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Abstract. This investigation presents a general framework to establish synchronization of coupled cells and
coupled systems. Each individual subsystem is represented by nonlinear differential equations with
or without internal or intracellular delay. A general coupling function is employed to depict the
communication or interaction between subsystems or cells. Under this framework, the problem of
establishing the synchronization for delayed coupled nonlinear systems is transformed to solving
a corresponding linear system of algebraic equations. We start by considering a cell-to-cell system
under symmetric coupling to present the main idea of the approach. The framework is then extended
to the N-cell system under circulant coupling. Delay-dependent, delay-independent, and network-
scale–dependent criteria for global synchronization will be established, respectively. The developed
scheme can accommodate a wide range of coupled systems. We demonstrate the applications of the
present approach to establish synchronization for a gene regulation model, a neuronal model, and
some neural networks.
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1. Introduction. Synchronization is a crucial and common phenomenon in various bio-
logical and physical systems. In many regions of the brain, synchronization activity has been
observed and implicated as a correlate of behavior and cognition [64]. It is known that synchro-
nization encourages the strengthening of mutual connections among neurons. Synchrony and
synchronous oscillations are typical activities for gene expressions in cells under interaction.
For example, in somitogenesis of vertebrate embryo, the cyclic genes express synchronous os-
cillations in neighboring cells at the tail bud of the presomitic mesoderm [25, 42, 50]. There are
many other beautiful examples, including simultaneous flashing of fireflies, crickets chirping
in unison, and synchronous activity of pacemaker cells in the heart; see [45, 46, 60, 61]. There
is also a large number of studies on synchronization in engineering because of its importance
in applications such as synchronized chaos employed in secret communication [14].

Time delays occur in the transcription and translation processes of somitogenesis due to
synthesis and trafficking of macromolecules in cells; the lags have been estimated to be around
tens of minutes in cell culture [28, 42]. For connected neurons, time delay occurs in the prop-
agation of action potentials along the axon and the transmission of signals across the synapse
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SYNCHRONIZATION OF COUPLED SYSTEMS 1355

[7, 13, 16]. Modeling interacted cells or neurons with delays thus becomes an important con-
cern in studying the collective behaviors for coupled-cell systems. On the other hand, as time
lag also occurs in transmitting signals among artificial neurons, delay has been incorporated
into the neural network modeling [6, 9, 37, 38, 51, 66]. Indeed, delay can modify the collective
dynamics for neural networks; for example, it can induce oscillation or change the stability
of the stationary solution [9]. Delay can also induce synchronization [18, 39], asynchrony [9],
and oscillation death [1]. Crook et al. [13] studied a continuum model of the cortex, with ex-
citatory coupling and distance-dependent delays, and found that for small enough delays the
synchronous oscillation is stable but for larger delays this oscillation loses stability to a trav-
eling wave. Therefore, in addition to synchronization, it is also important to investigate the
synchronous phases and their transitions. Developing effective mathematical methodologies
and analytic tools elucidating the synchronous activities and collective behaviors with respect
to various combinations of parameters, coupling strengths, and delay magnitudes remains an
important research task.

It is interesting to explore the dynamical mechanisms underlying the behavior of networks
of neurons and biological oscillators. Although the real network architecture can be extremely
complicated, rich dynamics arising from the interaction of simple network motifs are believed
to provide sources of activities similar to those in real-life systems. Synchronization in coupled
dynamical systems has attracted a lot of attention in recent decades. The coupled systems
that were most studied for synchronization are various neural network systems and chaotic
oscillators. Among this research, some conclude local synchronization which is concerned with
the stability of synchronization manifold or solution behavior in a neighborhood of certain
synchronous solution, while others obtain global synchronization by showing that all solutions
converge to the synchronization manifold or some synchronous solution.

The master stability function, developed by Pecora and Carroll [43, 44], is a well-known
approach to studying local synchronization of coupled chaotic systems. This method is based
on computing the Lyapunov exponent of the associated variational equation to determine the
stability of the synchronization manifold for the coupled systems. However, such an approach
leads to a necessary (instead of sufficient) condition for local synchronization; cf. [23].

Methodologies for concluding global synchronization largely involve the notion of Lya-
punov functions. For example, Belykh, Belykh, and Hasler employed the “connection graph
stability method” combined with the Lyapunov function approach to studying global syn-
chronization in small-world networks of chaotic systems [3]. From the viewpoint of feedback
control, Nijmeijer and collaborators introduced the notion of passivity and semipassivity and
constructed a Lyapunov–Razumikhin function to study global synchronization in coupled sys-
tems [47, 58, 59]. Other works employing the Lyapunov function/functional technique include
[7, 11, 29, 33, 35, 36, 48, 49, 67, 68].

Another approach to investigating synchronous oscillation in coupled systems, especially
in neural networks, is to apply bifurcation theory to obtain the existence of synchronous
periodic solution and use the normal form theory and the center manifold theorem to discuss
its stability [6, 57]. However, linearization of delayed equations yields another complication, as
the linearized system contains exponential functions which make the analysis and computation
of characteristic values difficult, especially in the case of multiple delays; see the papers by
Campbell and coworkers in [9, 10].
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Most of the couplings in systems, especially the delayed systems, considered in the lit-
erature are linear or linearly diffusive. Such coupling terms are expressed by a summation
of connection weights multiplied to the incoming signals from other units, or by coupling
strength multiplied to the difference of two corresponding components. Notice that there is a
significant difference between diffusive coupling and general nonlinear coupling. For a system
comprising identical subsystems under diffusive coupling, its synchronous solution is also a
solution for each individual (uncoupled) subsystem, as the coupling parts are annihilated at
synchronous states. This is certainly not the case for the general nonlinear coupling scheme.
For coupled systems with multiple delays, the analysis is even more complicated. There are
nonlinear systems with more intricate coupling and multiple delays, which are distinguished
from those systems mentioned above. One such system is the segmentation clock gene model
for coupled cells, which describes the gene regulation for vertebrate embryos. In the presomitic
mesoderm of zebrafish embryo, neighboring cells interact through delayed, intercellular pos-
itive feedback via Delta–Notch signaling [28, 42]. A system modeling the same clock genes
was proposed by Uriu, Morishita, and Iwasa in [63], where more complicated nonlinear terms
accounting for the Michaelis–Menten-type degradations and general transcription and trans-
lation functions with Hill coefficients are considered. Analytic study for such kinetic models
is rather difficult, as mentioned in [2]. Other examples include the neuronal models coupled
through chemical synapses and neural networks with nonlinear activation functions. We shall
discuss these systems in later sections.

As described above, the Lyapunov function technique, used directly or indirectly, is a com-
monly and largely adopted approach for tackling synchronization problems, especially global
synchronization, in dynamical systems with or without delays. On the one hand, finding a
Lyapunov function in highly nonlinear systems, especially with multiple delays, and/or sys-
tems with multiple components of different types, seems rather infeasible. On the other hand,
for systems with delay, synchronization results concluded from the Lyapunov function ap-
proach often reduce to the situation that every solution converges asymptotically to a unique
synchronous equilibrium point [9, 69]. In addition, typically only delay-independent criteria
can be derived under such an approach. Therefore, a mathematical approach to tackling
asymptotic behaviors and synchronization for nonlinearly coupled systems, without resort-
ing to the Lyapunov function and computations of the characteristic values, is an appealing
advance.

In this investigation, we aim at establishing a general framework based on the idea of “se-
quential contracting” to study synchronization for coupled systems. We start by considering
the synchronization for a pair of identical subsystems under a general coupling:

(1.1)

{
ẋ(t) = F(xt, t) +G(xt,yt, t),
ẏ(t) = F(yt, t) +G(yt,xt, t),

where t ≥ t0, x(t),y(t) ∈ R
n, and xt,yt ∈ C([−τM , 0];Rn) with τM ≥ 0, are defined by xt(θ) =

x(t + θ),yt(θ) = y(t + θ) for θ ∈ [−τM , 0], F = (F1, F2, . . . , Fn) is a smooth function which
depicts the intrinsic dynamics of each subsystem, and a smooth functionG = (G1, G2, . . . , Gn)
expresses the interaction between two coupled subsystems. Herein, time delays in the range
[0, τM ] are considered in the subsystems and coupling terms, (xt,yt) denotes the evolution of
system (1.1) at time t from (xt0 ,yt0) in C([−τM , 0],Rn), and (x(t),y(t)) is the corresponding



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYNCHRONIZATION OF COUPLED SYSTEMS 1357

solution of system (1.1). The present framework shall cover the ODE case, i.e., when τM = 0,
and (1.1) reduces to {

ẋ(t) = F(x, t) +G(x,y, t),
ẏ(t) = F(y, t) +G(y,x, t),

where (x,y) lies in R
2n or a positively invariant subset of R2n.

Let us denote the synchronous set by

(1.2) S := {(x,y) ∈ R
2n | x = y}.

We say that a solution of (1.1) is synchronous if it lies in S completely; a solution is asymp-
totically synchronous if its ω-limit set lies in S. The coupled system (1.1) is said to attain
global synchronization if every solution is asymptotically synchronous, i.e.,

xi(t)− yi(t) → 0, as t → ∞, for all i = 1, . . . , n,

for every solution (x(t),y(t)) = (x1(t), . . . , xn(t), y1(t), . . . , yn(t)) of system (1.1).
For an arbitrary solution (x(t),y(t)) of system (1.1), where x(t) = (x1(t), . . . , xn(t)),

y(t) = (y1(t), . . . , yn(t)), by setting zi(t) = xi(t) − yi(t), we shall consider the following
difference-differential system corresponding to (1.1):

(1.3) żi(t) = Fi(xt, t) +Gi(xt,yt, t)− Fi(yt, t)−Gi(yt,xt, t), i = 1, . . . , n.

System (1.1) attains global synchronization if and only if zi(t) → 0, i = 1, . . . , n, as t → ∞,
for every (z1(t), . . . , zn(t)) satisfying system (1.3), defined from every solution (x(t),y(t)) of
(1.1).

In the literature, studying the evolution for the difference of two corresponding compo-
nents, such as (1.3), has been a primary target in tackling synchronization problems. The idea
of sequential contracting provides a new treatment to analyze such difference-differential sys-
tems. This approach unfolds from constructing suitable lower and upper dynamics iteratively
for (1.3). Effective designs of lower and upper dynamics can then capture the asymptotic
behaviors of the coupled systems (1.1). Under different formulations of lower-upper dynam-
ics, delay-dependent criteria and delay-independent criteria for synchronization of (1.1) can
be derived, respectively. This approach also leads to a network-scale–dependent criterion for
synchronization in network systems. The idea of sequential contracting is quite natural in the
following sense. One starts from a preliminary attracting set of S, which usually exists from
the dissipative property in coupled systems which admit synchronization. We then formulate
a criterion for contraction so that the dynamics converge to S through iteration arguments.
Such a formulation imposes mild conditions, as the nonlinear terms in the equations are not
overmanipulated by linearization or other treatments.

In section 2, we analyze the asymptotic behavior for a scalar equation associated with
the difference-differential equation (1.3). The analysis provides a basis for investigating the
synchronization of system (1.1). We present the main theorems for system (1.1) of two cou-
pled subsystems in section 3. In subsection 3.1, we introduce the main conditions imposed on
system (1.1). In subsection 3.2, two synchronization theorems for (1.1), one under a delay-
dependent criterion and the other under a delay-independent criterion, are established succes-
sively through constructing two different lower-upper dynamics for (1.3). We then implement
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these theorems to establish the synchronization for coupled FitzHugh–Nagumo neurons under
nonlinear coupling with discrete-time delay and distribution delay, respectively, in subsec-
tion 4.1. The synchronization for a cell-to-cell kinetic model of segmentation clock genes is
demonstrated in subsection 4.2. We extend the framework to treat N -cell (unit) systems
under circulant coupling in subsection 5.1. In subsection 5.2, we demonstrate this extension
in a K-loop neural network. We compare the present approach with the methodologies for
studying synchronization in the literature in section 6.

2. Formulation and component estimate. This section is a preparation for the main
theorems in section 3. Recall the difference-differential equation (1.3),

żi(t) = Fi(xt, t) +Gi(xt,yt, t)− Fi(yt, t)−Gi(yt,xt, t),

where zi(t) = xi(t)−yi(t), and (x(t),y(t)) with x(t) = (x1(t), . . . , xn(t)), y(t) = (y1(t), . . . , yn(t)),
is an arbitrary solution of system (1.1). The key point of the present approach is to analyze the
behavior of zi(t) through a manipulation of (1.3). To this end, we first consider the following
scalar delay-differential equation.

We denote by t0 the initial time and by τM ≥ 0 the upper bound of delay magnitude.
Let w(t) be a bounded continuous function for t ≥ t0, and let h : R × R × R → R and
h̃ : C([−τM , 0];R)×C([−τM , 0];R)×R → R be continuous functions. Let xt, yt ∈ C([−τM , 0];R)
for t ≥ t0, and set x(t + θ) = xt(θ), y(t + θ) = yt(θ) for θ ∈ [−τM , 0]; we assume that x(t)
and y(t) eventually enter and then remain in some closed and bounded interval [q̌, q̂]; namely,
x(t) and y(t) lie in [q̌, q̂] for all t ≥ t̃0, for some t̃0 ≥ t0. We suppose that z(t) = x(t) − y(t)
satisfies the following scalar equation:

(2.1) ż(t) = h(x(t), y(t), t) + h̃(xt, yt, t) + w(t), t ≥ t0.

We shall decompose (1.3), for each i, into an equation of the form (2.1), with the spirit
of collecting the instantaneous self-feedback terms in h, delayed self-feedback terms in h̃, and
cross-coupling terms in w. How (2.1) is connected to (1.3) exactly will be seen in section 3.1.
We impose the following condition on the argument structure of h and h̃ and the boundedness
of h̃.

Condition (H0). There exist μ̂, μ̌, β̌, β̂ ∈ R, ρh > 0, and 0 ≤ τ̄ ≤ τM such that for each
φ,ψ ∈ {ϕ ∈ C([−τM , 0];R) : ϕ(θ) ∈ [q̌, q̂], θ ∈ [−τ̄ , 0]}, the following properties hold for all
t ≥ t0:

(H0 − i) :

{
μ̌ ≤ h(φ(0), ψ(0), t)/[φ(0) − ψ(0)] ≤ μ̂, φ(0) − ψ(0) �= 0,
h(φ(0), ψ(0), t) = 0, φ(0) − ψ(0) = 0,

(H0 − ii) : |h̃(φ,ψ, t)| ≤ ρh, and there exists a τ = τ(φ,ψ, t) ∈ [0, τ̄ ] such that{
β̌ ≤ h̃(φ,ψ, t)/[φ(−τ) − ψ(−τ)] ≤ β̂, φ(−τ)− ψ(−τ) �= 0,

h̃(φ,ψ, t) = 0, φ(−τ)− ψ(−τ) = 0.

