reduction technique to ensure 
that the variance of the resulting likelihood ratios does 
not blow up.

The rest of this article is organized as follows. 
The research model being considered is defined and the 
assumption of the risk factors is established in the next 
section. An overview of the theoretical  framework is then 
presented, which includes the central idea for identifying 

where parameters μ(t) = (μ
1
(t),...,μ

d
(t)) and σ(t) = 

(σ
1
(t),...,σ

d
(t)) are the drift and volatility of the process. 

The term dZ(t) is a multivariate correlated Brownian 
motion with a correlation matrix ρ, where

1
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the key factor that drives the selection of importance 
sampling distribution and the implementation details of 
the proposed algorithm. The subsequent section presents 
the numerical results and a comprehensive comparison of 
the portfolios to demonstrate the efficiency of the pro-
posed algorithm. The final section summarizes our main 
findings.

RESEARCH MODEL

Monte Carlo simulation relies on a suitable model 
of the risk factors. Thus, we first describe the dynamic 
behavior of the risk factors. Suppose there are d risk 
factors and S(t) refers to the risk factors at time t. Let 
S(t) = (S

1
(t), ..., S

d
(t))T follow a multivariate diffusion 

process:1

 

( )
( )

( ) ( ) ( )
dS
S(

t d) (t dZ= μ + σ  (6)

The log return of the risk factor S
i
, is defined between 

time t and t + Δt as X
i
, where i = 1, ..., d. Let X = (X

1
, ..., 

X
d
)T and = μ μ( ) (( ( ) ( )/2), , ( ( )/2))1 1σ( ) 2 2μ( )/2) ( ( )a( − σ) (1σ) 2( − σ (2σ)d dσσ T . 

By the Itô lemma and the Euler scheme (Glasserman 
[2004]), it is straightforward to see that

 ~ ( ( ) , ( ) )X ~ a( t t, (Δ Σt, Δ  (7)

and

 ( ) ( ) ,S ( S) e)i i( )( S) XiΔ  where i = 1, …, d (8)

Because S(t + Δt) can be determined based on a 
given X, portfolio loss can be simulated by generating 
samples of X using Equation (1).

Monte Carlo simulation is a suitable approach for 
evaluating Equation (1). Values of the risk factors at 
time t are simulated, and the portfolio is reevaluated. 
Depending on the length of the horizon observed, 
distribution of the portfolio loss L over the given risk 
horizon Δt is produced. As previously mentioned, the 
problems of interest are P(L > b) and E[L; L > b]. For 
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a given loss threshold b, the estimator for P(L > b) in 
Equation (3) is denoted by p̂ , as

ˆ
1

( )
1

p
n

I( bi
i

n

∑ (I(= ∑
=

and the standard error ( ( ˆ ))p  is ˆ(1 ˆ)/p p(1 n . Similarly, 
the estimator for E[L; L > b] in Equation (4) is denoted 
by γ̂ , as

∑
γ = =ˆ

( )
1

L I b>

n

i i(I
i

n

and its standard error ( ( ˆ ))γ  is 

( ( ) ˆ ) / ( 1).2

1
L bi i(L

i

n∑ −)b γ −) / (n(
=

THE PROPOSED ALGORITHM

Two-Stage Sampling Procedure

The first goal is to determine the key factor from 
the covariance matrix of the risk factors. Hence, we 
begin by rewriting the log return of the risk factors in 
Equation (8) to

 ( )X a t) CZ= Δ( )a ) +  (9)

where C is a matrix satisfying CCT = ∑(t)Δt and 
Z ∼ N(0, I

d
). One popular choice of C is the Cholesky 

factorization of ∑(t)Δt. Here, we use spectral decom-
position. Let (λ

1
; q

1
), ..., (λ

d
; q

d
) be the eigen-pairs of 

∑(t)Δt and λ
1
 ≥ λ

2
, ..., ≥ λ

d
. The spectral decomposition 

of ∑(t)Δt is

 
( )

1

t) q q Q Qi i iq qT

i

d
T∑Σ Δ( )) = λ∑ = ΛQQ

=

 (10)

and

�

� �
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0 0�
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1Q q( q

d
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λ
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⎟⎟

⎟
⎟⎟

⎟⎠⎠
⎟⎟

2

where Q is an orthogonal matrix and λ
k
 ≥ 0. We set 

C = QΛ1/2, and it is clear that QΛ1/2 provides an alter-
native for C. Thus, X = α(t)Δt + QΛ1/2Z is a proper 
representation of X, and the risk factor at time t + Δt is 
expressed as

