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Abstract

Economic models for the design of control charts based on Duncan’s approach
have been studied in the recent past. However, the economic design of control charts
has not been developed in a systematic manner so far. Consequently, various
assumptions and approaches have been made, and most researchers only consider
process models involving a single assignable cause, for which a single control chart
X, P, or S) is used. In practice, these assumptions and approaches are not realistic
and flexible, and the application of a single control chart is not sufficient. In this
study, the design of control charts for one process variable is treated in a systematic
manner. The structure of this study is: (1) To develop a generalized process model
(a Markov process) with multiple assignable causes. (2) To apply the joint

X and R control charts to the generalized process model. (3) To derive a
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comments,
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cost model depending on the design parameters, (sample size, sampling interval and
control limits of X and R charts), of joint X and R charts using the Markov properties.
(4) To obtain optimal design parameters by optimizing the derived cost function

It is believed that the expected cycle time and expected cycle cost are more
easily obtained by the proposed Markov chain method than by extending the
Duncan’s approach and o*hers approaches. The generalized process model, in which
we use joint X and R charts, shows that it is more reasonable and flexible than
a basic process model, in which a single control chart is used. An application of
the method is presented using a simple example. A general Fortran program has
been written to solved this type of problem. The results of data analyses tell us
the critical parameters and show that this design method gives lower quality cost
compared to Shewhart’s design. The design method can be applied to multiple
process variables and to a variety of control charts.

1. INTRODUCTION

A major objective of statistical quality control is the systematic reduction of
variability in the quality characteristic of the product of interest (see Montgomery
1985). Control charts present information about two kinds of variability. The first
kind is random variability which is usually small and acceptable. This variability
is due to a wide variety of chance causes, which cannot be eliminated. The second
kind of variability represents a real change in the process. Such a change can be
attributed to some so called assignable causes which can be eliminated. (See, for
example, Braverman 1981).

Suppose that a quality characteristic of interest has given but different
distributions when the process is in control (no assignable causes occur in the
process), or out of control (assignable causes occur in the process). For maintaining
effective control of the quality characteristic of interest, the appropriate controi charts
are applied to the process variable and are placed at a necessary observing station
on a given production line. A sample of size, n, sa{y X1, X2,..., Xn, which are
assumed to be independent, is drawn periodically from the process output at the
observing station. As long as the sample points plot within the control limits, the
process continues, and no action is necessary. If a point plots outside of the control
limits, then an investigation is initiated to locate the assignable causes. Once the
assignable causes are determined and eliminated, the process returns to an acceptable
stable state, as a new system. Suppose that the time between the start of two
successive in-control periods is called a cycle. The process can be regarded as a
series of cycles. The cycles are independent and identically distributed; it is in fact
a renewal process.

The optimal economic design of the X control chart was first introduced by
Duncan (1956) and has been widely extended by others. Duncan (1971) generalized
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his single assignable cause model to a situation in which there are several assignable
causes. Assumptions are not often realistic in these models, such as; once an
assignable cause occurs, the process remains in that out-of-control state until detected
and that no further assignable causes occur in a single occurrence model, and a
second occurrence of an assignable cause is possible but with the joint effect of
the two assignable causes is always to produce a shift of constant magnitude
regardless of what two assignable causes have occurred in a double occurrence model
(See Montgomery 1980). Saniga (1979) proposed a model for the economic design
of joint X and R charts when there are two assignable causes. He presented a single
occurrence model as Duncan did, but cost model was expressed as expected cost
per item produced rather than the expected cost per unit time as in Duncan (1956,
1971). Two different manufacturing process models in which a single X chart is
used were first introduced by Panagos, Heikes and Montgomery (1985). One of
them is a continuous process model which assumes that the process is allowed to
continue in operation during the search for an assignable cause. Another is a
discontinuous process model which supposes that following an alarm, the process
is stopped while a search for the assignable cause is performed. A unified approach
for economic design of control charts was developed by Lorenzen and Vance (1986).
They considered a general process model with single assignable cause and derived
an hourly cost function. A renewal theorem approach for economic designs of control
charts was introduced by Banerjee and Rahim (1987). They proposed a renewal
equation approach to derive an hourly cost function for a single assignable cause
model. Collani and Sheil (1989) first proposed the economic design of an S chart,
since they assumed that an assignable cause may only change the process variance.
Their objective function was the average profit per item produced in the long run.
Unfortunately, papers on the economic design of control charts have not been
developed in a systematic manner. We make the following remarks about these earlier
papers.