Herein, τ is a function of φ,ψ, and t in (H0-ii); φ and ψ work as xt and yt in (2.1),
respectively; in particular, φ(0) (resp., ψ(0)) corresponds to x(t) (resp., y(t)), and φ(θ) (resp.,
ψ(θ)) corresponds to x(t + θ) (resp., y(t + θ)) for θ ∈ [−τ̄ , 0]. Thus, in (2.1), condition (H0)
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basically indicates that the dynamics of z(t), or ż(t), are controlled by z(t) via some upper and
lower factors μ̂ and μ̌, and by z(t− τ) via some upper and lower factors β̂ and β̌. Moreover,
h̃(xt, yt, t), the delay effect contributed from xt and yt on ż(t), is bounded. Since condition
(H0) is to be imposed for more than a specific (x(t), y(t)), we describe it by general notation
φ and ψ.

The main result in this section asserts that there exists a bounded and closed interval
containing zero to which every solution z(t) of (2.1) converges, under some delay-dependent
condition. A variant of this formulation leads to the same conclusion (with a different interval)
under a delay-independent condition. We note that the notation t0, t̃0, [q̌, q̂], defined before
introducing system (2.1), and μ̂, μ̌, β̌, β̂, ρh, τ̄ , in condition (H0), will be used throughout
this section. For all T ≥ t0, we set

|w|max(T ) := sup{|w(t)| : t ≥ T}, |w|max(∞) := lim
T→∞

|w|max(T ).

To capture the dynamics of system (2.1), we define the following functions:

ĥ(ξ) =

{
(μ̂+ β̂)ξ + 3ρh + |w|max(t0) for ξ ≥ 0,

(μ̌+ β̌)ξ + 3ρh + |w|max(t0) for ξ < 0,

ȟ(ξ) = −ĥ(−ξ).

Obviously, μ̂+ β̂ ≥ μ̌+ β̌. If μ̂+ β̂ < 0, then ĥ(ξ) ≥ ȟ(ξ) for all ξ ∈ R; moreover, ĥ and ȟ are
piecewise linear, are decreasing, and have unique zeros at Âh and Ǎh, respectively; see Figure
1. Notably,

(2.2) ĥ(Ǎh) = −ȟ(Âh) = (μ̂+ μ̌+ β̂ + β̌)(3ρh + |w|max(t0))/(μ̂ + β̂) > 0.

The following lemma asserts that functions ĥ(·)− ρh and ȟ(·) + ρh provide preliminary upper
and lower bounds for the dynamics of (2.1).

Lemma 2.1. Assume that condition (H0) holds and μ̂+ β̂ < 0. If z(t) satisfies (2.1), then

(2.3) ȟ(z(t)) + ρh ≤ ż(t) ≤ ĥ(z(t)) − ρh for all t ≥ t̃0 + τ̄ .

Consequently, there exists a Tx,y ≥ t̃0 + 2τ̄ such that z(t) ∈ [Ǎh, Âh], and |ż(t)| < ĥ(Ǎh), for
all t ≥ Tx,y − τ̄ .

Proof. Let us verify (2.3). Recall that x(t), y(t) ∈ [q̌, q̂] for all t ≥ t̃0. For all t ≥ t̃0 + τ̄ ,
z(t) = x(t)− y(t) satisfies

ż(t) = h(x(t), y(t), t) + h̃(x̃t, ỹt, t) + w(t) + h̃(xt, yt, t)− h̃(x̃t, ỹt, t),

where x̃t(θ) := x(t), ỹt(θ) := y(t) for all θ ∈ [−τM , 0] are constant in θ. Note that xt, yt, x̃t, ỹt ∈
{φ ∈ C([−τM , 0];R) : φ(θ) ∈ [q̌, q̂], θ ∈ [−τ̄ , 0]}. If x(t) ≥ y(t), then h(x(t), y(t), t) ≤ μ̂ · z(t),
h̃(x̃t, ỹt, t) ≤ β̂ · z(t), and h̃(xt, yt, t) − h̃(x̃t, ỹt, t) ≤ 2ρh by condition (H0). Consequently,
ż(t) ≤ (μ̂+ β̂) · z(t)+2ρh + |w|max(t0) =: ĥ(z(t))− ρh. On the other hand, if x(t) < y(t), then
h(x(t), y(t), t) ≤ μ̌ · z(t), and h̃(x̃t, ỹt, t) ≤ β̌ · z(t). Therefore, ż(t) ≤ ĥ(z(t)) − ρh. Similar
arguments lead to ȟ(z(t)) + ρh ≤ ż(t). From (2.3), we obtain ż(t) ≤ −ρh if z(t) ≥ Âh, and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1360 CHIH-WEN SHIH AND JUI-PIN TSENG

Figure 1. Configurations of functions ĥ, ȟ, ĥ(0)(·, T ), and ȟ(0)(·, T ).

ż(t) ≥ ρh if z(t) ≤ Âh, for t ≥ t̃0 + τ̄ . Subsequently, there exists a Tx,y ≥ t̃0 + 2τ̄ such that

z(t) ∈ [Ǎh, Âh], which in turn yields |ż(t)| < ĥ(Ǎh) for all t ≥ Tx,y − τ̄ by (2.3).

Herein, the notation Tx,y indicates its dependence on x(t) and y(t). Now, let us consider
the following condition for (2.1).

Condition (A1). μ̂+ β̂ < 0 and β̄τ̄ < 3ρh(μ̂+ β̂)/[(μ̂+ μ̌+ β̂+ β̌)(3ρh+ |w|max(t0))], where
β̄ := max{|β̌|, |β̂|}.

The latter inequality in condition (A1) requires that if the delayed effect h̃ in (2.1) exists,
i.e., β̄ �= 0, the allowable maximal magnitude of time lag τ̄ should be small enough. From
(2.2), condition (A1) yields β̄τ̄ ĥ(Ǎh) < 3ρh, and there exists an ε0 > 0 such that

(2.4) β̄τ̄ ĥ(Ǎh) + ε0 < 3ρh.

For each T ≥ t0, we further introduce the following functions:

ĥ(0)(ξ, T ) =

{
(μ̂+ β̂)ξ + β̄τ̄ ĥ(Ǎh) + |w|max(T ) + ε0 for ξ ≥ 0,

(μ̌+ β̌)ξ + β̄τ̄ ĥ(Ǎh) + |w|max(T ) + ε0 for ξ < 0,

ȟ(0)(ξ, T ) = −ĥ(0)(−ξ, T ).

Notably, condition (A1) implies (2.4), and

ȟ(ξ) < ȟ(0)(ξ, T ) < ĥ(0)(ξ, T ) < ĥ(ξ) for all ξ ∈ R.(2.5)

Let m̌(0)(T ) (resp., m̂(0)(T )) be the unique solution of ȟ(0)(·, T ) = 0 (resp., ĥ(0)(·, T ) = 0) lying
in interval [Ǎh, Âh]; see Figure 1. Notably, m̂(0)(T ) = −m̌(0)(T ) > 0, and [−m̂(0)(T ), m̂(0)(T )] ⊂
[Ǎh, Âh], by (2.5). Recall Tx,y introduced in Lemma 2.1. The following lemma reveals that

ȟ(0)(·, T ) + ε0 and ĥ(0)(·, T ) − ε0 provide lower and upper bounds finer than ȟ(·) + ρh and
ĥ(·)− ρh, respectively, for the dynamics of system (2.1), as time gets larger.
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Lemma 2.2. Assume that conditions (H0) and (A1) hold. If z(t) satisfies (2.1), then for
each T ≥ Tx,y, we have

(2.6) ȟ(0)(z(t), T ) + ε0 ≤ ż(t) ≤ ĥ(0)(z(t), T )− ε0 for all t ≥ T.

Consequently, z(t) eventually enters and stays afterward in [−m̂(0)(T ), m̂(0)(T )].
Proof. By condition (H0), there exist some μ(t) with μ̌ ≤ μ(t) ≤ μ̂, β(t) with β̌ ≤ β(t) ≤ β̂,

and τ(t) := τ(xt, yt, t) ≤ τ̄ , such that the terms h(x(t), y(t), t) and h̃(xt, yt, t) in (2.1) become

h(x(t), y(t), t) = μ(t)[x(t)− y(t)] = μ(t)z(t),

h̃(xt, yt, t) = β(t)[x(t− τ(t))− y(t− τ(t))] = β(t)z(t − τ(t)).

Thus, (2.1) can be rewritten as follows:

(2.7) ż(t) = μ(t)z(t) + β(t)z(t − τ(t)) + w(t).

For t ≥ T ≥ Tx,y, applying the mean value theorem to (2.7) yields

ż(t) = μ(t)z(t) + β(t)[z(t) − τ(t)ż(s)] + w(t),

where s ≥ t − τ̄ ≥ Tx,y − τ̄ ; hence |ż(s)| < ĥ(Ǎh) by Lemma 2.1. Consequently, if z(t) ≥ 0,

then ż(t) ≤ (μ̂ + β̂)z(t) + β̄τ̄ ĥ(Ǎh) + |w|max(T ) =: ĥ(0)(z(t), T ) − ε0; if z(t) < 0, then ż(t) ≤
(μ̌ + β̌)z(t) + β̄τ̄ ĥ(Ǎh) + |w|max(T ) =: ĥ(0)(z(t), T ) − ε0. Hence, the right-hand inequality of
(2.6) is verified. The left-hand one can be treated similarly. Since m̂(0)(T ) and m̌(0)(T ) are
the unique zeros of ĥ(0)(·, T ) and ȟ(0)(·, T ), respectively, and m̂(0)(T ) = −m̌(0)(T ) > 0, we
conclude that z(t) eventually enters and stays afterward in [−m̂(0)(T ), m̂(0)(T )], as depicted
in Figure 1.

Lemmas 2.1 and 2.2 demonstrate the formulation of lower and upper bounds for the dy-
namics of (2.1) in succession. In the same spirit, we shall formulate finer lower and upper
bounds iteratively to capture the asymptotic dynamics of (2.1). Now, let {εk}∞k=1 be a de-
creasing sequence with ε1 < ε0, and let εk → 0 as k → ∞. For k ∈ N and T ≥ t0, we
define

ĥ(k)(ξ, T ) :=

{
(μ̂+ β̂)ξ + β̄τ̄ ĥ(k−1)(m̌(k−1)(T ), T ) + |w|max(T ) + εk, ξ ≥ 0,

(μ̌+ β̌)ξ + β̄τ̄ ĥ(k−1)(m̌(k−1)(T ), T ) + |w|max(T ) + εk, ξ < 0,

ȟ(k)(ξ, T ) := −ĥ(k)(−ξ, T ),
where m̌(k)(T ) ≤ 0 is the unique zero of ȟ(k)(·, T ), and m̂(k)(T ) = −m̌(k)(T ) ≥ 0 is the
unique zero of ĥ(k)(·, T ). By arguments similar to Lemma 2.3 in [53], it can be shown that
under condition (A1), for any fixed T ≥ t0, {ĥ(k)(·, T )|[Ǎh,Âh]}k≥1 are uniformly bounded

and equicontinuous; in addition, ĥ(k)(·, T ) is decreasing with respect to k. There exists a
continuous function ĥ(∞)(·, T ) defined on [Ǎh, Âh] such that

(2.8) ĥ(k)(·, T ) ↓ ĥ(∞)(·, T ) uniformly on [Ǎh, Âh], as k → ∞,

by the Ascoli–Azela theorem. Since ĥ(k)(·, T ) is decreasing with respect to k, there exists an
m(T ) ∈ R such that m̂(k)(T ) → m(T ) decreasingly as k → ∞, where m̂(k)(T ) is the unique
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zero of ĥ(k)(·, T ). With (2.8), m̂(k)(T ) → m(T ), and the continuity of ĥ(k) and ĥ(∞), we can
derive that ĥ(∞)(·, T ) is a vertical shift of ĥ(k)(·, T ) and satisfies

(2.9) ĥ(∞)(ξ, T ) =

{
(μ̂ + β̂)ξ + β̄τ̄ ĥ(∞)(−m(T ), T ) + |w|max(T ), ξ ≥ 0,

(μ̌ + β̌)ξ + β̄τ̄ ĥ(∞)(−m(T ), T ) + |w|max(T ), ξ < 0,

where m(T ) is the unique zero to ĥ(∞)(·, T ). Moreover, from the configuration of ĥ(∞)(·, T ),
it follows that

(2.10) 0 ≤ m(T ) = |w|max(T )/{−μ̂ − β̂ + β̄τ̄(μ̌+ μ̂+ β̌ + β̂)}.
The detailed computation for (2.10) is arranged in Appendix A. By (2.8) and that |w|max(T )
decreases with respect to T , we conclude that m̂(k)(T ) → m(T ) decreasingly, as k → ∞. In
addition, there exists an m̄ ≥ 0, such that m(T ) → m̄ decreasingly, as T → ∞. Thus,

∩k≥0,T≥t0 [−m̂(k)(T ), m̂(k)(T )] = ∩T≥t0 [−m(T ),m(T )] = [−m̄, m̄].

It can be argued by induction that for arbitrarily fixed T ≥ Tx,y, and n ∈ N, there exists an
increasing sequence {Tk}nk=0 with Tk+1 ≥ Tk + τ̄ for k = 0, 1, . . . , n− 1, and T0 ≥ T + τ̄ , such
that{

ȟ(k)(z(t), T ) + εk ≤ ż(t) ≤ ĥ(k)(z(t), T ) − εk for t ≥ Tk + τ̄ , k = 0, 1, . . . , n− 1,

z(t) ∈ [−m̂(k)(T ), m̂(k)(T )] for t ≥ Tk+1, k = 0, 1, . . . , n− 1.

This then leads to the fact that z(t) which satisfies (2.1) eventually enters and remains in
[−m̂(k)(T ), m̂(k)(T )] for each T ≥ Tx,y and k ∈ N and hence converges to interval [−m̄, m̄] as
t→ ∞. Based on these arguments, we conclude the following proposition.

Proposition 2.3. Assume that conditions (H0) and (A1) hold. If z(t) satisfies (2.1), then
z(t) converges to some interval [−m̄, m̄] as t→ ∞. Moreover,

0 ≤ m̄ ≤ |w|max(∞)

−μ̂− β̂ + β̄τ̄(μ̌ + μ̂+ β̌ + β̂)
.

The conclusion in this proposition is τ̄ -dependent. By recomposing the upper and lower
functions (see Appendix B) and using arguments similar to those for Proposition 2.3, we can
derive the following τ̄ -independent conclusion.