( ) ( ) ( )exp ( ) )1/2S( S) e) S( t(XΔ =(S e) Δ Λ⎡⎣ ⎤⎦⎤⎤  (11)

We decompose C as �( , )1 C, . The sub-matrixes 
c
1
 and �C  have the dimensions d × 1 and d × (d − 1), 

respectively. Furthermore, the matrix Z is partitioned 
into �( , )1 Z, T . The sub-vectors Z

1
 and �Z  have the 

dimensions 1 and d – 1, respectively. Equation (11) can 
be rewritten as

 
( ) ( ) p ( )S( S) )exp t t) ( )� �

1 1c Z1 CZΔ Δ( )t)= ( )S )exp ( 1c Z1+ ⎡⎣ ⎤⎦⎤⎤⎡
⎣

⎤
⎦
⎤⎤  (12)

Equation (12) provides the idea of designing a two-
stage procedure to generate X. In particular, we first 
generate �Z  and then Z

1
. The relationship between Z

1
 

and the portfolio loss provides us a guideline for selecting 
a good importance sampling distribution. In our sam-
pling procedure, an importance sampling distribution 
for X does not need to be defined. Instead, we generate 
�Z  first, and then based on the sampled value of ,Z�  we 

select importance sampling distributions for Z
1
 given 

the sampling value of �Z .
Based on Equation (12), it is clear that the portfolio 

loss is a function of Z
1
 and Z� . Set h = L − b, then h is 

also a function of Z
1
 and Z� . It is obvious that the event 

L > b and h > 0 are equivalent.

Property 1. The large loss probability P(L > b) is equivalent to 
�[ [ ( 0)| ]]E[ I h( Z .

Proof:

�

( ) ( 0)

[ ( 0)]

[ [ ( 0)| )]]

P( b P) h

E[ h

E[ I(I h( Z

)

= >[ (E[ h

= [ [E[ I(

That is, conditional on �Z, the event of interest can 
be determined solely by Z

1
. Our next goal is to deter-

mine the range of Z
1
, such that �( 0| ) 1I h( =0| )  for all .Z�  

For achieving this goal, first we find a threshold z* that 
makes h = 0 for a given �Z . Second, we need to choose 
an appropriate new density for Z

1
 that ensures the likeli-

hood ratio is always less than one and forces the event of 
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interest (L > b) to occur in every sample path. There are 
many possible candidates, however, for the new mea-
sures that can force the event of interest to occur. Hence, 
additional guidelines are necessary for determining an 
appropriate importance sampling distribution among all 
possible measures. For selecting a good density for Z

1
, 

we need the specific monotonic property of h(⋅) in Z
1
. It 

should be noted that the appropriate monotonic proper-
ties could be used for the guidelines of the selection of the 
new probability measure. The following lemmas provide 
such principles to put forward the new density.

Lemma 2. For any Z , assume h is strictly monotonically 
decreasing in Z

1
 and h(z*) = 0. That is, for any z < z*, h(z) > 0. 

Noted that z* depends on the value of �Z. We select the new density 
function g(⋅) for Z

1
 as a truncated normal with a truncated region 

(z*, ∞):

( ),

0, otherwise
g z(

z( z z
=

φ Φ( )/)/ <⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

* *)

where φ(⋅) and Φ(⋅) are pdf and cdf of a standard normal 
random variable, respectively.2 Thus, when z < z*, the likeli-
hood ratio of Z

1
, � ( ) 1= Φ <* , which is a function of �Z .

Proof: For z < z*

�( )
( )
( )

( )
( )
( )

( )
g z(

= φ = φ
φ

Φ

= Φ
*

*

Lemma 3. For any �Z, assume h is strictly monotonically 
increasing in Z

1
 and h(z**) = 0. That is, for any z > z**, h(z) > 0. 

Noted that z** depends on the value of �Z. We select the new density 
function g(⋅) for Z

1
 as a truncated normal with a truncated region 

(−∞, z**):

( )
( )),

0, otherwise
g z(

z( z z
=

φ −( )/(1)/(1 Φ >( )),z( z⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

** **

Thus, when z > z** the likelihood ratio of Z
1
, 

� 1 ( ) 1z= 1 Φ <( )z** , which is a function of �Z .