First, different papers have different assumptions and approaches. For example, some
authors assume production continues, others assume production stops when
looking for assignable causes (See Vance 1986). It is also assumed that
assignable causes can only change the process mean or the process variance.
Some authors assume the objective function is income, others assume it is cost.

Second, most authors only consider the design of X control charts (Saniga is the
sole exception). Use of X and R charts simultaneously is better than only using
one of them for the following reasons:

— 447 —



The Journal of National Chengchi University Vol. 66, 1993

(1) Duncan (1974) noted that the joint employment of an X chart to control
process mean and R chart to control process variability will give reasonably
good control of the whole process.

(2) Using both X, R charts gives more information, intuitively.

Use of X and R charts is also popular in practice. Saniga and Shirland (1977)

in their survey of American industry reported that 71% used X chart and 64%

used R charts respectively. We are sure the percentage is much higher now,

and in practice, they are employed jointly. According to Montgomery (1985)

they are the most commonly employed control charts for products with quality

measured on a continuous scale.

Third, a generalized process model has not been considered by most
researchers. Most authors consider a single assignable cause model, or a
multiple assignable causes model with constraint on the number of
assignable causes that can occur. They also assume that once the
assignable causes have occurred the process needs to be repaired, and
cannot repair itself.

In practice, many production processes are affected by several assignable causes

(See Montgomery 1980) and some of these assignable causes can correct

themselves without any action being taken, so, in such situations, the usual

assumptions would seem inappropriate and unrealistic.

However, these problems can be solved by developing the economic design
of joint X and R control charts in a systematic manner. The design method can
be applied to a variety of control charts and the general process model is more
reasonable and flexible than others.

2. THE GENERALIZATION OF THE PRODUCTION PROCESS MODEL

Suppose that we are interested in a measurable process variable in a production
process. The distribution of the process variable is assumed to be known when the
process is in control, the desired state in the process. But the distribution of the
process variable will be changed when assignable causes have occurred in the process.
Hence, the behavior of the process can be monitored by studying the possible
occurrence of assignable causes. For detecting whether the process is in control
or not, joint X and R control charts should be used to monitor the process. So
the behavior of the process in which joint X and R charts are used can be
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monitored by studying both the possible occurrence of assignable causes and test
results in the process. A generalized process model in which joint X and R charts
are used is expressed as a Markov process by giving reasonable and flexible
assumptions.

2.1 Assumptions of the Generalized Process Model in Which Joint X and R
Control Charts Are Used

The generalized process model has the following assumptions:

(1) There is no constraint on the number of assignable causes that can occur in

the process.

We assume that the quality of produced items is expressed by the value of
a measurable characteristic X, that X has a normal N(x, 62) distribution and that
the random variable Xj, i=1,2,3,.,n are statistically independent. The normality
assumption is made, since X and R charts are very robust relative to non-normality
(see Burr 1967). Burr (1967) investigated the behavior of X and R control charts
for 28 non-normal distributions, and found that the charts behaved quite well in
many non-normal situations. However, if the distribution is very skew, then the
process may appear to be out of control when in fact it is not. The normality
assumption also simplifies the calculations of probabilities of type I error and powers
because X and R are independent for normal samples. We also assume that there
are d assignable causes which affect the mean and variance of the process variable.
It is possible for more than one assignable cause to occur simultaneously; when
one or more causes are in effect, others may occur producing further changes in
the distribution of the process variable. It is also possible for one or more assignable
causes to correct themselves without any action being taken. So, the distribution
of process variable is specified by an arbitrary combination S'* (say) of assignable
causes, and the possible one-step transitions are from S’* to S, say, another
combination of assignable causes, with either S'C S’" or S" € §’. Suppose that
the d assignable causes can be classified into three types, say A, B and C, where
d, of the assignable causes belong to type A; d, of the assignable causes belong
to type B; the others are type C. The occurrence of type A assignable causes will
change the process mean; the occurrence of the type B assignable causes increases
the process variance and the occurrence of type C assignable causes changes both
process mean and variance. When the assignable causes which occur come
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from type A and type B, then the process mean shifts and the variance
increases, and similarly for other combinations of types of assignable causes.
The changes in the process mean and process variance depend on which
particular assignable causes actually occur. Consequently, the single change
of process mean or process variance and both changes of the process mean
and process variance could be the effects of the combinations of occurred assignable
causes.

Based on the above assumptions, we exhibit the possible distributions of the
quality characteristic of interest in the production process.