Proposition 2.4. If z(t) satisfies (2.1), then z(t) converges to interval [−m̃, m̃], as t → ∞,
under condition (H0) and

condition (A2) : 0 ≤ β̄ < −μ̂/[1 + |w|max(t0)/ρ
h].

Moreover,

0 ≤ m̃ ≤ |w|max(∞)

−μ̂− β̄
.

Remark 2.1. When introducing (2.1), x(t) and y(t) are assumed to enter and remain in
[q̌, q̂] eventually. Such an assumption can be weakened to that x(t) and y(t) converge to [q̌, q̂]
for the delay-independent result in Proposition 2.4.
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3. Synchronization for coupled system (1.1). We shall derive a delay-dependent criterion
and a delay-independent criterion for the global synchronization of system (1.1), based on
Propositions 2.3 and 2.4, respectively. Let (xt,yt) be the solution evolved from an arbitrarily
fixed initial condition, and let (x1(t), . . . , xn(t), y1(t), . . . , yn(t)) be the corresponding entire
solution for system (1.1). Recall from (1.3) that zi(t) := xi(t) − yi(t) satisfies the following
difference-differential system:

żi(t) = Fi(xt, t) +Gi(xt,yt, t)− Fi(yt, t)−Gi(yt,xt, t)

=: Hi(xt,yt, t), i = 1, . . . , n.(3.1)

Our aim is to show that zi(t) → 0 for all i = 1, . . . , n, as t → ∞, to conclude the global
synchronization for system (1.1). In subsection 3.1, we introduce two basic assumptions on
system (1.1). In subsection 3.2, we establish the synchronization theorems for (1.1).

3.1. Dissipative and argument conditions. We make two basic assumptions on system
(1.1). The first is associated with the dissipative property of system (1.1), and the second is
related to the argument structure for Hi in (3.1).

Assumption (D). All solutions of system (1.1) eventually enter and then remain in some
compact set Q×Q, where Q := [q̌1, q̂1]× · · · × [q̌n, q̂n] ⊂ R

n.
Notably, under assumption (D), all solutions of system (1.1) exist on [t0,∞). To introduce

the second assumption, we decompose function Hi in (3.1) as

(3.2) Hi(Φ,Ψ, t) = hi(φi(0), ψi(0), t) + h̃i(φi, ψi, t) + wi(Φ,Ψ, t),

where Φ = (φ1, . . . , φn), Ψ = (ψ1, . . . , ψn) ∈ C([−τM , 0];Rn). Herein, hi (resp., h̃i) refers to
the instantaneous (resp., delayed) part of Hi contributed from φi and ψi, and wi collects all
cross-coupling terms. Such a decomposition for Hi is always achievable since a trivial case
is hi = h̃i ≡ 0 and wi ≡ Hi. A nontrivial decomposition for the coupled FitzHugh–Nagumo
system (4.1) is illustrated in section 4.1. The following second assumption is associated with
the argument structure of hi, h̃i and the boundedness of h̃i and wi.

Assumption (H). For i = 1, . . . , n, there exist μ̌i, μ̂i, β̂i, β̌i ∈ R, ρhi , ρ
w
i ≥ 0, μ̄ij , β̄ij ≥ 0, and

0 ≤ τ̄i, τ̄ij ≤ τM , j �= i, such that for each Φ,Ψ ∈ CQ := {Φ̃ = (φ1, . . . , φn) ∈ C([−τM , 0];Rn) :
φi(θ) ∈ [q̌i, q̂i], for all θ ∈ [−τ̄i, 0], i = 1, . . . , n}, the following three properties hold for all
t ≥ t0:

(H− i) :

{
μ̌i ≤ hi(φi(0), ψi(0), t)/[φi(0)− ψi(0)] ≤ μ̂i, φi(0)− ψi(0) �= 0,
hi(φi(0), ψi(0), t) = 0, φi(0)− ψi(0) = 0,

(H− ii) : |h̃i(φi, ψi, t)| ≤ ρhi and there exists τi = τi(φi, ψi, t) ∈ [0, τ̄i], such that{
β̌i ≤ h̃i(φi, ψi, t)/[φi(−τi)− ψi(−τi)] ≤ β̂i, φi(−τi)− ψi(−τi) �= 0,

h̃i(φi, ψi, t) = 0, φi(−τi)− ψi(−τi) = 0,

(H− iii) : |wi(Φ,Ψ, t)| ≤ ρwi and there exists τij = τij(Φ,Ψ, t) ∈ [0, τ̄ij ], j �= i, such that

|wi(Φ,Ψ, t)| ≤ Σj �=i{μ̄ij |φj(0)− ψj(0)|+ β̄ij |φj(−τij)− ψj(−τij)|}.
In practical application, assumption (H) can be realized by suitable manipulation on (3.2)
through some estimates, as all solutions of system (1.1) eventually stay in compact set Q×Q
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in R
2n, under assumption (D). Thus CQ depends on the compact set Q in assumption (D), and

(H-i) and (H-ii) are multiple-component versions of conditions (H0-i) and (H0-ii) in section 2,
respectively. For later use, we set

(3.3) L̄ij := μ̄ij + β̄ij .

Let us explain the connection of assumption (H) to system (3.1). In assumption (H), Φ (resp.,
Ψ) plays the role of xt (resp., yt), φi(0) (resp., ψi(0)) of xi(t) (resp., yi(t)), and φi(θ) (resp.,
ψi(θ)) of xi(t+θ) (resp., yi(t+θ)) in system (3.1). Assumption (H) basically asserts that żi(t)
in system (3.1) is dominated by zi(t) via some lower and upper factors μ̌i and μ̂i (see (H-i)),
by zi(t − τi) via some lower and upper factors β̌i and β̂i (see (H-ii)), and by |zj(s)|, j �= i,
when s = t and s = t− τij (t− τij is certain uniformly bounded delayed time) via some upper
factors (see (H-iii)). Actually, assumption (H) strongly relies on assumption (D) under which
h̃i and wi are bounded on set CQ, and hence such argument conditions on hi, h̃i, and wi can
be verified by applying the mean value theorem basically. On the other hand, formulating
proper forms of hi, h̃i, and wi for a considered system is also important for assumption (H)
to be met.

3.2. Synchronization for system (1.1). In this section, we shall establish the global
synchronization of system (1.1) under assumptions (D) and (H). By (3.2), we can rewrite the
difference-differential system (3.1) as follows:

(3.4) żi(t) = hi(xi(t), yi(t), t) + h̃i((xt)i, (yt)i, t) + wi(t),

where we regard wi(xt,yt, t) as a function of t, i.e., wi(t) := wi(xt,yt, t), as (xt,yt) is the
solution evolved from a fixed initial condition, mentioned in section 3.1. Under assumptions
(D) and (H), each ith component in (3.4) is in the form of (2.1) and satisfies condition (H0)
with μ̌ = μ̌i, μ̂ = μ̂i, ρ

h = ρhi , β̌ = β̌i, β̂ = β̂i, τ̄ = τ̄i. Now, let us introduce the multi-
component versions of conditions (A1) and (A2).

Condition (S1). μ̂i + β̂i < 0 and β̄iτ̄i < τSi for all i = 1, . . . , n, where

β̄i := max{|β̌i|, |β̂i|}, τSi :=
3ρhi (μ̂i + β̂i)

(μ̂i + μ̌i + β̂i + β̌i)(3ρhi + ρwi )
.

Condition (S2). β̄i < −μ̂i/(1 + ρwi /ρ
h
i ) for all i = 1, . . . , n.

Note that condition (S1) is delay-dependent, while condition (S2) is delay-independent.
Assume that condition (S1) holds; by Proposition 2.3, for each i = 1, . . . , n, there exists an
interval Ii := [−m̄i, m̄i], to which zi(t) converges, as t→ ∞; moreover,

(3.5) 0 ≤ m̄i ≤ |wi|max(∞)/ηi,

where

(3.6) ηi := −μ̂i − β̂i + β̄iτ̄i(μ̌i + μ̂i + β̌i + β̂i).

The following proposition shows that m̄i can be further estimated iteratively.
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Proposition 3.1. Assume that condition (S1) holds. Then for each i = 1, . . . , n, there exists

a sequence {m(k)
i }∞k=1 which satisfies

(3.7) m̄i ≤ m
(k)
i =

⎡
⎣ i−1∑
j=1

L̄ijm
(k)
j +

n∑
j=i+1

L̄ijm
(k−1)
j

⎤
⎦/

ηi

for k ≥ 1, where m
(0)
i := ρwi /ηi and L̄ij is defined in (3.3).

Proof. We prove the proposition by induction and sketch the main process. Under as-

sumption (H), |wi|max(∞) ≤ ρwi ; consequently, m̄i ≤ m
(0)
i for all i = 1, . . . , n. Assume that

m
(k)
i in (3.7) have been defined, and hence zi(t) converges to [−m(k)

i ,m
(k)
i ], as t → ∞, for

k = 1, . . . , k0 − 1, i = 1, . . . , n, and k = k0, i = 1, . . . , − 1 < n. By condition (H-iii),

|w�(t)| = |w�(xt,yt, t)| ≤ Σj �=�{μ̄�j |zj(t)|+ β̄�j |zj(t− τ�j(xt,yt, t))|};

then, |w�|max(∞) ≤ (Σ�−1
j=1L̄�jm

(k0)
j +Σn

j=�+1L̄�jm
(k0−1)
j ); hence

0 ≤ m̄� ≤ |w�|max(∞)/η� ≤ [Σ�−1
j=1L̄�jm

(k0)
j +Σn

j=�+1L̄�jm
(k0−1)
j ]/η� =: m

(k0)
� .

This completes the proof.

We observe that {m(k)
i | i = 1, 2, . . . , n} in Proposition 3.1 is exactly the Gauss–Seidel

iteration for solving the linear system

(3.8) Mv = 0,

where

(3.9) M := DM − LM − UM = [mij ]1≤i,j≤n, mii = ηi, mij = −L̄ij, for i �= j,

and DM, −LM, and −UM represent the diagonal, strictly lower-triangular, and strictly upper-
triangular parts of M, respectively; L̄ij and ηi are defined in (3.3) and (3.6), respectively. For

each i = 1, 2, . . . , n, zi(t) = xi(t) − yi(t) converges to [−m̄i, m̄i] as t → ∞, and m̄i ≤ m
(k)
i

for all k. Thereby, the problem of synchronization for system (1.1) reduces to solving the

linear problem (3.8). Restated, system (1.1) achieves global synchronization if m
(k)
i → 0, as

k → ∞, for all i = 1, 2, . . . , n. One sufficient condition for the convergence of the Gauss–Seidel
iteration for (3.8) is the strict diagonal-dominance of M, which is straightforward to verify.
However, for some systems, such as Example 4.1, such a condition is too strong a criterion
for synchronization. On the other hand, it is well known that the necessary and sufficient
condition for the convergence of the Gauss–Seidel iteration for (3.8) is that the absolute
magnitudes of all eigenvalues of the iteration matrix (DM − LM)−1UM are less than unity;
see [27]. Based on such a condition, we obtain the main results in this investigation. The
assertion shall be derived by computing the eigenvalues for certain corresponding matrices.
Other criteria for the convergence of the Gauss–Seidel method [22, 27] may provide conditions
which are easier to verify, without computing the eigenvalues of these matrices. We assume
that system (1.1) satisfies assumptions (D) and (H).
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Theorem 3.2. Assume that condition (S1) holds. Then system (1.1) achieves global syn-
chronization if the Gauss–Seidel iteration for linear system (3.8) converges to zero, the unique
solution of (3.8), or, equivalently,

max
1≤i≤n

{|λi| : λi : eigenvalue of (DM − LM)−1UM} < 1.

By Proposition 2.4 and arguments similar to those for Proposition 3.1 and Theorem 3.2,
we can derive the delay-independent criterion for the synchronization of system (1.1).

Theorem 3.3. Assume that condition (S2) holds. Then system (1.1) achieves global syn-
chronization if the Gauss–Seidel iteration for linear system

M̃v = 0,(3.10)

M̃ := [m̃ij ]1≤i,j≤n, m̃ii = −μ̂i − β̄i, m̃ij = −L̄ij, for i �= j,

converges to zero, the unique solution of (3.10), or, equivalently,

max
1≤i≤n

{|λi| : λi : eigenvalue of (DM̃ − LM̃)−1UM̃} < 1,

where DM̃, −LM̃, and −UM̃ are the diagonal, strictly lower-triangular, and strictly upper-

triangular parts of M̃, respectively.
Remark 3.1. (i) For the delay-independent result in Theorem 3.3, assumption (D) can be

relaxed to that all solutions of system (1.1) converge to Q×Q, as t → ∞; see Remark 2.1. (ii)
The contents of matrices M and M̃ actually reflect the structure of the coupling configuration.
(iii) Let us translate the notation and theory to the ODE case. Consider zi(t) = xi(t)− yi(t),
which satisfies

żi(t) = Fi(x, t) +Gi(x,y, t) − Fi(y, t) −Gi(y,x, t),

= hi(xi, yi, t) + wi(x,y, t),

where h̃i = 0 in (3.2). In assumption (H), CQ is replaced by Q, (H-i) becomes μ̌i ≤
hi(xi, yi, t)/[xi − yi] ≤ μ̂i if xi − yi �= 0 and hi(xi, yi, t) = 0 if xi − yi = 0, (H-ii) is not
needed, and (H-iii) is adjusted to |wi(x,y, t)| ≤ ρwi and |wi(x,y, t)| ≤ Σj �=iμ̄ij |xj − yj|. The
matrix M in (3.9) becomes identical to matrix M̃ in (3.10), and Theorem 3.2 reduces to
Theorem 3.3.

The idea of sequential contracting was applied to study the global synchronization and
asymptotic phases in a basic neural network with nearest-neighbor coupling in [53]. Therein,
each unit of the coupled system is a scalar equation. In this paper, we have extended this
idea to coupled systems in the form (1.1), where each unit itself is a system of differential
equations and may contain intrinsic delays. Herein, we have established a general framework
to accommodate a variety of nonlinearly coupled systems for studying synchronization. Un-
der this framework, the problem of establishing synchronization for systems under delayed
and nonlinear coupling was transformed to solving a corresponding linear system of algebraic
equations. In the process, we have improved the formulation and analysis so that the con-
vergence of the corresponding Gauss–Seidel iteration is determined by the optimal condition
(both sufficient and necessary). This has enhanced the applicability of the synchronization
theory, as shown in the following sections.
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4. Implementation of approach. We shall apply the theory developed in section 3 to
establish synchronization for two models. We shall examine assumptions (D) and (H), and
condition (S1) or (S2), to apply Theorem 3.2 or 3.3. We illustrate the applications with the
classical FitzHugh–Nagumo neuronal model and a representative gene regulation model on
the segmentation clock genes in zebrafish in subsections 4.1 and 4.2, respectively.