Proof: For z > z**

�( )
( )
( )

( )
( )

1 ( )

1 ( )
g z(

z

z= φ = φ
φ
Φ

= 1 Φ
**

**

Lemma 4. For any �Z, assume h is a convex function in Z
1
 and 

z* < z** are the roots of h, then for any z < z* or z > z**, h(z) > 0. 
Noted that (z*, z**) depends on the value of �Z. We select the new 
density function g(⋅) for Z

1
 as a truncated normal with a truncated 

region (z*, z**):

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

=
φ Φ + − Φ < >

( )
( ) (1 ( )),

0, otherwise
g z(

Φ( z z)), z zor z** ** * **

Thus, when z < z* or z > z**, the likelihood ratio of Z
1
, 

� ( ) (1 ( )) 1) (1 (= Φ + (1(1 Φ <( ))(* *) (1 Φ( * , which is a function of �Z.

Proof: For z < z* or z > z**,

�( )
( )

( )

( )
( )

( ) (1 ( ))

( ) (1 ( ))
g z(

) (1 (

) (1 (=
φ

=
φ
φ

Φ +( )) Φ

= Φ + (1(1 Φ
* *(1 () Φ *

* *) (1 (Φ *

Brief ly, these lemmas provide us a guideline to 
select an appropriate importance sampling distribution. 
Let � … �, ,…1 n  be independent copies of �, and then 
we can derive the importance sampling estimator for 
P(L > b) as

 
�ˆ

1 1

1 1

p
n nIS

i

n

i
i

n

∑ ∑� ( )
1
ni= ∑�

=1

 (13)

and the standard error can be est imated by 

�( ˆ ) / ( 1)
1

2p n) /
i

n

i Ip SII∑ − (p n) /
=

. Furthermore, we now consider 

the application of this algorithm to estimate E[L; L > b]. 
Define

 
� �ˆ [ ; ]

1
1

E [ L b
n

LIS IS i i�
i

n∑γ =IS =]b
=

 (14)

and

� � �( ( )) ( ( )) ( ), ( ))L V t( V ( t t f S( t S),S)i i(V i i( ))t t f S( i−( ))V t( + Δ (≡ (f ( t S),f ( i Δ

where �Li  is the simulated loss and �( )S(  is the simulated 
risk factors under the new density. Note that this algo-
rithm does not require the risk factors to be restricted 
to be normally distributed, as long as the dependency 
structure of the risk factors is driven by a normal dis-
tribution (Hull and White [1998]). In addition to the 
benefits listed, the advantage of our approach is the vari-
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ance reduction established according to the following 
proposition.

Proposition 5. Since P(L > b) = E[I(L > b)] = E[I(h > 0)], 
based on our importance sampling density, the likelihood ratio 
� �( ) [ ( )| ]E[ L b Z=) . Its variance is smaller than the variance 
of I(L > b) by conditional expectation properties (Asmussen and 
Glynn [2007]).

Proof:

� �( ( )) ( [ ( 0)| ]) ( (� ))Var( L b Var( I h( Z V]) arVV>))b 0)|Z ]) ⋅

Proposition 5 proves that the proposed algorithm 
guarantees reduction in variance compared with naive 
Monte Carlo simulation.

Importance Sampling Algorithm

The previous analysis establishes the theoretical 
background for computing the new measure. In the 
following, we present the algorithm for estimating 
P(L > b) and E[L; L > b], respectively. For the simple 
and straightforward idea, we assume the portfolio loss 
is monotonically decreasing in Z

1
.

Goal: Estimate P(L > b) and E[L; L > b]
Algorithm:

1. Initialization
a. Compute V(t) = V(S(t))
b. Compute Q and Λ by spectral decomposition, 

where ∑(t)Δt = QΛQT

c. Express C = QΛ1/2

d. Partition C into sub-matrixes �( , )1 C,  of size d × 1 
and d × (d − 1); where 1 1 1

1/2c1 = λ1q  and (λ
1
, q

1
) is 

the largest eigenvalue and its eigenvector.
e. Express the portfolio terminal price as
 

� �

Δ + Δ
= μ −σ Δ + +

( )+ Δ ( ( ))

( ) ( ) ( (μ ) 2 )
2

1 1

V ( V=) t( t

S( e S= e)X tΔ−σt ) 2 ) c Z1 CZ

2. Perform the importance sampling simulation: For 
each i = 1, …, n
a. Execute the proposed two-stage sampling 

procedure
  i. First stage:
   1)  Draw � ~ (0, )1Z ~ Id−  and generate � �CZ  

for every replication.