When there is no assignable cause present in the process the target value is
p=p, and the inherent process variability is 6°=8; i.e. X~N (g, &)

When the process is influenced by assignable causes, the distributions of process
variable can be classified into seven types:

Let S, be a non-empty subset of WA={1,2,3,...d}
S, be a non-empty subset of WB={d +1, d,+2,....d,+d,]
S, be a non—empty subset of WC={d +d,+1,...,d +d,+d,
S’ be a subset of WD={1,2,3,...,d}
where d=d +d,+d,.

Then the most general distribution of the process variable is Ny, 63,). But

()  N(gg, 62).=N(gg, 6°), when S'=S . The number of such cases is

2¢'—1. (The number of non-empty subsets of WA.)
(i) N(ug, 62)=(n, 62,), when §'=S,. The number of such cases is 22—1.

(iii) N(ug, &3 )=N(gg,, 6%), when S'=S,. The number of such cases

is 28 —1.

(iv) Ny, 6;,)=N(p.51, 6@2), when §’=S US,. The number of such cases is
Q-4 -1).

(V) Nlgg, 8.)=N(ug, ;> 6%,), when §"=8,US,. The number of such cases
1s (2d2—1)(2d3—1).

— 450 —



Economic Design of Joint X and R Control Charts: a Markov Chain Method

(vi) Nug., 82)=N(ug,, 8%,usy)» When §"=S US,. The number of such cases

is 22—1)@®e-1).

(vii) N(ug, 82)=N(ug, 530 5usy)» When 8'=S US,US.. The number of such
cases is 24 —DQRZ-DRE-1).

So the number of total possible distributions is 2¢(=m). Here, the process means
(1) and variances (63,) all are assumed given. The process variances 62, are
usually assumed to be greater than 82, and the process means u, may be either
greater or less than Hos where S’ #¢.

(2) We now define what is meant by being in-control and out-of-control.

As long as no assignable cause has occurred, we say that the process is called
in control. During the period after the first assignable cause occurs and before all
assignable causes leave the process the process is said to be out of control.

(3) We now define a cycle

It is assumed the production process starts in a state of statistical control. After
h units of time from the start of the production process, the engineers take a sample
with size, n, then they calculate the sample mean and the range for the quality
characteristic of interest. If the two plotted values fall within the control limits of
the joint X and R charts, the process continues. If at least one of the plotted values
falls outside of the control limits of the joint X and R charts, they search for
assignable causes and then return to an in-control state after repair or renewal. After
such a renewal, the process is assumed to start anew. The interval between two
successive renewals will be called a renewal cycle. The process is a renewal process.
The accumulated cost per cycle is called the cycle cost. The cycle cost will include
the costs of making transitions, costs of search and repair, cost of sampling and
testing and costs due to the production of conforming and nonconforming items.
The cycle costs are independent and identically disttributed. Such a process is known
as a renewal reward process (See Ross 1983).

(4) We assume that the inter-occurrence times of assignable causes are exponentially
distributed.
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Let state variable Y  (t>0) represent the possible combination of
d assignable causes at time t; then the value of Y, would be from 1
to m (=29%; each state value j is associated with one subset of WD
(§’). The amount of time (Tg) it spends in state s’ before making a
transition into a different state is exponentially distributed with rate 6.
Ty ~exp(fg) or Tj~exp(0j). The process in a cycle is expressed as a
Markov process.

(5) We neglect the time of sampling and testing, because they are assumed to be
small.

(6) The distribution of search and repair time
The search and repair times (T,;) could be dependent or independent. Their
distribution depends on which assignable causes occurred. It is allowed to be
any distribution or fixed.

(7) The distribution of search and repair cost

The search and repair costs (C;) could be dependent or independent. Their
distribution depends on which assignable causes occurred. It is allowed to be any
distribution or fixed.

(8) The setting of joint X and R control charts

Samples of size n, (X5 X, 3oersX ), are taker;] at regular time intervals h from
current production and the sample mean X=( I x)/n, and the sample range
R=x(n)—x(” are calculated and plotted on an la:plpropriately designed X and R
charts. The center line of X chart is at the target value #, and the control limits
are potk /v n. The upper control limit of the designed R chart is set at k,8,.
In our work we assume that assignable causes may increase process variability not
decrease it, and so we do not use a lower control limit. The X and R charts are
therefore characterized by the parameters, sample size (n), sampling interval (h),
and control limits &, , k), (n=22, h>0, k,>0, k,>0) and an alarm is given
whenever at least one plotted point exceeds Hotk S, /~/n or K,p,- Such an alarm
constitutes a ‘“‘false alarm’” if it occurs when the process is actually operating in
in-control state.