4.1. Coupled FitzHugh–Nagumo neurons. The FitzHugh–Nagumo model was first sug-
gested by FitzHugh in 1961 [19], and its equivalent circuit was created by Nagumo, Arimoto,
and Yoshizawa in 1962 [40] to describe a prototype of excitable systems. FitzHugh–Nagumo
equations, while modified from the van der Pol equation, capture the essence of the cubic
nullcline nature of the voltage-component in the simplified Hodgkin–Huxley equations; see
[17].

Let us consider the excitable FitzHugh–Nagumo system coupled with time delay [6],

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = −x31(t) + (a+ 1)x21(t)− ax1(t)− x2(t) + cf(y1(t− τ)),
ẋ2(t) = bx1(t)− γx2(t),
ẏ1(t) = −y31(t) + (a+ 1)y21(t)− ay1(t)− y2(t) + cf(x1(t− τ)),
ẏ2(t) = by1(t)− γy2(t),

where a, b, γ > 0, and c > 0 is the coupling strength; the sigmoidal coupling function f lies
in the following class:

(4.2) {f ∈ C1 : f(0) = 0, δ := f ′(0) > f ′(ξ) > 0, |f(ξ)| < ρ for ξ �= 0}.
In system (4.1), the individual dynamics are governed by the FitzHugh–Nagumo neuron [6,
19, 40]:

(4.3)

{
u̇(t) = −u3(t) + (a+ 1)u2(t)− au(t)− v(t),
v̇(t) = bu(t)− γv(t).

In referring to the notation in (1.1), F = (F1, F2) is now

F1(Φ, t) = −φ31(0) + (a+ 1)φ21(0) − aφ1(0) − φ2(0),(4.4)

F2(Φ, t) = bφ1(0) − γφ2(0);(4.5)

the two subsystems are connected via a sigmoidal coupling, a simplification of synaptic cou-
pling, with time delay, i.e., G = (G1, G2), and

G1(Φ,Ψ, t) = cf(ψ1(−τ)),(4.6)

G2(Φ,Ψ, t) = 0,(4.7)

where Φ = (φ1, φ2),Ψ = (ψ1, ψ2) ∈ C([−τ, 0];R2). In (4.6), the fixed time delay τ is of
discrete-time type. In reality, time delay is likely varying each time an action potential is
propagated from neurons, and incorporating a distribution of delays to represent the time
lags in some range of values with some associated probability distribution is an alternative
formulation [7]. In this situation, the term f(ψ1(t− τ)) in (4.6) can be modified to

(4.8)

∫ τ

0
f(ψ1(−σ))K(σ)dσ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1368 CHIH-WEN SHIH AND JUI-PIN TSENG

where function K is the kernel of the distribution representing the probability density func-
tion of time delay. Equation (4.3), a single FitzHugh–Nagumo neuron, can exhibit excitable
behavior, in the sense that a small perturbation away from its quiescent state can result in a
large excursion of its potential before returning to the quiescent state [24]. It was indicated
in [6] that the paradigmatic example of the FitzHugh–Nagumo system in the form of (4.3)
does not admit periodic solutions for any parameters a, b, γ and exhibits excitable behaviors
clearly for certain parameter ranges, for instance,

(4.9) b > γ2, a� b, a� γ;

in particular, the only attractor is in the form of a stable equilibrium at the origin if

(4.10) 4b/γ > (a− 1)2.

The investigation of the behavior of the coupled FitzHugh–Nagumo system, which takes into
account time delays in signal transmission, has been a subject of considerable interest. The
previous works [6, 4, 5, 30] focus on the stability of the trivial equilibrium and delay-induced
or coupling-induced bifurcation, which gives rise to synchronous or asynchronous oscillation.
The stable synchronous periodic solution for system (4.1) was investigated in [6]. Through nu-
merical simulation, it was shown that the system exhibits global convergence to this periodic
solution. However, analytical evidence for this global dynamics has been lacking. In [70], via
the method of the Lyapunov functional, synchronization conditions for the system consisting
of three FitzHugh–Nagumo neurons with delayed coupling and smooth sigmoidal amplification
functions were derived. However, the arguments strongly relied on additional consideration of
the instantaneous self-feedback term in the coupling and hence provided a delay-independent
criterion. Indeed, the existing analytical tools for studying global dynamics and synchro-
nization for neuronal models with nonlinear and delayed coupling are rather limited. Herein,
we shall derive a delay-dependent criterion and establish the global synchronization for sys-
tem (4.1). Our approach can also establish delay-independent and delay-dependent global
synchronization for the model considered in [70].

A nontrivial decomposition in the form of (3.2) for the coupled FitzHugh–Nagumo system
(4.1) is formulated as follows: From (4.4)–(4.7),

H1(Φ,Ψ, t) = −φ31(0) + (a+ 1)φ21(0)− aφ1(0)− [−ψ3
1(0) + (a+ 1)ψ2

1(0) − aψ1(0)]

+ c[f(ψ1(−τ))− f(φ1(−τ))]− [φ2(0) − ψ2(0)];

consequently, we set

h1(φ1(0), ψ1(0), t) = p(φ1(0)) − p(ψ1(0)),(4.11)

h̃1(φ1, ψ1, t) = c[f(ψ1(−τ))− f(φ1(−τ))],(4.12)

w1(Φ,Ψ, t) = −[φ2(0) − ψ2(0)],(4.13)

where p(ξ) := −ξ3 + (a+ 1)ξ2 − aξ. On the other hand, from

(4.14) H2(Φ,Ψ, t) = −γ[φ2(0)− ψ2(0)] + b[φ1(0)− ψ1(0)],
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we have

h2(φ2(0), ψ2(0), t) = −γ[φ2(0)− ψ2(0)],(4.15)

h̃2(φ2, ψ2, t) ≡ 0,(4.16)

w2(Φ,Ψ, t) = b[φ1(0)− ψ1(0)].(4.17)

Notably, by the mean value theorem, h1 in (4.11) and h̃1 in (4.12) can be written in the
following form:

h1(φ1(0), ψ1(0), t) = [−3s21 + 2(a+ 1)s1 − a][φ1(0) − ψ1(0)],(4.18)

h̃1(φ1, ψ1, t) = −cf ′(s2)[φ1(−τ)− ψ1(−τ)](4.19)

for some s1 between φ1(0) and ψ1(0), and s2 between φ1(−τ) and ψ1(−τ). In observing
(4.11)–(4.19), we see that hi (resp., h̃i) can be transformed into a multiple of φi(0) − ψi(0)
(resp., φi(−τ) − ψi(−τ)), and the ratio can be further estimated. Notice that the terms
−3s21 + 2(a+ 1)s1 − a in (4.18) and −cf ′(s2) in (4.19) are bounded when s1, s2 are restricted
to some compact set in R. On the other hand, roughly speaking, wi can be transformed into
a linear combination of φj(·)− ψj(·), j �= i.

Now, we show that system (4.1) satisfies assumptions (D) and (H). We define, for k ∈ N,

(4.20) P (k)(ξ) := −ξ4 + (a+ 1)ξ3 − aξ2 + |cρ(k−1)ξ|,

where ρ(0) := ρ, and

ρ(k) := max{|f(ξ)| : ξ ∈ [−
√
γ2 + bq̄(k)/γ,

√
γ2 + bq̄(k)/γ]},(4.21)

q̄(k) := max{|ξ| : P (k)(ξ) = 0}.(4.22)

Herein, the parameters a, b, c, γ, ρ and function f were introduced in (4.1) and (4.2).

Lemma 4.1. All solutions of system (4.1) eventually enter and then remain in Q̃(k)× Q̃(k),
for each k ∈ N, where

Q̃(k) := [−
√
γ2 + bq̄(k)/γ,

√
γ2 + bq̄(k)/γ]× [−bq̄(k)/γ, bq̄(k)/γ].

The proof of Lemma 4.1 is arranged in Appendix C. Actually, q̄(k) are well defined for all
k ∈ N and are strictly decreasing with respect to k. Subsequently, for larger k, Q̃(k) provides a
smaller attracting region for the dynamics of system (4.1) and hence relaxes the conditions for
our synchronization formulation. Throughout this subsection, we consider that system (4.1)
satisfies assumption (D) with Q = Q̃(k) =: Q∗ for some fixed k. In some cases (see Example
4.1), one does need larger k to meet the synchronization criterion. Accordingly, the evolutions
for each subsystem in (4.1) will eventually enter and remain in the set:

C∗
Q = {Φ = (φ1, φ2) ∈ C([−τ, 0];R2) : φi(θ) ∈ [−q∗i , q∗i ], i = 1, 2, θ ∈ [−τ, 0]},

where

q∗1 :=
√
γ2 + bq̄(k)/γ, q∗2 := bq̄(k)/γ,
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and q̄(k) is defined in (4.22). Below, let us show that system (4.1) actually satisfies assumption
(H). For all t ≥ t0, and Φ = (φ1, φ2),Ψ = (ψ1, ψ2) ∈ C∗

Q,

−q∗i ≤ φi(θ), ψi(θ) ≤ q∗i for θ ∈ [−τ, 0], i = 1, 2.(4.23)

Accordingly, by the definitions of h̃i and wi in (4.12), (4.16) and (4.13), (4.17) for system
(4.1), we obtain

|h̃1(φ1, ψ1, t)| ≤ 2cMf , |h̃2(φ2, ψ2, t)| = 0,

|w1(Φ,Ψ, t)| ≤ 2q∗2 , |w2(Φ,Ψ, t)| ≤ 2bq∗1,

where

(4.24) Mf := max{|f(ξ)| : ξ ∈ [−q∗1, q∗1 ]}.

This yields the boundedness of h̃i and wi in assumption (H). The argument conditions for
functions hi, h̃i, and wi formulated in (4.13) and (4.15)–(4.19) can then be confirmed. Let us
examine these conditions for h1 and h̃1, as the other cases are simpler. Note that the terms
si, i = 1, 2, in h1 and h̃1 defined in (4.18) and (4.19) both satisfy −q∗1 ≤ si ≤ q∗1 due to (4.23).
It follows from a direct computation that

λ ≤ −3s21 + 2(a + 1)s1 − a ≤ (a2 − a+ 1)/3,

df ≤ f ′(s2) ≤ δ,

where

λ := −3(q∗1)
2 − 2(a+ 1)q∗1 − a,(4.25)

df := min{f ′(ξ) : ξ ∈ [−q∗1, q∗1 ]} > 0.(4.26)

Consequently, h1 in (4.18) and h̃1 in (4.19) satisfy, respectively,

λ ≤ h1(φ1(0), ψ1(0), t)/[φ1(0)− ψ1(0)] ≤ (a2 − a+ 1)/3 if φ1(0)− ψ1(0) �= 0,

−cδ ≤ h̃1(φ1, ψ1, t)/[φ1(−τ)− ψ1(−τ)] ≤ −cdf if φ1(−τ)− ψ1(−τ) �= 0.

From these arguments, we conclude the following lemma.
Lemma 4.2. System (4.1) satisfies assumption (H) with μ̌1 = λ, μ̂1 = (a2 − a + 1)/3,

μ̌2 = μ̂2 = −γ, β̌1 = −cδ, β̂1 = −cdf , τ̄1 = τ , ρh1 = 2cMf , h̃2 ≡ 0, ρw1 = 2q∗2, ρw2 = 2bq∗1,
μ̄12 = 1, μ̄21 = b, and β̄12 = β̄21 = 0, where Mf , λ, and df are defined in (4.24), (4.25), and
(4.26), respectively.

Assumptions (D) and (H) are thus satisfied for system (4.1) by Lemmas 4.1 and 4.2. By
applying Theorem 3.2, we derive a delay-dependent criterion for synchronization of system
(4.1).

Theorem 4.3. System (4.1), the two FitzHugh–Nagumo neurons under delayed sigmoidal
coupling, achieves global synchronization if

(4.27) c > [b/γ + (a2 − a+ 1)/3]/df ≥ 0 and τ < min{τF1 , τF2 },
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where

τF1 :=
3Mf [(a

2 − a+ 1)/3 − cdf ]

δ[(a2 − a+ 1)/3 + λ− c(df + δ)](3cMf + q∗2)
,

τF2 :=
b/γ − cdf + (a2 − a+ 1)/3

cδ[(a2 − a+ 1)/3 + λ− c(df + δ)]
,

and Mf , λ, and df are defined in (4.24), (4.25), and (4.26), respectively.
Proof. Notice that (4.27) implies c > (a2 − a + 1)/(3df ) and τ < τF1 , which in turn lead

to meeting condition (S1). Moreover, the corresponding matrices in (3.9) are

M =

(
η1 −L̄12

−L̄21 η2

)
,DM =

(
η1 0
0 η2

)
, LM =

(
0 0
L̄21 0

)
, UM =

(
0 L̄12

0 0

)
,

where η1 := −(a2 − a + 1)/3 + cdf + cδτ [(a2 − a + 1)/3 + λ − c(df + δ)], η2 := γ L̄12 = 1,
L̄21 = b. A direct computation reveals that the corresponding matrix

(DM − LM)−1UM =

(
0 L̄12/η1
0 L̄12L̄21/(η1η2)

)

admits the eigenvalues 0 and L̄12L̄21/(η1η2) = b/(η1η2). We obtain b/(η1η2) < 1 under (4.27)
using c > [b/γ + (a2 − a + 1)/3]/df and τ < τF2 . The assertion thus follows from Theorem
3.2.

The present approach can also be applied to the case of distribution delay in (4.8). Now
h̃1 is modified to

(4.28) h̃1(φ1, ψ1, t) = c

∫ τM

0
[f(ψ1(−σ))− f(φ1(−σ))]K(σ)dσ,

where function K is the kernel of the distribution. One of the commonly used distributions is
the uniform distribution: for some τmin > 0,  > 0,

(4.29) K(σ) :=

⎧⎨
⎩

0 if 0 ≤ σ < τmin,
1/ if τmin ≤ σ ≤ τmin + ,
0 if τmin +  < σ ≤ τM .

By the definition of K, we obtain

h̃1(φ1, ψ1, t) = c

{∫ τmin+�

τmin

[f(ψ1(−σ))− f(φ1(−σ))]dσ
}/



= −cf ′
(ς)[φ1(−s)− ψ1(−s)]

for some s ∈ (τmin, τmin+), and ς between φ1(−s) and ψ1(−s). Thus, −cδ ≤ −cf ′
(ς) ≤ −cdf .