  ii. Second stage:
    1) Set the large loss event as

 

( )=

−

� �
( ( ))

0 0>

L b> V ( V−t))

b h> 0 =

    2) Solve z*(i) such that h(z*(i)) = 0
b. Generate the likelihood ratio � i

( )( )z= Φ
c.  Draw ZIS(i) = Φ−1(U

i
 z*(i)), where U

i
 ∼ uniform 

(0, 1)
d. Using ZIS(i), evaluate simulated loss, 

� �( ( )) ( ( )),L V t( V ( t ti i(V i−( ))V t( + Δ  where 

�( ( ))V ( t t Vi( ))t t V ( )( )S e)iS
a t+ Δ =

� �
1

( )c Z1 CZISt
, and 

�( )S(  are simulated terminal risk factor price 
using simulated ZIS(i).

3. Report results
a. Estimate P(L > b) by �1

1n i
n

iΣ =

b. Estimate E[L; L > b] by � �1
1Ln i

n
i i�Σ = .

Note that if the portfolio loss is monotonically 
increasing in Z

1
, we only have to replace the likelihood 

ratio to � 1 ( )( )zi = 1 Φ ** . Similarly, for the case that the 
portfolios loss is a convex function in Z

1
, the likelihood 

ratio should adopt � ( ) ( ( ))( )) ( (i ( () (1= Φ + (1(1(1 Φ* *( ) ) (1 () * .

NUMERICAL EXAMPLES

In this article, the test portfolios for the numerical 
examples follow Glasserman et al. [2000] but replace 
the uncorrelated normal assumptions on the risk fac-
tors of that paper with the correlated Gaussian assump-
tions of this study. The subsets of the test portfolios are 
option portfolios that consist of European call options 
and European put options. The nonlinear price char-
acteristic of option positions implies the diff iculty of 
estimating portfolio loss, and the distribution of the 
portfolio loss is more complex than linear portfolios. 
Exhibit 1 describes the test portfolios. We value the 
options using the Black–Scholes formula because it high-
lights the nonlinear price characteristic of options. The 
first is an option portfolio with short call and short put in 
portfolio (a.1) (see Exhibit 1). The second is a perfectly 
delta-neutral portfolio in (b.1). Next, we investigate the 
effect of the moderate correlation in portfolios (a.2) and 
(a.3) and high correlation in (b.2) and (b.3).
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E X H I B I T  1
Test Portfolios for the Numerical Example
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We assume 250 trading days in a year and a con-
tinuously compounded risk-free rate of interest of 
5%. For each case, we investigate losses over one day 
(Δt = 0.004 years). Exhibit 2 lists the given parameters 
in all experiments.

Exhibit 3 shows the covariance matrix from 
Glasserman et al. [2000]. Exhibits 4 and 5 are the covari-
ance matrixes for ρ = 0.5 and ρ = 0.9, respectively. The 
volatility of the assets is the same for all portfolios. Set 
the volatilities of the assets as (0.538, 0.341, 0.148, 0.281, 
0.259, 0.383, 0.397, 0.277, 0.378, 0.420).

We compare two methods—naive Monte Carlo 
(MC) and importance sampling (IS). In each case, we 
generate 1,000,000 simulation runs for the naive Monte 
Carlo approach but only 5,000 for the importance sam-
pling method. We define the variance reduction ratio 
(VRR) to quantify the statistical eff iciency of the 
importance sampling estimator as follows:

=

Sample sizeof naive MCestimator (Native MCestimator)

Sample sizeof ISestimator (ISestimator)

VRR

*

*

 (15)

Numerical Results for the Large Loss 
Probability

For meeting the requirements of market risk when 
calculating daily VaR, we first adjust the loss threshold 
b so that the probability to be estimated is close to 0.05 
and 0.01 and then move to extreme losses. In Exhibit 6, 
we report loss threshold b in column 2, the point estima-
tors in columns 3 and 4, the standard errors in columns 
5 and 6, and the coefficients of variation in columns 7 
and 8 for each test portfolio. The results indicate that 
the importance sampling estimator is very close to the 

E X H I B I T  2
Parameter Settings

E X H I B I T  3
Covariance Matrix for Portfolios (a.1) and (b.1)
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naive Monte Carlo simulation. The variance reduction 
ratios for 1% p̂  are apparently more efficient than 5% p̂. 
We find the correlation between the risk factors has 
strong impacts on the order of the variance improve-
ments. For example, the variance improvement is about 
102 in (a.2) and increases one order to 103 in portfolio 
(a.3). Furthermore, the importance sampling estimator 
is more effective in delta-hedged portfolios than not 
delta-hedged. Dramatic variance reduction is obtained 

when the risk factors are highly correlated (i.e., VRR 
is almost 105 in portfolio (b.3)).