Since X and R are independent (See, for example, David 1979), the probability
of a false alarm and power are therefore given by (See Saniga 1979):
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a= Prob (R>k,8,16=8)+Prob(x> u +k8,/~mor X <u —kd,/~1 lp=p)
~Prob (R>k,8,!8=8)Prob(X >pu +k,b,/~/ nor X <p,~k8,/~/1 lp=p)

= ?W(kz)+2G(kl)—2fw(k2)G(kl), (2.1.2)
where G is defined in terms of the standard normal cumulative distribution.

G(a)= §:°exp (—2212)I 2 N T dz

F,, is defined as cumulative distribution function of relative range W (w=R/6>0),
F, (W) =P(W<w)=1—F (w).

— ns
F,(w)=| Z° fwdw=1-/V 7L E a[F,(/2y,+w)-F,2y)I"
2.1.2)

[for a proof of this, see Appendix A]

The cumulative probability distribution of the relative range (2.1.2) can be
approximated by the Hermite polynomials method (See Sulzer, Zucker and Capuano
1952), which allows sample size to be any integer unlike the table created by Pearson
and Hartley (1942) who only consider sample sizes from 2 to 20. Similarly, the
power of the charts to detect a slip to one of the out-of-control states is given by
1-B8. B depends on the process state S'; and

1-8=1-B.= Prob(x>pu,+ks/vn or <u—~ks/vnlug., 5)
+Prob(R > k5 16.) —Prob(X> , +k,S,/+/A
or < p,—ksb,/Vnlpg, &) Prob(R>k3,15.)
= G +1-G, —G F, (K,3,/5,)+G, F, (k3,/5,), 2.1.3)
where G, = G(vn(pu,—pg)/05 +k 8,/8),
G, = Gy~ oy, K 8,/5.),
S# o.
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2.2 Description of the Production Process

Given there are 2¢ possible distributions in the process, the possible
transitions between these distributions in a short time can be expressed as: N(u,,,
82) becomes N(u,., &.), where s’ is also a subset of WD but s’#Wd and
S$'C S or S”"CS’. Denote the transition rate from state S’ to S by 1. (>0)
if $C8", or g...”” (>0) if "< S8’. Consequently, we can express the possible
transition rates (g.) as a matrix, the infinitesimal generator matrix.

Let Q be a mXm matrix, where m=2¢

Q = [qq4]
Qg = Tgige if S'cS'’, where S"”"#¢
= Lo if S”"CS’, where S""+Wd 2.2.1)

= —( ;2 oot SE goc) if §'=8§
=0 otherwise.
Here, the sum of the rates out of S’ is the exponential parameter 6,;
b= SZ fog T SE 8¢ go» Where S #§".
The state variable Y, (t>0) represents the state at time t. A continuous time
Markov chain Y, is a Markov process on the states 1,2,..,2¢. The transition

probability from state i to j in the time h is pij(h)=Pr(Y =j1Y[=i), 1,
j=1,2,...,2¢. We know that

h+t

M p =0 G I p=I
(i) py(1+h)= ¥ PP
(v) lim P (=1 if i=j
ho =0 if i%#j. (See Karlin and Taylor 1976)

Let p (h) denote the matrix Ilpij(h)IIiJT“:l. The transition probability in time

interval h can be solved by the standard methods of systems of ordinary differential
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equations to yield the formula (See Karlin and Taylor 1976 or Ross 1983):

p(b)=exp(Qh)=I4X(Qh)"/n!. 2.2.2)
In practical terms, the distinct eigenvalues a, a,.., a_ of Q and a complete
system of associated right eignvectors u”,...,u™ can be determined when possible.
The p (h) has the representation p(h)=UD(h)U™! (2.2.3)

(See Karlin and Taylor 1976), where U is the matrix whose column vectors are,
respectively, u” ,....u™ and D(h) is the diagonal matrix

exp(ah) 0 ... 0
0 exp@@ah) .. 0
D(h)= o0 0 (2.2.4)
............. 0
0 exp(a_h)

The rows of the matrix U™' can also be identified as a complete system of left
eigenvectors normalized to be biorthogonal to the {u®}. (See Karlin and Taylor
1976)

2.3 Description of The Process Which is Monitored by Joint X and R Control
Charts

For detecting whether the production process is in control or not, the engineers
need to take a sample after time h from the start of the production; then they do
statistical tests using X and R charts. The test results are of two types; signal and
no signal. A signal will be a false alarm when in fact the process is in control,
or a true alarm indicating that a search and repair is required when the process
is in fact out of control. No signal indicates that either the process is still in control,
or that it has gone out of control and the test has not detected it. If the test result
is no signal then the next sample is taken after a further time h. If the test result
is a signal, then a search and repair is performed. After the search and repair,
the process returns to its original condition and regular testing continues.