Basically, the arguments are valid for kernel K with compact support. Accordingly, we can
verify that the assertions in Lemmas 4.1 and 4.2 hold, but with τ̄1 = τmin +  instead. In the
following, (4.1)′ denotes system (4.1) with the coupling f(φ1(−τ)) replaced by the distribution
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delay (4.8) with kernel K in (4.29). Indeed, Lemma 4.1 also holds for system (4.1)′. By
arguments similar to those in Theorem 4.3, we conclude the following theorem.

Theorem 4.4. System (4.1)′ achieves global synchronization, provided

c > [b/γ + (a2 − a+ 1)/3]/df ≥ 0 and τmin +  < min{τF1 , τF2 },

where df , τ
F
1 , and τF2 are defined as in Theorem 4.3.

It was derived in [6] that coupled system (4.1) with no time delay (i.e., τ = 0) undergoes
a supercritical Hopf bifurcation at c = c0 := a + γ, which gives rise to a stable synchronous
periodic solution. Numerical simulation shows that the oscillation remains a global attractor of
the system for a large range of c greater than c0. Here, we note that f in system (4.1) is merely
required to satisfy f(0) = 0 and f ′(0) > 0 for the local dynamics derived from the bifurcation
analysis in [6], but we require f to be bounded for the consideration of global dynamics herein.
The following example demonstrates that, under our synchronization framework, system (4.1)
with parameters a, b, γ satisfying (4.9), (4.10), and τ = 0 admits global synchronization with
stable synchronous oscillation as c is larger than and near c0. This gives an analytical support
to the numerical finding in [6]. By considering τ as a bifurcation parameter, and with fixed
parameters a, b, γ, c, this example illustrates that the stable oscillation sustains as τ is small
enough so that no further bifurcation occurs. The system loses synchrony as τ is larger than
a certain critical bifurcation value and yields to a stable antiphase periodic solution.

Example 4.1. Consider (4.1) with a = 0.5, b = 0.00126, γ = 0.02, and f(ξ) = 5 tanh(0.2ξ).
Choose Q∗ = Q̃(2). This system with τ = 0 undergoes a supercritical Hopf bifurcation at
c = c0 = a + γ = 0.52, which gives rise to a stable synchronous periodic solution. Let us
consider the system with fixed c = 0.52001 which is slightly larger than c0. In this situation,
by the bifurcation analysis with respect to τ in [6] (cf. Figure 3 in [6]), the system undergoes a
subcritical Hopf bifurcation at the first critical value τ01,− ≈ 0.0008, and a supercritical Hopf bi-

furcation at the second critical value τ02,+ ≈ 19.505, where a stable antiphase periodic solution

emerges. On the other hand, a direct computation gives [b/γ + (a2 − a + 1)/3]/df ≈ 0.5049,
τF1 ≈ 0.0027, τF2 ≈ 0.0004; the system satisfies (4.27) in Theorem 4.3 and hence achieves
global synchronization if τ < min{τF1 , τF2 } ≈ 0.0004. Here, we note that the synchronization
criterion in Theorem 4.3 does not hold if we choose Q∗ = Q̃(1) instead. Figure 2 illustrates
that the system with τ = 0 and 0.0002, respectively, which are smaller than min{τF1 , τF2 , τ01,−}
near 0.0004, admits a stable synchronous oscillation. Figure 3 demonstrates that the system
with τ = 20, which is slightly larger than τ02,+, admits a stable antiphase oscillation.

Remark 4.1. The present framework can also accommodate coupled FitzHugh–Nagumo
systems under diffusive coupling, such as system (4.1) with the coupling terms cf(y1(t − τ))
and cf(x1(t − τ)) replaced by c[y1(t − τ) − x1(t)] and c[x1(t − τ) − y1(t)]. To apply the
present synchronization theories, one needs to examine assumption (D), say, via the approach
in [41, 58]. Assumption (H) can then be verified subsequently.

4.2. Cell-to-cell kinetic model. In this subsection, we consider a cell-to-cell model on the
kinetics of the segmentation clock genes in zebrafish, proposed by Uriu, Morishita, and Iwasa
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Figure 2. Time series of the solution of system (4.1), evolved from (0.001+t,−0.002·t, 0.001·sin t,−0.001·t)
at initial time t0 = 0, tends to a synchronous (in-phase) oscillation. Here, a = 0.5, b = 0.00126, γ = 0.02,
c = 0.52001, f(ξ) = 5 tanh(0.2ξ), and τ = 0, τ = 0.0002, respectively.
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Figure 3. Time series of the solution of system (4.1), evolved from (−0.0001,−0.0002, 0.0001, 0.0002) at
initial time t0 = 0, tends to an antiphase oscillation, with a = 0.5, b = 0.00126, γ = 0.02, c = 0.52001,
f(ξ) = 5 tanh(0.2ξ), and τ = 20.

in [62, 63]:

(4.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = gH(x3(t), y4(t))− f1(x1(t)),
ẋ2(t) = ν3x1(t)− f2(x2(t)),
ẋ3(t) = ν5x2(t)− f3(x3(t)),
ẋ4(t) = gD(x3(t))− f4(x4(t)),
ẏ1(t) = gH(y3(t), x4(t))− f1(y1(t)),
ẏ2(t) = ν3y1(t)− f2(y2(t)),
ẏ3(t) = ν5y2(t)− f3(y3(t)),
ẏ4(t) = gD(y3(t))− f4(y4(t)).
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In this system, x1, x2, x3, and x4 (resp., y1, y2, y3, and y4) represent the concentrations
of her mRNA, Her protein in cytoplasm, Her protein in nucleus, and Delta protein of the
first cell (resp., the second cell), respectively; ν3 > 0 is the synthesis rate of Her protein in
cytoplasm and ν5 > 0 is the transportation rate of Her protein from cytoplasm to nucleus.
The transcription initiation rates are described by gH and gD as

(4.31) gH(u, v) =
(k1)

n

(k1)n + un
· (ν1 + νcv), gD(u) =

ν7(k7)
h

(k7)h + uh
,

where nonnegative integers h and n are the Hill coefficients, ν1 > 0 is the Basal transcription
rate of her mRNA, νc > 0 is the activation rate of her mRNA transcription by Delta–Notch
signal, k1 is the threshold constant for the suppression of her mRNA transcription by Her
protein in nucleus, ν7 > 0 is the synthesis rate of Delta protein, and k7 > 0 is the threshold
constant for the suppression of Delta protein synthesis by Her protein. The degradations are
depicted by fi as

f1(u) =
ν2u

k2 + u
, f2(u) =

ν4u

k4 + u
+ ν5u,(4.32)

f3(u) =
ν6u

k6 + u
, f4(u) =

ν8u

k8 + u
,(4.33)

where i = 1, 2, 3, 4, and ν2, ν4, ν6, ν8 > 0 (resp., k2, k4, k6, k8 > 0) are the maximum
degradation rates (resp., Michaelis constants for degradation) of her mRNA, Her protein in
cytoplasm, Her protein in nucleus, and Delta protein, respectively. This model (4.30) intro-
duces an intermediate process, namely, the transportation of Her protein from cytoplasm to
nucleus, to avoid taking into account time delay in transcription and translation. Although
time delay is not modeled in (4.30), the nonlinear transcription functions gH , gD and degra-
dations fi are much more complicated than those adopted in the delayed model [28, 32]. We
remark that system (4.30) is representative, as the equations modeling other gene regulations
admit similar forms.

For coupled system (4.30), we consider the evolution X(t,X0) from initial condition X0 ∈
R
8
+ at initial time t0, where R

8
+ := {(x1, . . . , x4, y1, . . . , y4) : xi ≥ 0, yi ≥ 0, i = 1, 2, 3, 4}. To

ensure that (4.30) is a proper model for modeling gene regulations, we note that if the Hill
coefficients h and n are nonnegative even integers, then R

8
+ is positively invariant under the

flow generated by system (4.30).

Below, we shall establish an attracting region for solutions of system (4.30) evolved from



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYNCHRONIZATION OF COUPLED SYSTEMS 1375

R
8
+. To this end, we first introduce the following quantities:

�̂1 =
(ν1 + νc�̂4)k2
ν2 − (ν1 + νc�̂4)

, �̌1 =
(k1)

nk2ν1
ν2(�̂3)n + (k1)n(ν2 − ν1)

,

�̂2 =
ν3�̂1 − ν4 − k4ν5 +

√
4k4ν3ν5�̂1 + (ν4 + k4ν5 − ν3�̂1)2

2ν5
,

�̌2 =
ν3�̌1 − ν4 − k4ν5 +

√
4k4ν3ν5�̌1 + (ν4 + k4ν5 − ν3�̌1)2

2ν5
,

�̂3 =
k6ν5�̂2
ν6 − ν5�̂2

, �̌3 =
k6ν5�̌2
ν6 − ν5�̌2

,

�̂4 =
k8ν7
ν8 − ν7

, �̌4 =
(k7)

hk8ν7
ν8(�̂3)h + (k7)h(ν8 − ν7)

.

Note that �̂4 is determined by k8, ν7, and ν8, and then �̂1, �̂2, �̂3, �̌1, �̌2, �̌3, �̌4 can be
computed successively. In addition, 0 < �̌i < �̂i for i = 1, 2, 3, 4 under the condition

(4.34) ν8 > ν7, ν2 > ν1 + νc�̂4, and ν6 − ν5�̂2.

We thus define a subset Q�×Q� of R8
+, where Q� := [�̌1, �̂1]×· · ·× [�̌4, �̂4]. We further define

the following quantities for later use:

ďi := min{f ′i(ξ) : ξ ∈ [�̌i, �̂i]} for i = 1, 2, 3, 4,(4.35)

d̂i := max{f ′i(ξ) : ξ ∈ [�̌i, �̂i]} for i = 1, 2, 3, 4,(4.36)

ρ1 := max

{∣∣∣∣∂gH∂u (u, v)

∣∣∣∣ : u ∈ [�̌3, �̂3], v ∈ [�̌4, �̂4]

}
,(4.37)

ρ2 := max

{∣∣∣∣∂gH∂v (u, v)

∣∣∣∣ : u ∈ [�̌3, �̂3], v ∈ [�̌4, �̂4]

}
,(4.38)

ρ3 := max{|g′D(ξ)| : ξ ∈ [�̌3, �̂3]}.(4.39)

Proposition 4.5. Assume that (4.34) holds and the Hill coefficients h and n are nonnegative
even integers. Then the solution of system (4.30) evolved from any point in R

8
+ exists for all

time larger than t0 and converges to Q� ×Q�.
Proof. Suppose that X(t) = (x1(t), . . . , x4(t), y1(t), . . . , y4(t)) is an arbitrary solution.

Then xi(t) ≥ 0 and yi(t) ≥ 0 for i = 1, 2, 3, 4, as long as the solution exists, as noted above.
The proof will proceed via successive component estimates. As seen from the equation for
x4(t) in (4.30),

(4.40) ẋ4(t) ≤ f̂4(x4(t)),

where f̂4(ξ) := ν7 − f4(ξ). It is not difficult to verify that f̂4(ξ) is strictly decreasing and has
a unique zero at �̂4 > 0 if ν8 > ν7, where �̂4 is defined above. Accordingly, x4(t) exists for
all t ≥ t0 and converges to [0, �̂4] as t → ∞ due to (4.40). Similarly, we can prove that y4(t)
converges to [0, �̂4] as t→ ∞. Thus, for any ε > 0 there exists a tε1 ≥ t0 such that

(4.41) ẋ1(t) ≤ f̂1(x1(t)) + ε =: f̂ ε1 (x1(t)) for all t ≥ tε1,
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where f̂1(ξ) := ν1 + νc�̂4 − f1(ξ) is strictly decreasing with a unique zero at �̂1 > 0 and
f̂ ε1 (ξ) = f̂1(ξ) + ε is also strictly decreasing with a unique zero at �̂ε1 if ν2 > ν1 + νc�̂4; in
addition, �̂ε1 ↓ �̂1 as ε ↓ 0. Based on (4.41), we verify that x1(t) exists for all t ≥ t0 and
converges to [0, �̂ε1] for any ε > 0, and hence to [0, �̂1] as t→ ∞. Similarly, we can prove that
y1(t) converges to [0, �̂1] as t → ∞. Applying arguments similar to those for x1(t), we can
show that xi(t) and yi(t), i = 2, 3, exist for all t ≥ t0 and converge to [0, �̂i] as t → ∞. Indeed,
since x1(t) converges to [0, �̂1] as t→ ∞, for any ε > 0, there exists a tε2 ≥ tε1 such that

ẋ2(t) ≤ f̂2(x2(t)) + ε for all t ≥ tε2,

where f̂2(ξ) := ν3�̂1−f2(ξ) is strictly decreasing and has a unique zero at �̂2 > 0. Accordingly,
x2(t) exists for all t ≥ t0 and converges to [0, �̂2] as t→ ∞. Subsequently, for any ε > 0 there
exists a tε3 ≥ tε2 such that

ẋ3(t) ≤ f̂3(x3(t)) + ε for all t ≥ tε3,

where f̂3(ξ) := ν5�̂2 − f3(ξ) is strictly decreasing with a unique zero at �̂3 > 0 if ν6 − ν5�̂2.
Accordingly, x3(t) exists for all t ≥ t0 and converges to [0, �̂3] as t → ∞. Similarly, we can
prove that yi exist for all t ≥ t0 and converge to [0, �̂i] as t→ ∞, for i = 2, 3.

Next, we further verify that xi(t) and yi(t) converge to [�̌i, �̂i] as t→ ∞, for i = 1, 2, 3, 4.
Since x3(t) converges to [0, �̂3] and y4(t) converges to [0, �̂4] as t → ∞, for any ε > 0, there
exists a tε4 ≥ tε3 such that

(4.42) ẋ1(t) > f̌1(x1(t))− ε for all t ≥ tε4,

where f̌1(ξ) := ν1(k1)
n/[(k1)

n + (�̂3)
n] − f1(ξ) is strictly decreasing with a unique zero at

�̌1 > 0. From (4.42), it follows that x1(t) converges to [�̌1, �̂1] as t → ∞. Consequently, for
any ε > 0 there exists a tε5 ≥ tε4 such that

ẋ2(t) > f̌2(x1(t))− ε for all t ≥ tε5,

where f̌2(ξ) := ν3�̌1 − f2(ξ) is strictly decreasing and has a unique zero at �̌2 > 0. It follows
that x2(t) converges to [�̌2, �̂2] as t → ∞. Subsequently, for any ε > 0 there exists a tε6 ≥ tε5
such that

ẋ3(t) > f̌3(x1(t))− ε for all t ≥ tε6,

where f̌3(ξ) := ν5�̌2 − f3(ξ) is strictly decreasing with a unique zero at �̌3 > 0, which yields
that x3(t) converges to [�̌3, �̂3] as t → ∞. Then, for any ε > 0 there exists a tε7 ≥ tε6 such that

ẋ4(t) > f̌4(x4(t))− ε for all t ≥ tε7,

where f̌4(ξ) := ν7(k7)
h/[(k7)

h + (�̂3)
h]− f4(ξ) is strictly decreasing and has a unique zero at

�̌4 > 0. Accordingly, x4(t) converges to [�̌4, �̂4] as t → ∞. Similarly, we can prove that yi(t)
converges to [�̌i, �̂i] as t→ ∞, for i = 1, 2, 3, 4.