Next, we move the loss threshold b to extreme 
high levels in Exhibits 7 to 12. We find the method per-
forms better for higher loss levels; for example, the vari-
ance improvements are 261, 3.765 × 103, and 1.163 × 104, 
when the loss threshold moves, respectively, to 400, 600, 
and 800 in portfolio (a.1).

E X H I B I T  4
Covariance Matrix for Portfolios (a.2) and (b.2)

E X H I B I T  5
Covariance Matrix for Portfolios (a.3) and (b.3)
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We also compare the efficiency of the estimators at 
the same level, about 10-4 to all portfolios (i.e., b = 500 in 
(a.1); b = 600 in (a.2); b = 900 in (a.3); b = 120 in (b.1); 
b = 110 in (b.2); b = 180 in (b.3)). Our algorithm results 
in a significant decrease in variance for the risk factors 

that are highly correlated. For example, the variance 
reduction is 9.26 × 102 in (a.1), 2.603 × 103 in (a.2), and 
7.483 × 104 in (a.3). With respect to the delta-hedged 
portfolios, our algorithm performs better, and the vari-
ance improvement is about one order more than not 

E X H I B I T  6
Results for 5% p̂IS and 1% p̂IS of All Portfolios

E X H I B I T  7
Results for p̂IS of Portfolio (a.1)
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E X H I B I T  1 1
Results for p̂IS of Portfolio (b.2)

E X H I B I T  8
Results for p̂IS of Portfolio (a.2)

E X H I B I T  9
Results for p̂IS of Portfolio (a.3)

E X H I B I T  1 0
Results for p̂IS of Portfolio (b.1)
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delta-hedged. For example, the VRR is 4.423 × 103 in 
(b.1), 8.014 × 103 in (b.2), and 3.824 × 105 in (b.3) when 
the p̂  is about 10-4.

Furthermore, we see that the coefficient of varia-
tion is nearly constant across a broad range of b values 
when estimating p̂IS . This indicates that the importance 
sampling estimator has a bounded relative error. Estima-
tors with bounded relative error are best-of-class impor-
tance sampling estimators (Heidelberger [1995]).

E X H I B I T  1 2
Results for p̂IS of Portfolio (b.3)

Finally, we examine the effect of the eigenvalues. 
We find that if the largest eigenvalue strongly dominates 
the others (i.e., (a.3) and (b.3)), the variance decreases 
more. The performance seems to be associated with the 
size of the largest eigenvalue. However, our method 
demonstrates accurate estimations under all conditions 
not inf luenced by the size of the largest eigenvalue. 
Even if the first two largest eigenvalues are identical, 
our method still gains a major improvement.

E X H I B I T  1 3
Results for 5% γγγγ IISIISISIS

ˆ  and 1% γγγγ IISIISISIS
ˆ  of All Portfolios
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Numerical Results of the Expected Exceeded 
Loss Above Threshold

Results for ˆ
ISγ  are given in Exhibit 13. Our algo-

rithm obtains similar outcomes as experiments with p̂IS . 

High correlation between the risk factors guarantees 
large variance reduction (i.e., comparing (a.3) and (b.3) 
with (a.1) and (b.1)). In addition, leaving out (b.3), by 
comparing Exhibit 6 with Exhibit 13 at the same level 
of the loss threshold, the performance of ˆ

ISγ  seems to 

E X H I B I T  1 4
Results for γγγγ IISIISISIS

ˆ  of Portfolio (a.1)

E X H I B I T  1 5
Results for γγγγ IISIISISIS

ˆ  of Portfolio (a.2)

E X H I B I T  1 6
Results for γγγγ IISIISISIS

ˆ  of Portfolio (a.3)
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be slightly better than p̂IS  (i.e., for 1% p̂IS  in Exhibit 6 
versus 1% ˆ

ISγ  in Exhibit 13, the VRR is 383 and 1,720 
in (b.2)).