The transition matrix for the process is described in (2.2.1). But the possible
transition would be different after we cosider the test results as well as the state
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of production process. Since a sample and test are taken every h time units, the
possible states should be studied at the end of a statistical test. The new state can
be defined as: the process variable has distribution N(u,,, 63;,) with the test giving
an alarm indicating (truly or falsely) that we need to search and repair, or no alarm.
So, the number of all possible states at the end of a statistical test is b, where
b=2m. Define the state 7 to be the original state S’ with alarm, or with no alarm,
where 7=1, 2,..., b. Based on the definition of a renewal cycle, these states can
be grouped into two types: transient states and absorbing states. The states with
the alarm showing a need to search and repair are absorbing states, others are
transient states. One half of all the states are transient, one half absorbing. Let
states 1 to m be transient states and the states from m+1 to b be absorbing states.
Now, state variable Y, (t=0, h, 2h, ...) stands for the states r at discrete time
t, so a discrete time Markov chain Y, is a Markov process on the states 1, 2,
..., b. The possible transition between two successive ends of statistical tests which
with interval time h would be from state 7 to state 7', where 7=1, 2,....m, 7' =1,
2,..., b. The transition probability in time interval h is P_(h)=Pr(Y,  =71Y =7),
where t=0, h, 2h,..., and h=0, r, =1, 2, ..., b.

Let P denote the matrix IIPTT,(h)II:’T,zl. The Markov property asserts that
®H P )=0 () ;P”, (h)=1. The transition probability p_. (h) can be found
by using the transition probabilities pg...(h) (2.2.2) together with the probability of
false alarm (2.1.2) or the powers (2.1.3).

The solution is represented as follows:

h+t

pTT.(h)=pU.(h)a for 7=1i, 7'=j+m, where
i=1, 2..., m, j=1,

=Pij(h)(1—a) for r=i, 7"'=j=1, 2.3.1)
where i=1, 2,...,m.

=pij(h)BJ. for =1, 7" =],
where i=1, 2,....m, j#1.

=pij(h)(l—Bj) for 7, =i, 7 =j+m,
where i=1, 2,....m, j#1.

=1 for 7=i+m=7",
where i=1, 2,...,m.

=0 otherwise.
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Here, for the process which is monitored by control charts, the state 1 is defined
as the process is in control with no alarm, and the state m+1 stands for the process
is in control with alarm and a search and repair required. For the unmonitored
process, the state 1 is defined as the process is in control.

According to the result (2.3.1), the matrix P can be classified into four
submatrices (2.3.2):

- ‘ 1 12 \ (2.3.2)

where P11 is a mxm matrix, each element of P” is a transition probability
from transient state to transient state in time interval h; P”=||p",(h)||;" o
P, is a mxm matrix and every element of P, is a transition probability from

transient state to absorbing state in time interval h; P =llp_(bll, 7=1, 2,...,m,
=m+1, ..., b.

O is a mxm zero matrix.
I s a mxm identity Matrix.

2.4 Comparison Between the Generalized Process Model and Others
The advantages of the generalized process model are shown in Table 2.4.1,

in which the generalized process model is compared with Duncan (1971), Saniga
(1979), Montgomery (1985), Vance (1986) and Banerjee (1987).

2.4.1 The Assumptions Common to This Work and Other Work
The common assumptions of this research and other authors except Saniga are:

(1) The process variable is normally distributed.

(2) The effects of assignable causes are given.

(3) The cycle cost is the sum of (i) accumulated cost during the in-control period
(i) accumulated cost during the out-of-control period (iii) cost of sampling
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TABLE 2.4.1 COMPARISON TABLE

General process Dunch Montgomery
model papers paper
1. no. of
assignable =2 1(°56) 1
causes =2(C71)
2. allowable no.
in process 1,=2 1,2 1
3. used control
charts X,R X X
4. faults may correct
themselves & occur
simultaneously? yes no no
5. Renewal process? yes yes yes
6. design parameters n,h, n, h, k, n, h, k
kl’ kz
7. production process may or may not may not may or may
break for break for not break
search search for search
8. charge repair cost? yes no ; yes
9. charge transition cost? yes no no
10. sampling time negligible constant constant
11. Lower Control limit
of R chart no — —
12. Markov chain
model? yes no no
13. time, cost of search any fixed fixed
and repair distribution
14. sample size
limitation? no no no
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TABLE 2.4.1 COMPARISON TABLE (CONTINUOUS)

Saniga paper Vance paper

Banerjee paper

10.
11.