Below, we shall establish the global synchronization for system (4.30). Since this is an
ODE system, we shall take Q = Q� in assumption (D), replace CQ by Q in assumption (H),
and apply Theorem 3.3; see Remark 3.1(iii).
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Theorem 4.6. Assume that (4.34) holds and the Hill coefficients h and n are nonnegative
even integers. Then system (4.30) achieves global synchronization if

(4.43) ď1ď2ď3ď4 > ν3ν5(ρ1ď4 + ρ3ρ2),

where ďi, i = 1, 2, 3, 4, and ρi, i = 1, 2, 3, are defined in (4.35) and (4.37)–(4.39), respectively.

Proof. By Proposition 4.5, system (4.30) satisfies assumption (D) with Q = Q�. Next,
let us examine assumption (H). Setting zi = xi − yi, we consider the difference-differential
equation corresponding to (4.30):

(4.44)

⎧⎪⎪⎨
⎪⎪⎩

ż1(t) = gH(x3(t), y4(t))− gH(y3(t), x4(t)) − [f1(x1(t))− f1(y1(t))],
ż2(t) = ν3[x1(t)− y1(t)]− [f2(x2(t))− f2(y2(t))],
ż3(t) = ν5[x2(t)− y2(t)]− [f3(x3(t))− f3(y3(t))],
ż4(t) = gD(x3(t))− gD(y3(t))− [f4(x4(t))− f4(y4(t))].

Then following the notation in (3.1),

(4.45) Hi(Φ,Ψ, t) = hi(φi(0), ψi(0), t) + h̃i(φi, ψi, t) + w1(Φ,Ψ, t),

where i = 1, 2, 3, 4,

hi(φi(0), ψi(0), t) = −[fi(φi(0)) − fi(ψi(0))] = −f ′i(ξi)[φi(0)− ψi(0)],

h̃i(φi, ψi, t) ≡ 0,

w1(Φ,Ψ, t) = gH(φ3(0), ψ4(0)) − gH(ψ3(0), φ4(0))

=
∂gH
∂u

(ξ5, ξ6)[φ3(0)− ψ3(0)]− ∂gH
∂v

(ξ5, ξ6)[φ4(0)− ψ4(0)],

w2(Φ,Ψ, t) = ν3[φ1(0)− ψ1(0)],

w3(Φ,Ψ, t) = ν5[φ2(0)− ψ2(0)],

w4(Φ,Ψ, t) = gD(φ3(0)) − gD(ψ3(0)) = g′D(ξ7)[φ3(0)− ψ3(0)],

and ξi is between φi(0) and ψi(0) for i = 1, 2, 3, 4, ξ5 and ξ7 are between φ3(0) and ψ3(0), and
ξ6 is between φ4(0) and ψ4(0). Notably,

−d̂i ≤ −f ′i(ξi) ≤ −ďi for i = 1, 2, 3, 4,(4.46) ∣∣∣∣∂gH∂u (ξ5, ξ6)

∣∣∣∣ ≤ ρ1,

∣∣∣∣∂gH∂v (ξ5, ξ6)

∣∣∣∣ ≤ ρ2, |g′D(ξ7)| ≤ ρ3,(4.47)

where ďi, d̂i, and ρi are defined in (4.35), (4.36), and (4.37)–(4.39), respectively. From (4.45)–
(4.47), we can verify that system (4.30) satisfies assumption (H) with μ̌i = −d̂i, μ̂i = −ďi, and
h̃i ≡ 0, i = 1, 2, 3, 4, β̄ij = τ̄ij = 0 if i �= j and i, j = 1, 2, 3, 4, μ̄12 = μ̄23 = μ̄24 = μ̄31 = μ̄34 =
μ̄41 = μ̄42 = 0, μ̄13 = ρ1, μ̄14 = ρ2, μ̄21 = ν3, μ̄32 = ν5, and μ̄43 = ρ3. Applying Theorem
3.3 yields that system (4.30) attains global synchronization if the Gauss–Seidel iteration for
linear system

(4.48)

⎛
⎜⎜⎝

ď1 0 −ρ1 −ρ2
−ν3 ď2 0 0

0 −ν5 ď3 0

0 0 −ρ3 ď4

⎞
⎟⎟⎠v = 0
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converges to zero. Moreover, the Gauss–Seidel iteration for (4.48) converges to zero if and
only if (4.43) holds. This completes the proof.

By studying the stationary equations associated with system (4.30), we can establish the
existence of synchronous equilibrium x = (x1, x2, x3, x4, x1, x2, x3, x4). By considering the
difference-differential equations for zi = xi − xi, zi+4 = yi − xi, i = 1, 2, 3, 4, the global con-
vergence to x can be obtained by the present technique (sequential contracting), as in [32] for
Lewis’s model. There are three major dynamical phases in this gene regulation model: syn-
chronous oscillation, oscillation-arrested, and traveling wave. Our Theorem 4.6 on the global
synchronization and global convergence to the steady state corresponds to the oscillation-
arrested phase. This is the first analytical study on the collective behavior of Iwasa’s model,
(4.30).

5. Further extensions. Basically, the present approach is applicable to dissipative cou-
pled systems whose difference-differential equations admit a structure which captures the
difference of two corresponding components (depicted in assumption (H)). In subsection 5.1,
we extend the synchronization framework to coupled systems comprising N subsystems. A
neural network system comprising a ring of K loops demonstrates this extension in subsec-
tion 5.2. In this application, our approach leads to a network-scale–dependent criterion for
synchronization, where a smaller network is more favored for synchronization.

5.1. N-cell system under circulant coupling. Let us consider the following N -cell system
of general form:

(5.1) ẋi(t) = F(xt
i, t) +Gi(x

t
1, . . . ,x

t
N , t), i = 1, . . . , N,

where t ≥ t0, xi(t) = (xi,1(t), . . . , xi,n(t)) ∈ R
n, xt

i ∈ C([−τM , 0];Rn) are defined by xt
i(θ) =

xi(t+ θ), F = (F1, . . . , Fn), and Gi are continuous functions. Basically, our approach can be
extended to N -cell system (5.1) under circulant coupling; namely, Gi satisfies

(5.2) Gi(Φ1, . . . ,ΦN , t) = G(Φi, . . . ,ΦN+(i−1), t), i = 1, . . . , N,

for some function G, where Φ� = Φ�(mod N).
Systems of neural network and neuronal network in the literature largely admit the fol-

lowing form:

(5.3) ẋi(t) = F(xi(t), t) + cΣN
j=1wijG̃(xj(t)), i = 1, . . . , N,

where xi(t) ∈ R
n, F : Rn × R → R

n, G̃ : Rn → R
n, c, wij ∈ R, or

(5.4) ẋi(t) = F(xi(t), t) + cΣN
j=1wijG̃(xj(t− τ)), i = 1, . . . , N,

or ΣN
j=1,j �=iwijG̃(xi(t),xj(t − τ)) in the coupling terms, if transmission delay τ is taken into

account. If the coupling matrix [wij ] satisfies the diffusive condition

(5.5) wii = −ΣN
j=1,j �=iwij , i = 1, . . . , N,

then the coupling terms in (5.4) can be put into

(5.6) cΣN
j=1,j �=iwij · [G̃(xj(t− τ))− G̃(xi(t− τ))];
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see [33, 68]. Notice that under diffusive condition (5.5), the coupling terms in (5.3) and
(5.4) (i.e., (5.6)) will vanish at synchronous solutions. In addition, the coupling is linear in
(5.3), (5.4), and (5.6) if G̃ is a linear function, i.e., an n × n real matrix (see [26, 35]). The
gap-junctional (linear diffusive) coupling for N neurons is described by

(5.7) Gi(Φ1, . . . ,ΦN , t) = cΣN
j=1,j �=iwij · [Φj(0) − Φi(0)],

or cΣN
j=1wij · Φj(0), if wij satisfy (5.5). Systems (5.3) and (5.4) and those with couplings

(5.6) or (5.7) are obviously in the form of (5.1). The couplings in these systems are circulant
if [wij ] is a circulant constant matrix, i.e., [wij ] = circ(w1, . . . , wN ); see [15, 65]. Moreover,
in the case of gap-junctional coupling, the function G in (5.2) satisfies G(Φ1, . . . ,ΦN , t) =
c
∑N

i=1 wiΦi(0), or c
∑N

i=1wiΦi(−τ) if time delay is considered. Such a connection includes
all-excitatory, all-inhibitory, symmetrically connected excitatory rings and symmetrically con-
nected excitatory rings of neurons [65]. The nearest-neighbor coupling between subsystems,
i.e., [wij ] = circ(a, β, 0, . . . , 0, α), α, a, β ∈ R, is a basic example of a circulant matrix; see
[9, 12, 51, 53]. Note that a circulant matrix is not necessarily symmetric.

In establishing the synchronization of coupled systems such as system (5.3) or (5.4), the
diffusive condition (5.5) is commonly imposed on the coupling matrix [wij ] in the literature;
see [26, 33, 35, 68]. Such a condition is unnecessary in our approach. In some previous
papers including [11, 29], the components of the coupling function G̃ are required to have
large enough slopes. Our approach is free from this requirement.

Now let us extend the formulation for the synchronization of two-cell system (1.1) to
that of N -cell system (5.1) satisfying (5.2). It will be shown that the arguments for the
synchronization of (1.1) are parallel to those for (5.1). Therefore, the settings for these two
that work in parallel will share the same notation.

By setting zi(t) = (zi,1(t), . . . , zi,n(t)) := xi(t) − xi+1(t), i = 1, . . . , N , we consider the
difference-differential system corresponding to (5.1): for i = 1, . . . , N and j = 1, . . . , n,

(5.8) żi,j(t) = Hj(x
t
i, . . . ,x

t
N+(i−1), t), xt

� = xt
�(mod N),

where

Hj(Φ1, . . . ,ΦN , t)

:= Fj(Φ1, t) +Gj(Φ1, . . . ,ΦN , t)− Fj(Φ2, t)−Gj(Φ2, . . . ,ΦN ,Φ1, t).

We can decompose function Hj as follows for j = 1, . . . , n:

(5.9) Hj(Φ1, . . . ,ΦN , t) = hj(φ1,j(0), φ2,j(0), t) + h̃j(φ1,j , φ2,j , t) + wj(Φ1, . . . ,ΦN , t),

where Φi = (φi,1, . . . , φi,n) ∈ C([−τM , 0];Rn) for i = 1, . . . , N . Then each zi,j(t) in (5.8),
1 ≤ i ≤ N , 1 ≤ j ≤ n, satisfies

(5.10) żi,j(t) = hj(xi,j(t), xi+1,j(t), t) + h̃j((x
t
i)j , (x

t
i+1)j , t) + wi,j(t),

in the form of (2.1), where wi,j(t) := wj(x
t
i,x

t
i+1, . . . ,x

t
N+(i−1), t). Therefore, transferring

our formulation of synchronization from two-cell system (1.1) to N -cell system (5.1) amounts
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to relabeling the two-dimensional indices in (5.10) to one-dimensional indices just as those
in (3.4); more precisely, by setting zi,j = z̃(i−1)n+j =: z̃�, xi,j = x̃(i−1)n+j =: x̃� and wi,j =
w̃(i−1)n+j =: w̃�, system (5.10) can be rewritten as

(5.11) ˙̃z�(t) = hj(x̃�(t), x̃�+n(t), t) + h̃j(x̃
t
�, x̃

t
�+n, t) + w̃�(t),

where z̃�(t) = x̃�(t) − x̃�+n(t). We thus proceed to establish the synchronization of (5.1) as
we consider (1.1) in section 3. The difference-differential equations (5.11) induced from (5.1)
play the same role as (3.4) induced from (1.1). We introduce the following assumptions for
(5.1), which resemble assumptions (D) and (H) in section 3; they are equivalent, respectively,
after relabeling indices.

Assumption (D)∗. All solutions of system (5.1) eventually enter and then remain in some
compact set QN := Q× · · · × Q, where Q := [q̌1, q̂1]× · · · × [q̌n, q̂n] ⊂ R

n.

Assumption (H)∗. For each j = 1, . . . , n, there exist μ̌j, μ̂j , β̂j , β̌j ∈ R, ρhj , ρ
w
j > 0, μ̄

(i)
jk ,

β̄
(i)
jk ≥ 0, and 0 ≤ τ̄j, τ̄

(i)
jk ≤ τM for (i, k) ∈ Aj := {1, . . . , N} × {1, . . . , n} − {1} × {j}, such

that for each (Φ1, . . . ,ΦN ) ∈ CQ, where Φi = (φi,1, . . . , φi,n), i = 1, . . . , N , and

CQ := {(Ψ1, . . . ,ΨN ) : Ψi = (ψi,1, . . . , ψi,n) ∈ C([−τM , 0];Rn),

ψi,j(θ) ∈ [q̌j, q̂j ], θ ∈ [−τ̄j, 0], i = 1, . . . , N, j = 1, . . . , n},

the following three properties hold for all t ≥ t0:

(H− i)∗ :
{
μ̌j ≤ hj(φ1,j(0), φ2,j(0), t)/[φ1,j(0)− φ2,j(0)] ≤ μ̂j, φ1,j(0) − φ2,j(0) �= 0,
hj(φ1,j(0), φ2,j(0), t) = 0, φ1,j(0) − φ2,j(0) = 0,

(H− ii)∗ : |h̃j(φ1,j , φ2,j , t)| ≤ ρhj , and there exists τj = τj(φ1,j , φ2,j , t) ∈ [0, τ̄j ], such that{
β̌j ≤ h̃j(φ1,j , φ2,j , t)/[φ1,j(−τj)− φ2,j(−τj)] ≤ β̂j, φ1,j(−τj)− φ2,j(−τj) �= 0,

h̃j(φ1,j , φ2,j , t) = 0, φ1,j(−τj)− φ2,j(−τj) = 0,

(H− iii)∗ : |wj(Φ1, . . . ,ΦN , t)| ≤ ρwj , and there exists τ
(i)
jk = τ

(i)
jk (Φ1, . . . ,ΦN , t) ∈ [0, τ̄

(i)
jk ],

(i, k) ∈ Aj, such that

|wj(Φ1, . . . ,ΦN , t)| ≤
∑

(i,k)∈Aj

{μ̄(i)jk |φi,k(0)− φi+1,k(0)| + β̄
(i)
jk |φi,k(−τ (i)jk )− φi+1,k(−τ (i)jk )|}.