Results for extreme losses are given in Exhibits 14 
to 19. The variance improvements in extreme losses 
result in significant efficiency (i.e., the VRR in (a.1) 
is about 106 for b = 800 in Exhibit 14). In addition, the 
boost in performance is increasing a lot for extreme b. 
For example, the variances decreases are about 105, 106, 
and 107 for portfolio (a.3) where b moves to 800, 900, 
and 1,000, respectively.

Furthermore, by comparing the same level of esti-
mator that is close to 0.4 (i.e., b = 500 in (a.1); b = 550 
in (a.2); b = 800 in (a.3); b = 60 in (b.1); b = 70 in (b.2); 
b = 120 in (b.3)), our algorithm results in a significant 
decrease in variance for a portfolio with highly cor-
related risk factors. However, there seems to be a slight 
increase in variance for delta-hedged portfolios. For 

example, the VRR is 1.236 × 103 in (a.1), 2.259 × 104 
in (a.2), and 6.034 × 105 in (a.3), but the VRR decreases 
slightly to 1.162 × 103 in (b.1), 1.645 × 104 in (b.2), and 
3.569 × 105 in (b.3).

Conclusively, the standard error of ˆ ISγ  is decreasing 
in all portfolios, and the coefficient of variation is always 
constant as p̂IS. These characteristics demonstrate that 
our algorithm has a bounded relative error and con-
tribute with a significant variance reduction ratio in a 
stable manner.

CONCLUSION

This article proposes a fast Monte Carlo algorithm 
using importance sampling technique for estimation of 
large loss probability, ˆ ( )p Lˆ ( bIS , and the expected loss 
above the threshold, E

IS
[L;L > b]. The proposed algo-

rithm is applied to the set of portfolios in Glasserman 

E X H I B I T  1 7
Results for γγγγ IISIISISIS

ˆ  of Portfolio (b.1)

E X H I B I T  1 8
Results for γγγγ IISIISISIS

ˆ  of Portfolio (b.2)
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et al. [2000] with a variety of characteristics to validate 
its eff iciency. The numerical results demonstrate the 
importance sampling estimator is unbiased compared 
to the naive Monte Carlo method. Improvements of 
more than two orders of magnitude and often more 
than three or four orders of magnitude were obtained. 
The numerical results also exhibit that the algorithm 
guarantees variance reduction, which increases as the 
loss threshold b is moved to extreme values. Dramatic 
variance reduction is obtained for portfolio with high 
correlation between the risk factors. The proposed algo-
rithm has a constant coefficient of variation, suggesting 
the importance sampling estimator has bounded relative 
error.

The central idea of our algorithm is to ensure the 
loss event (L > b) always occurs in every sample path. 
Lemmas 2, 3, and 4 establish the guidelines for choosing 
an appropriate importance sampling distribution wisely. 
Our algorithm allows more general problem setting for 
the risk factor distribution (Hull and White [1998]), as 
long as the dependency structure of the risk factors is 
driven by a multivariate normal distribution. Proposition 
5 proves that our importance sampling estimator defi-
nitely decreases variance compared with naive Monte 
Carlo simulation.

Our algorithm appears to be straightforward and 
allows the practical needs of risk management to be real-
ized easily. We can easily observe the required param-
eters for valuation and simulation in the front off ice 
of a bank. The nonlinear characteristic of the option 
portfolios makes the problems of interest more complex 
than linear portfolios. Moreover, the Basel Committee 
on Banking Supervision [2011] has pointed out that the 
extreme losses occurring from rare events in a stressed 

market should be highly valued, particularly when 
dealing with derivatives. The delta-gamma method is 
an alternative solution for speeding up, but the drawback 
is that the approximation provides only partial valua-
tion in simulation. Conclusively, this article establishes a 
fast Monte Carlo algorithm using importance sampling 
technique for estimating VaR and ES that is suitable 
under the full valuation framework.

ENDNOTES

The authors thank the Risk and Insurance Research 
Center of National Chengchi University for its financial sup-
port. Ming-Hua Hsieh is grateful to the Ministry of Science 
and Technology of Taiwan for its partial f inancial support 
under contract No. 99-2410-H-004-086.

1The stochastic differential equation provides a straight-
forward way of establishing the risk factor model. See Hull 
[2011] for more discussions.

2The term “pdf” means probability distribution func-
tion; “cdf” is cumulative distribution function.
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