12.

13.

14.

. no. of assignable

causes

. allowable no.

in process

used control
charts

faults may correct
themselves & occur

simultaneously?

renewal process?

design parameters

production process

charge repair
cost?

charge transition

cost”
sampling time

lower control limit

of R chart

Markov chain
model?

time, cost of

search and repair

sample size
limitation?

2 1
1 1
X, R X
yes no
no yes
n, h n, h, k]
k, k,, k,=0
may or may not may or may
break for not break
search for search
yes yes
no no
not available constant
k3=0 _
no no
fixed fixed
220 no

>

no
yes

n, h, k]

may or may
not break
for search

yes

no
negligible

renewal
equation

fixed

no
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and testing (iv) search and repair cost.
(4) The cycle time is the sum of (i) in-control time (ii) out-of-control time (i)
search and repair time (iv) sampling time.

2.4.2 Advantages of the General Process Model

The proposed generalized process model for the economic design of joint X
and R control charts has the following advantages compared to other models.

(I) Our model considers multiple assignable causes and there is no constraint on
how many assignable causes can be in effect at the same time. It would be
more appropriate and realistic than single assignable cause model and single
occurrence model because many production processes are affected by several
assignable causes.

(2) Our model allow assignable causes to influence either the process mean or
variance or both. This makes the application of the general process model more
realistic.

(3) the presented assignable causes can leave the process without repairing and it
is possible for more than one to occur at the same time. These assumptions
make the process be more realistic and flexible.

(4) We consider the transition cost in the model. Suppose that when the process
makes a transition from state i to another state j it receives a cost of d
dollars. The consideration of transition cost makes the model more realistic and
flexible.

(5) Our model uses both X and R control charts, which is better than only using
one of these.

(6) The model allows the search and repair times or costs to have arbitrary
distributions, not necessary independent. This makes the model more flexible.

3. DEVELOPMENT OF COST MODEL

From an economic design viewpoint, the values of the design parameters, (n,
h, k,, k,), should be chosen to minimize (or maximize) an objective function. The
objective function could be income, profit or cost. We will take the asymptotic
expected cost per unit time as our objective function.
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From section 2, we know the generalized process model can be regarded as
a series of cycles; it is in fact a renewal process, and a Markov process within
cycles. So the expected cycle time and the expected cycle cost can be derived
applying the Markov property, and the asymptotic expected cost per unit time is
derived using the properties of renewal reward processes; the asymptotic expected
cost per unit time is the ratio of the expected cycle cost and the expected cycle
time (see Ross 1983). The expected cycle cost and expected cycle time are all
functions of design parameters, so the asymptotic cost function also depends on the
design parameters.

3.1 The Derivation of Expected Cycle Time

The cycle time is the time from the process starting in control until an alarm
is detected and repaired, or equivalently it is the time from transient state 1 to
reach an absorbing state (state 1 represents that the process is in control with no
alarm). The state variable Y (t=0, h, 2h,...) (as in section 2.3) is a Markov
chain on the states 1, 2,..., 2m and so the Markov property can be effectively
used to find the expected cycle time.

Let random variable T, be the time up to absorption (in any of the m
absorbing states) from transient state k, (k=1,2,...,m). Then using the Markov
property and conditioning on the first step, we find:

i &

T

=h + T -wp. p (), 7=1..m (3.1.1)

=h + T w.p. p(h), 7=m+1.....b.

Sy7T

. : o d
(TW is the time of search and repair for state 7. Where = means has
the same distribution as.)

To determine the expected time up to absorption from transient state k, (k=1,
2,...,m), first note that from (3.1.1) we have:

E(T)= h+ L p, (WET_+ I p (WET, (3.1.2)
=1

T=m+1

where k=1,2,...,m.
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We express (3.1.2) in matrix form:

M =hl +P M) +P

mX 1 mx1 12 mXm sr/mx 1 11 meMmX]

So
M:h(I—P“)“l+(I—P“)“P12Msr 3.1.3)
where

M:a (mx]) vector, with kth element ET,
1 : a (mXx1) vector, with elements 1

M_: a (mXx1) vector, with 7th element ETW, r=m+1,...,b

sy’

P”, P, are as defined in (2.3.3).

The expected cycle length is the first element of vector M, i.e. M, or ET,.

After we obtain the expected cycle length, we need to calculate the expected
cost of samples and tests which occur in the cycle, then the expected cycle cost
can be obtained.