Set

(5.12) L̄
(i)
jk := μ̄

(i)
jk + β̄

(i)
jk .

Let us introduce the condition imposed for the synchronization of system (5.1), which is
exactly parallel to condition (S1) for the synchronization of system (1.1).

Condition (S∗1). μ̂j + β̂j < 0 and β̄j τ̄j < τ∗j for all j = 1, . . . , n, where

β̄j := max{|β̌j |, |β̂j |}, τ∗j :=
3ρhj (μ̂j + β̂j)

(μ̂j + μ̌j + β̂j + β̌j)(3ρhj + ρwj )
.
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Under condition (S∗1), we can capture the asymptotic behavior for each z̃� in (5.11) by Propo-
sition 2.3. More precisely, there exist nN intervals [−a�, a�] to which z�(t) converges, where
1 ≤  = (i− 1)n + j ≤ nN ; moreover,

a� = a(i−1)n+j ≤ |w̃�|max(∞)/ηj ,

where

(5.13) ηj := −μ̂j − β̂j + β̄j τ̄j(μ̌j + μ̂j + β̌j + β̂j).

Applying arguments similar to those in Proposition 3.1, we can show that for each  =

(i− 1)n + j, there exists a sequence {ã(k)� }∞k=1 with ã
(k)
� ≥ a� satisfying

ã
(k)
� = ã

(k)
(i−1)n+j

=

{ ∑
1≤σ<i, 1≤l≤n

L̄
(σ)
jl ã

(k)
(σ−1)n+l +

∑
1≤l<j

L̄
(i)
jl ã

(k)
(i−1)n+l

+
∑

n≥l>j

L̄
(i)
jl ã

(k−1)
(i−1)n+l

+
∑

N≥σ>i, 1≤l≤n

L
(σ)
jl ã

(k−1)
(σ−1)n+l

}/
ηj.

Actually {ã(k)� }∞k=1 is the Gauss–Seidel iteration for solving the linear system

(5.14) circ(M (1),M (2), . . . ,M (N))v = 0,

with M (i) = [m
(i)
jl ]1≤j,l≤n for 1 ≤ i ≤ N , satisfying

m
(1)
jl =

{
ηj , 1 ≤ j = l ≤ n,

−L̄(1)
jl , 1 ≤ j �= l ≤ n,

m
(i)
jl = −L̄(i)

jl for i = 2, . . . , N,

where L̄
(i)
jl and ηj are defined in (5.12) and (5.13), respectively. Similar to Theorem 3.2, we

can establish the synchronization for coupled N -cell system.

Theorem 5.1. Consider system (5.1) which satisfies (5.2) and assumptions (D)∗ and (H)∗.
Then the system globally synchronizes if condition (S∗1) holds and the Gauss–Seidel iterations
for linear system (5.14) converge to zero, the unique solution.

Although we formulated the synchronization theory for systems under circulant coupling,
the idea of sequential contracting is not restricted to such a coupling. In fact, the operation
relies on suitable manipulation of the difference-differential equations which are sure to be
formulated according to the coupling configuration. For instance, consider system (5.4) under
the diffusion condition (5.5) with G̃(xi) = (G̃1(xi,1), . . . , G̃n(xi,n)) where xi = (xi,1, . . . , xi,n),
a setting largely adopted in the literature. We can consider the difference-differential equations

ż
(k)
i,j (t) = ẋi,k(t)− ẋj,k(t) instead of the previous żi,j(t) = ẋi,j(t) − ẋi+1,j(t), corresponding to
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system (5.4). The coupling terms of the ith component, i.e., (5.6), can be rewritten as follows:

cΣN
j=1,j �=iwij · [G̃(xj(t− τ))− G̃(xi(t− τ))]

= cΣN
j=1,j �=iwij ·

⎛
⎜⎝

G̃1(xj,1(t− τ))− G̃1(xi,1(t− τ))
...

G̃n(xj,n(t− τ))− G̃n(xi,n(t− τ))

⎞
⎟⎠

= −cΣN
j=1,j �=iwij ·

⎛
⎜⎜⎝

G̃′
1(ξ

(1)
i,j ) · z(1)i,j (t− τ)

...

G̃′
n(ξ

(n)
i,j ) · z(n)i,j (t− τ)

⎞
⎟⎟⎠ ,

where ξ
(k)
i,j are between xi,k(t− τ) and xj,k(t− τ). Subsequently, the corresponding difference-

differential equations can be represented by a linear combination of z
(k)
i,j (·), i, j = 1, . . . , N ,

k = 1, . . . , n, and showing z
(k)
i,j (t) → 0, as t → ∞ reduces to solving a homogeneous linear

system, as in Theorem 5.1. The popular coupling configurations considered in the literature,
global, nearest-neighbor, star, small-world network, and scale-free network, if formulated to
satisfy the diffusive condition, as in [71], can therefore be treated by our approach. The
application of our approach is determined by the setting of the difference-differential equation.
Thus it is also possible to consider systems with couplings other than diffusive and circulant
types.

5.2. A ring of K loops. Let us apply Theorem 5.1 to a coupled neural network that
consists of a ring of K loops. Suppose there are K groups of neurons, and in each group there
are n neurons which connect themselves into a loop,

(5.15) ẋj(t) = −μjxj(t) + g(bj−1xj−1(t− τI)), j = 1, . . . , n,

where g(ξ) = tanh(ξ), τI ≥ 0, x� = x�(mod n), and b� = b�(mod n). These K groups structure
themselves into a network in the form of a ring which is coupled as
(5.16){

ẋi,j(t) = −μjxi,j(t) + g(bj−1xi,j−1(t− τI)), j = 1, . . . , n − 1 (mod n),
ẋi,n(t) = −μnxi,n(t) + g(bn−1xi,n−1(t− τI)) + c[g(bnx

τ
i−1,n(t)) + g(bnx

τ
i+1,n(t))],

where i = 1, 2, . . . ,K, K ≥ 3, c > 0, μj > 0, bj > 0, j = 1, . . . , n; xi,j stands for the jth
component in the ith loop and xτi,j(t) := xi,j(t− τT ), τT ≥ 0. Obviously, the coupling matrix
circ(0, c, 0, . . . , 0, c) in system (5.16) admits the circulant structure (5.2) but does not satisfy
the diffusive condition (5.5). The case for system (5.16) with K = 2, and μj = 1 and bj = b
for j = 1, . . . , n, has been studied in [8]. Therein, the stability of the trivial equilibrium
was obtained via linear stability analysis, and the existence of in-phase oscillation for the
symmetric coupling case was predicted. We note that as the slope condition is not met, the
approach in [11, 29] does not apply to the coupling function g(ξ) = tanh(ξ) herein.

Based on Theorem 5.1, we shall establish the following network-scale–dependent and delay-
dependent synchronization for system (5.16).
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Theorem 5.2. System (5.16) attains global synchronization if

μj > bj−1 for j = 1, . . . , n− 1 (mod n),

μn + bncL̂− bn−1 − (K − 3)bnc > 0,

τT < min

{
3(μn + bncL̂)

bn[2μn + bnc(1 + L̂)](1 + cK)
,
μn + bncL̂− bn−1 − (K − 3)bnc

bnc[2μn + cbn(1 + L̂)]

}
,

where L̂ := min{(tanh)′(ξ) : ξ ∈ [−(1 + 2c)bn/μn, (1 + 2c)bn/μn]}.
Proof. By setting zi,j(t) = xi,j(t) − xi+1,j(t), 1 ≤ i ≤ K, 1 ≤ j ≤ n, we consider the

difference-differential system induced from (5.16): for i = 1, . . . ,K,

(5.17)

{
żi,j(t) = −μj[xi,j(t)− xi+1,j(t)] + wi,j(t), j = 1, . . . , n− 1,
żi,n(t) = −μn[xi,n(t)− xi+1,n(t)]− c[g(bnx

τ
i,n(t))− g(bnx

τ
i+1,n(t))] + wi,n(t),

where

wi,j(t) = g(bj−1xi,j−1(t− τI))− g(bj−1xi+1,j−1(t− τI)), j = 1, . . . , n− 1 (mod n),

wi,n(t) = g(bn−1xi,n−1(t− τI))− g(bn−1xi+1,n−1(t− τI))

−cΣ�∈Ji [g(bnx
τ
�,n(t))− g(bnx

τ
�+1,n(t))],

and Ji := {1, . . . ,K}\{i, i−1, i+1 (mod K)}. Obviously, for each 1 ≤ i ≤ K, xi,j(t) eventually
enters and then remains in [−1/μj , 1/μj ] for j = 1, . . . , n−1, and xi,n(t) eventually enters and
then remains in [−(1+ 2c)/μn, (1+ 2c)/μn]. Consequently, system (5.16) satisfies assumption
(D)∗ with [q̌j, q̂j ] = [−1/μj , 1/μj ], j = 1, . . . , n− 1, and [q̌n, q̂n] = [−(1 + 2c)/μn, (1 + 2c)/μn].
On the other hand, functions hj , h̃j , and wj in (5.9) are now

hj(φ1,j(0), φ2,j(0), t) = −μj[φ1,j(0) − φ2,j(0)], j = 1, . . . , n,

h̃j(φ1,j , φ2,j , t) =

{
0, j = 1, . . . , n− 1,
−c[g(bnφ1,n(−τT ))− g(bnφ2,n(−τT ))], j = n,

wj(Φ1, . . . ,ΦK , t) =

⎧⎨
⎩

g(bj−1φ1,j−1(−τI))− g(bj−1φ2,j−1(−τI)), j = 1, . . . , n− 1 (mod n),
g(bn−1φ1,n−1(−τI))− g(bn−1φ2,n−1(−τI))
−cΣl �=1,2,K[g(bnφl,n(−τT ))− g(bnφl+1,n(−τT ))], j = n.

Accordingly, it can be verified that system (5.16) satisfies assumption (H)∗ with μ̌j = μ̂j = −μj
for j = 1, . . . , n, h̃j ≡ 0, ρwj = 2 for j = 1, . . . , n−1, β̌n = −cbn, β̂n = −cbnL̂, ρhn = 2c, τ̄n = τT ,
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ρwn = 2 + 2c(K − 3), and

μ̄
(i)
jk = 0 for all i = 1, 2, . . . ,K, and 1 ≤ j, k ≤ n,

β̄
(1)
jk =

⎧⎨
⎩

bn, (j, k) = (1, n),
bl−1, (j, k) = (l, l − 1), l = 2, . . . , n,
0 otherwise,

β̄
(i)
jk = 0 for all i = 2,K, and 1 ≤ j, k ≤ n,

β̄
(i)
jk =

{
0 otherwise,
cbn, (j, k) = (n, n),

i �= 1, 2,K,

τ̄
(i)
jk =

⎧⎨
⎩

τT , i �= 1, 2,K, and (j, k) = (n, n),
τI , i = 1, and (j, k) = (1, n) or (j, k) = (l, l − 1) for l = 2, . . . , n,
0 otherwise.

System (5.16) satisfies condition (S∗1) due to the inequality τT < 3(μn + bncL̂)/{bn[2μn +
bnc(1+ L̂)](1+ cK)}. According to Theorem 5.1, the synchronization of system (5.16) follows
from the convergence of the Gauss–Seidel iteration for solving the linear system

(5.18) circ(M (1),0n,M (2), . . . ,M (2),0n)v = 0,

where M (1) = [M
(1)
jk ]1≤j,k≤n, 0

n = [0njk]1≤j,k≤n, M
(2) = [M

(2)
jk ]1≤j,k≤n are defined by

M
(1)
jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μl, (j, k) = (l, l), l = 1, . . . , n− 1,

μn + bncL̂− τT bnc[2μn + cbn(1 + L̂)], (j, k) = (n, n),
−bn, (j, k) = (1, n),
−bl−1, (j, k) = (l, l − 1), l = 2, . . . , n,
0 otherwise,

0njk = 0, 1 ≤ j, k ≤ n,

M
(2)
jk =

{ −bnc, (j, k) = (n, n),
0 otherwise.

Thus circ(M (1),0n,M (2), . . . ,M (2),0n) is strictly diagonally dominant, due to inequalities
μj > bj−1 for j = 1, . . . , n − 1 (mod n), μn + bncL̂ − bn−1 − (K − 3)bnc > 0, and τT <
[μn + bncL̂ − bn−1 − (K − 3)bnc]/{bnc[2μn + cbn(1 + L̂)]}. Consequently, the Gauss–Seidel
iteration of linear system (5.18) converges to zero.

The conditions in Theorem 5.2 depend on the scale of the network (K), coupling strength
(c), coupling function (g), coupling delay (τT ), and μi, bj which determine the intrinsic dy-
namics in the loop. Moreover, the inequalities in the condition favor smaller network scale
K. Actually, the present approach can also establish network-scale–independent and delay-
independent synchronization criterion for system (5.16). The modified arguments based on
setting zi,j(t) = xi,j(t) − xi+1,j(t), 1 ≤ i ≤ K − 1, 1 ≤ j ≤ n, and the components zi,n(t) in
(5.17) can also be regarded as follows:

żi,n(t) = −μnzi,n(t) +wi,n(t),
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Figure 4. Evolutions of components (xi,1(t), xi,2(t), xi,3(t)), i = 1, 2, 3, for the solution of (5.16) with K =
3, n = 3, bi = 0.99, i = 1, 2, 3, τI = 11, τT = 0.0004, and c = 20/99, starting from (− sin t, t, 0,−t, 0, sin t,−t ·
sin t, t, sin t). This solution converges to a synchronous periodic solution.

where wi,n(t) = g(bn−1xi,n−1(t − τI)) − g(bn−1xi+1,n−1(t − τI)) + cΣ�=i−1,i+1[g(bnx
τ
�,n(t)) −

g(bnx
τ
�+1,n(t)]. Then, by applying Theorem 3.3 and arguments similar to those for Theorem

5.2, we can derive the following result.
Theorem 5.3. System (5.16) attains global synchronization if μ1 > bn, μj > bj−1, j =

2, . . . , n− 1, and μn > bn−1 + 2bnc.
For a synchronized coupled system, it is appealing to see its asymptotic states. Our

numerical computations show that the possible global asymptotic states of system (5.16)
include the origin, multiple equilibria, and a nontrivial periodic solution.