The expected cost of samples and tests in a cycle is the product of the expected
number of samples and tests (EN) and the cost of sampling and testing (a+bn).
The number (N) of samples and tests in a cycle is a random variable because it
depends on cycle time. The cost of sampling and testing is assumed to be a linear
function of sample size, with fixed cost, a (>0), and variable cost per unit sampled
and tested, b(>0).

The expected number of samples and tests (EN) depends on whether the
manufacturing process is continuous or discontinuous. In the continuous process,
the process continues when engineers look for the assignable causes, and stops when
they repair assignable causes; during the repair period, there is no sample and test
taken. Hence, we find that the expected cycle time divided by h is the expected
number of samples and tests;

(h(I—P”)_ll+(I—P1|)7IP]2MS)1
h
((I_Pu)_lples)l
(A=P)"'D,+ h

EN =

3.1.4)
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((I-P“)"l)l means the first element of that matrix. Where M_ is a mX1
vector, whose 7th element is the expected search time for state 7, 7=m+1,...,b.
(This is similar to 3.1.3, except that M appears instead of Msy.)

In the discontinuous process, the process stops when engineers search and repair
assignable causes; there is no sample and test performed during the search and repair
period. So the expected number of samples and tests will not be influenced by the
expected search and repair time;

EN = (I-P,)™'1),. (3.1.5)

3.2 The Derivation of Expected Cycle Cost

The derivation of expected cycle cost uses the Markov property in a similar
way to that used for expected cycle time. Let 'Ysj(h) be the expected cost that
would be associated with transition from state i to j in time interval h if the process
were not monitored by joint X and R charts, i, j=1,2,...,m. Let cTT.(h) be the
expected cost associated with transition from state 7 to state 7’ in time interval h
for the process which is monitored by control charts, 7,7 =1,2,...,b(=2m). Let
ECSU. be the expected cost of search and repair for state j, j=1,2,...,m. For
explaining the relationship between 7ij(h) and c¢_.(h), we introduce matrices
=y (il 7 and C=Ilc”,,(h)II:’T:l.
CS, by cs, and the m elements of column cs, be ECsrj, j=1,2,...,m. The

Denote the jth column of the mxm matrix,

relationship between the three matrices is expressed as:

C C I  I+CS
C = L 2= (3.2.1)

C C O 0]

Where matrix C is expressed by four submatrices: C, , CIZ’ sz’

and sz.
Cll is a mxm matrix, it is in fact the matrix T".

C,, is a mxm matrix, it is matrix I"+CS.

C21 is a mxm zero matrix.
sz is a mxm zero matrix.
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Their relationship can also be expressed as in (3.2.2).

'yij(h)+EC5U. for 7'=m+j
T =1
i,j=1,2,...,m

c.. (h) - 7U(h) for 7 =i
7' =] (3.2.2)
i,j=1,2,...,m
0 otherwise

For calculating cumulative cost in a fixed time, we should consider the expected
cost ¢ _per unit time when the process is in state k, the time that the process stays
in state k, and the transition cost, dij, incurred when the process moves from a
state i to another state j. So the expected cost, 7ij(h), associated with transition
from state i to j in time interval h if the process were not monitored would be
the sum of two terms. The first is the expected cumulative cost associated with
time spent in various states passed through starting from state i and ending in state
j in the time interval h. Denote this by E(Z (WI(Y,=)IY,=1). The second is the
expected cumulative transition cost associated with all transitions in the interval h
starting in state i and ending in state j. Denote this by E(Z,(WI(Y,=)IY,=1). Thus
Z,(h) is a random variable which represents cumulative cost associated with time
spent in various states in time interval h, Z (h) is a random variable representing
cumulative transition cost in time h.

Define v,(h) = E(Z (WY, =)IY,=i)+EZ,0IY,=)IY,=i)
E(Z,(WI(Y, =j)IY, =),

I

Where 'y“j(h)
Vb = EZMIY, =Y, =i).