Example 5.1. (i) Consider system (5.16) with K = 3, n = 3, τI = 11, τT = 0.0004,
c = 20/99, and μi = 1 and bi = 0.99, i = 1, 2, 3. The conditions of Theorem 5.2 are met for
such parameters and delays, and hence the system achieves global synchronization. Figure
4 illustrates that the evolution from an asynchronous initial state converges to a nontrivial
synchronous periodic solution.

(ii) Consider system (5.16) with the same parameters and delays except that c is changed
to c = 400/99. The system still satisfies the conditions of Theorem 5.2. Figure 5 demonstrates
that solutions originating from two different initial points converge to two distinct nontrivial
synchronous steady states.

Example 5.2. Let us illustrate that synchronization depends on the network scale as well
as the delay magnitude. In [8], the authors considered a ring of two loops (K = 2) comprising
(5.15) with n = 3, τI = 0:

(5.19)

⎧⎪⎪⎨
⎪⎪⎩

ẋj(t) = −xj(t) + g(bxj−1(t)), j = 1, 2 (mod 3),
ẋ3(t) = −x3(t) + g(bx2(t)) + c1g(by3(t− τT )),
ẏj(t) = −yj(t) + g(byj−1(t)), j = 1, 2 (mod 3),
ẏ3(t) = −y3(t) + g(by2(t)) + c2g(bx3(t− τT )).

It was concluded that the origin of the system is globally asymptotically stable for all τT ≥ 0
if b ·maxi=1,2{1+ |ci|} < 1. Accordingly, system (5.19) with b = 0.3 and c = 2 achieves global
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Figure 5. Evolution of components (xi,1(t), xi,2(t), xi,3(t)) (resp., (yi,1(t), yi,2(t), yi,3(t))), i = 1, 2, 3, for
the solution of (5.16) with K = 3, n = 3, bi = 0.99 for i = 1, 2, 3, τI = 11, τT = 0.0004, and c = 400/99
starting from (0.5,−0.8, 0,−0.5,−0.5, 0, 0.8, 0.2,−0.5) (resp., (−1.8, 0.8, 0, 1.6, 2.5, 0,−1.8,−1.2, 2.5)). These
two solutions converge to different nontrivial synchronous equilibria.
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Figure 6. Evolution of components (xi,1(t), xi,2(t), xi,3(t)), i = 1, 2, 3, 4, for the solution of (5.16) with
K = 4, n = 3, μi = 1, bi = 0.3 for i = 1, 2, 3, c = 2, τI = 0, and τT = 10 starting from (t · sin t, t, sin t,−t ·
sin t,−t,− sin t, t · sin t, t, sin t,−t · sin t,−t,− sin t). This evolution tends to an asynchronous oscillation.

convergence to the origin, and hence global synchronization, for all τT ≥ 0. If we consider the
coupled loops with larger scale K, then the synchrony may be lost. More precisely, consider
system (5.16) with n = 3, K = 4, μi = 1, and bi = 0.3 for i = 1, 2, 3, c = 2, and τI = 0; then
the system satisfies the criteria of Theorem 5.2, and hence attains global synchronization, if
τT is smaller than some critical value near 0.1501. The numerical simulation in Figure 6 shows
that the synchrony is lost if we increase τT to τT = 10, while the other parameters remain.
This is in contrast to the case K = 2 with the same parameters in (5.19).

On the other hand, it appears that system (5.16) satisfying the condition of Theorem 5.3
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tends to achieve global convergence to the origin. For a systematic study of the asymptotic
synchronous states, one can analyze the synchronous equations associated with system (5.16):{

ẋj(t) = −μjxj(t) + g(bj−1xj−1(t− τI)), j = 1, . . . , n− 1 (mod n),
ẋn(t) = −μnxn(t) + g(bn−1xn−1(t− τI)) + 2cg(bnx

τ
n(t)).

However, the analysis may become challenging if n is large.

6. Discussion and conclusion. Previous studies on synchronization have been primarily
focused on dynamical systems with linear or linearly diffusive coupling. Those works include
employing the master stability function or analyzing the stability of the synchronous set to
study local synchronization [23, 35, 36, 43, 44] and using the Lyapunov function technique to
study global synchronization [3, 29, 35, 36, 47, 48, 59, 58]. There are some papers, including
[11, 29], which considered nonlinear coupling but are subject to the diffusive condition and
the slope condition, which requires the coupling functions to have positive lower bounds on
their slopes.

The collective behaviors between systems with diffusive coupling and nondiffusive coupling
bear completely different senses. For a coupled system comprising identical subsystems under
diffusive coupling, its synchronous solution is also a solution for each individual subsystem in
isolation, because the coupling parts are annihilated at synchronous states. This is certainly
not the case for the nondiffusive coupling scheme. For example, in the excitable FitzHugh–
Nagumo neurons under nonlinear and nondiffusive coupling, discussed in section 4.1, there
exists a synchronous oscillation, while each isolated subsystem does not have any periodic
orbit. Laying aside the modeling issue, that the diffusive condition has been largely imposed in
concluding synchronization is due to its need as a mathematical technicality in the derivation.
Our approach requires neither this diffusive condition nor the slope condition on the coupling
functions and has thus established new collective behaviors for coupled systems.

Indeed, the current challenge of the mathematical approach in concluding synchronization
is to treat systems under nonlinear and delayed coupling. This investigation presented a new
approach, named sequential contracting, to study global synchronization of coupled systems.
The analysis finds its innovative capacity especially in systems under nonlinear and delayed
coupling. The first key step of this approach is to seek a formulation of the difference-
differential equations corresponding to the coupled systems, which can be manipulated to
construct effective upper and lower dynamics. Through studying these upper-lower dynamics
iteratively, the problem of synchronization is transformed, via sequential contracting, into
solving a homogeneous linear system of algebraic equations. The present approach can be
implemented to establish delay-dependent, delay-independent, network-scale–dependent, and
network-scale–independent criteria for synchronization of coupled systems, through suitable
designs of sequential upper and lower dynamics. We note that delay-dependent and network-
scale–dependent criteria for synchronization are rare and even lacking in systems under delayed
and nonlinear coupling in the literature.

The present approach can treat synchronization for systems comprising multiple subsys-
tems coupled in a symmetric or asymmetric manner. The subsystems can be of arbitrary
dimension, and thus this framework is suitable for models with multiple components such
as signaling pathways in cell biology. We have applied the present approach to a variety of
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coupled systems, including classical neuronal models under synaptic coupling and neural net-
works under nonlinear and delayed coupling. In addition to new findings, applications to these
various systems illustrate the assorted technicalities associated with applying this approach.
Our methodology can also treat chaotic synchronization [54].

By applying Theorems 3.2 and 3.3 and arguments similar to those for Theorem 4.3, we can
derive delay-independent and delay-dependent criteria for the synchronization in networks of
oscillators under nonlinear and delayed couplings [56, 57, 67]. Moreover, the derived global
synchronization criteria are compatible with the existence of stable in-phase periodic solution
established by bifurcation theory or the existence of multiple synchronous equilibria and hence
provide a theoretical result to the global dynamics for the system considered in [56, 57].

As applied to a network of oscillators, the present framework can accommodate a variety
of coupling configurations, although we demonstrated only the circulant coupling. Basically,
the difference-differential equations are composed according to the coupling configuration or
network topology, as mentioned in section 5.1. The problem that solutions evolve toward the
synchronous set can then be solved by analyzing the difference-differential equations.

If a positively invariant set for a coupled system can be located, then the idea of sequential
contracting can also be applied to study local dynamics and local synchronization in that set.
The analysis can also be adapted to investigate antiphase behaviors for coupled systems, via
considering xi(t) + yi(t) → 0, as t→ ∞, for each i.

A so-called contraction analysis was proposed by Slotine and collaborators [34, 55] to
study convergence and synchronization for coupled oscillators. The formulation is based on
a linearization setting and the criterion for synchronization is in terms of eigenvalue for cer-
tain corresponding matrices, including the Jacobian of the vector field for each unit. The
present approach employs upper-lower dynamics iteratively to avoid overmanipulating the
nonlinearity by linearization. In studying synchronization and asymptotic behaviors in dy-
namical systems, a dissipative condition, such as assumption (D) in section 3.1, is usually a
basic requirement, although concluding such a property in a nonlinear system is already a
nontrivial task. Through studying the upper-lower dynamics iteratively, our analysis actually
incorporates the notion of attracting set into the framework. Such a consideration is lacking
in [34, 55].

The synchronization considered in our manuscript may be called “perfect synchroniza-
tion”; i.e., the corresponding components of all subsystems tend to be identical as time
evolves. Underlying such a scenario is the existence of some synchronous solution (x(t),y(t)) =
(z(t), z(t)) for system (1.1). For example, if the coupled system globally synchronizes to a
periodic solution, then there must exist such a stable periodic orbit on the synchronous set.
For coupled systems comprising nonidentical subsystems, it is natural to relax the notion of
perfect synchronization to “approximate synchronization” (see [3]). On the other hand, it is
possible to extend our approach to identical subsystems coupled under asymmetric coupling.
In fact, in the expression in (5.1) (without assuming (5.2)), Gi is allowed to be disparate for
each i. The key point of such an extension is whether the induced difference-differential sys-
tem (5.8) can be analyzed under the present framework. An example for such an extension is
the chaotic oscillators, such as the Lorenz oscillator, coupled in a driven-and-response manner
[54].

There are synchronization problems for some neural networks under delayed and nonlinear
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coupling which cannot be solved by previous methodologies, including the Lyapunov function
technique [53]. On the other hand, while looking for a Lyapunov function seems difficult
in some systems with complicated nonlinear terms and delays, our approach provides a new
alternative to tackle asymptotic behaviors including synchronization. The idea of sequential
contracting has also been applied to study multistability in delayed neural networks [52], the
asymptotic phases in an integro-differential equation modeling T-cell differentiation [20, 21],
and the preimages of a snapback repeller in multidimensional maps [31].

Appendices A–C contain detailed verifications which are supplementary to sections 2 and
4.

Appendix A. Proof of Proposition 2.3. From

ĥ(∞)(−m(T ), T ) = −(μ̌+ β̌)m(T ) + β̄τ̄ ĥ(∞)(−m(T ), T ) + |w|max(T ),

it follows that

0 ≤ ĥ(∞)(−m(T ), T ) =
−(μ̌+ β̌)m(T ) + |w|max(T )

1− β̄τ̄
.

Consequently, for ξ ≥ 0,

(A.1) ĥ(∞)(ξ, T ) = (μ̂+ β̂)ξ +
β̄τ̄ [−(μ̌+ β̌)m(T ) + |w|max(T )]

1− β̄τ̄
+ |w|max(T ).

Using that m(T ) is a zero to ĥ(∞)(·, T ) in (A.1) yields

m(T ) = |w|max(T )/{−μ̂ − β̂ + β̄τ̄(μ̌+ μ̂+ β̌ + β̂)}.

Appendix B. Upper-lower dynamics for Proposition 2.4.

ĥ(ξ) :=

{
μ̂ξ + ρh + |w|max(t0) for ξ ≥ 0,
μ̌ξ + ρh + |w|max(t0) for ξ < 0,

ĥ(0)(ξ, T ) :=

{
μ̂ξ + β̄Âh + |w|max(T ) + ε0 for ξ ≥ 0,

μ̌ξ + β̄Âh + |w|max(T ) + ε0 for ξ < 0,

ĥ(k)(ξ, T ) :=

{
μ̂ξ + β̄m̂(k−1)(T ) + |w|max(T ) + εk, ξ ≥ 0,

μ̌ξ + β̄m̂(k−1)(T ) + |w|max(T ) + εk, ξ < 0,

ȟ(ξ) = −ĥ(−ξ, T ), ȟ(0)(ξ, T ) = −ĥ(0)(−ξ, T ), ȟ(k)(ξ, T ) := −ĥ(k)(−ξ, T ).

Appendix C. Proof of Lemma 4.1. Let (x1(t), x2(t), y1(t), y2(t)) be an arbitrary solution
of (4.1). We first show that (x1(t), x2(t)) converge to Q̃(1). By setting V (t) := [x21(t) +
x22(t)/b]/2, we obtain

V̇ (t) = −x41 + (a+ 1)x31 − ax21 + cf(yτ1 )x1 − (γ/b)x22,

where xi = xi(t), i = 1, 2, and yτ1 = y1(t− τ). Notably, |f(yτ1 )| < ρ; thus

(C.1) V̇ (t) ≤ −x41 + (a+ 1)x31 − ax21 + ρ|cx1| − (γ/b)x22 = P (1)(x1)− (γ/b)x22,
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where P (1) is defined in (4.20). Obviously, P (1)(ξ) < 0 for |ξ| > q̄(1). Thus V (t) is decreasing
with respect to t should (x1(t), x2(t)) stay in {(ξ, ζ) ∈ R

2, |ξ| > q̄(1)}. On the other hand,
−γx2(t)−bq̄(1) ≤ ẋ2(t) ≤ −γx2(t)+bq̄(1); hence x2(t) approaches [−(b/γ)q̄(1), (b/γ)q̄(1)] should
(x1(t), x2(t)) stay in {(ξ, ζ) ∈ R

2, |ξ| ≤ q̄(1), |ζ| > (b/γ)q̄(1)}. Now, let us consider the following
set:

Ω(1) :=

{
(ξ, ζ) ∈ R

2 :

{
ξ2 + ζ2/b ≤ (1 + b/γ2)(q̄(1))2, |ξ| > q̄(1),

|ζ| ≤ (b/γ)q̄(1), |ξ| ≤ q̄(1)

}
.

Notably, max{V (ξ, ζ) : (ξ, ζ) ∈ Ω(1)} = V (ξ̃, ζ̃) = (1 + b/γ2)(q̄(1))2, where (ξ̃, ζ̃) lies on the
boundary of Ω(1) with |ξ̃| ≥ q̄(1). Based on these arguments, Ω(1) is positively invariant under
the flow generated by system (4.1). Moreover, (x1(t), x2(t)) enters Ω(1), and hence Q̃(1), as
t → ∞. The assertion exactly holds for (y1(t), y2(t)). Note that (C.1) refers to the first
estimation on V̇ (t) via function P (1). As restricted to region Q̃(1), we can construct function
P (2) defined in (4.20), which provides finer estimation on V̇ (t). Accordingly, we can conclude
that (x1(t), x2(t)) and (y1(t), y2(t)) both enter Q̃(2), which is defined in Lemma 4.1. Iteratively,
for all k ≥ 3, we can construct q̄(k) as defined in (4.22), which is strictly decreasing, and then
conclude that both (x1(t), x2(t)) and (y1(t), y2(t)) eventually enter, and then remain in, Q̃(k),
defined in Lemma 4.1.
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