Theorem:
YIU(h) = E(Zl(h)I(Yhzj)l(Y():i)) = %ékﬂpik(t)l’kj(h—t)dt
= (UBU™,, (3.2.3)

— 464 —



Economic Design of Joint X and R Control Charts: a Markov Chain Method

where p, (1), U and D(t) are defined in section 2.2, Bl=llbijllffj=1, b“=haiiexp (ah),
bij=[aij/(ai—aj)] . [exp(aih)—exp(ajh)], where ay is the element of matrix
A =lla i =U"CdU, C, =diag(¢, ¢,,....¢ ).

jij=1
Proof:
v = E(Z (WI(Y,--)IY,=1), where Z,(h)= [P I(Y =k)dt.
Let CG (h)=E(Z 0IY,=i, Y,=))
The relationship between 'Ynj(h) and CGij(h) is:

v = 1Z gy yor n®Dx 1 o d2/1,0)

yo

CG‘J(h) = SZ f vh (Zl’ i’ J)a le/fyo’ yh(i’ J)’

17z1(h)’ yo’

-

So, v, = CGhp,(h).
CG,( = E&f" Pr(Y=kIY,=i, Y,=jydt,

where

Pr(Y =KIY,=i, Y,=j) = Pr(Y,=KIY,=DPr(Y,=jlY=k)/Pr(Y,=jlY,=i)

P, (0P, (h—1)/p, ().

Il

so CGy(h) = E(Z WIY,=i, Y, =j)

= (UDMHU™'C dUD(h—t)U“‘)ij / pij(h)

= (UB]U“)ij ! p,(h), (3.2.4)
Consequently,

v = I fop, (e (h—bdt
= §3(UD(t)U‘ IC dUD(h —-tU~ ‘)ijdt
= (US‘(‘)D(t)AlD(h—t)dtU")ij
= (UBU™),.
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We also need to determine 72.1j(h)=E(Zz(h)I(Yh=j)lY0=i).

Theorem:

S GV EK)‘:jgg::ik(t)plj(h—t)qkldkl dt (3.2.5)
= (UB,U™H,,

where d,, is the expected transition cost from state k to 1, q, is the transition
rate from state k to 1, k,1=1,...,m, but 1 #k, B2=Ilb2ijlli"‘j:], where bZii:ha2ii exp(aih),
21} [azlj/(a a)] [exp(ah— exp(a h)]. The ay . is the element of A, matrix, where
A, =lla UIl:“ =U"'C U The matrix C —IIq”dUIII T The ith diagonal
element of the Cq is zero because there is no transition cost occurred when

transition does not happen; i.e., dn=0, i=1,2,...,m. The nondiagonal element of

the Cq is a transition rate times a transition cost; i.e. q, d =1,2,. , 1#].
Proof:

Let YD = E(Z,OUY,=pIY,=i), t € (O,h).

dlv OVt = lim  (VAY[y,(t+ A0 =7, 0]

= lim (VAY[EWZ,(t+ A = Z, ()Y, =PIY,=1)]
= illlzlo (1/At)zp OEZ,(t+ A0 =Z )Y, =Y, =i)
= hm (1/At)Epik(t)EAtqk] klp]j(h—t—At)
= Jim L p,(OXq,,dyp,h-1)
So,
1 = [Zp, (0Eq d,p,(h—1) dt = (7 UDMA,Dh-HU" dy),
= (UB,U™),

Combining (3.2.3) and (3.2.5) we find:
'Yaj(h) = (UBIU“)U+(UB2U“)ij
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Where may be expressed in matrix form as follows:

r = II(UBIU")‘U.+(UB2U‘‘)ijll=Il'yij(h)lli"fj=l (3.2.6)
= UBU'+UB,U"' = UBU"',
Where B=B, +B,.
Alternatively we may write
r = {"UDMHU'C,UD-HU"" di+ (" UD(t)U“‘CqUD(h—t)U‘l dt
= PUDMU(C d+Cq)UD(h—t)U" dt
= ngD(t)U“quUD(h—t)U‘1 dt = {"UDMAD-tU™'dt
= UBU7}, (3.2.7)
where ' = Il'yij(h)lli”*j‘:], qu = Cd+Cq,

A = U'CU B = ['DOADM-b dt.

Note that the diagonal element is the expected cost per unit time in a state
and the nondiagonal element is the product of an expected transition cost and a
transition rate for matrix C @

After we obtain the value of 7ij(h), the value of c_.(h) can be calculated as
in (3.2.1).

For finding expected cycle cost excluding cost of samples and tests, we let
random variable ¢_be the cost incurred up to absorption starting from transient
state k, k=1,2,...,m. Then using Markov property and conditioning on the first
step, we find that:

d
. = c.(h w.p.  p.(h), 7=m+1,...b (3.2.8)

=2

¢ (h)+e w.p. Pi:(h), 7=1,2,...,m.

From (3.2.8), the expected cost up to absorption from transient state k (Ee) is
derived:
b m
Ee¢, = X P _(h) _(h)+ E p,_(hEe . (3.2.9
7=1 7=1

k
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We express (3.2.9) in matrix form:

%

= Py i T © Pia o THCS) 0] 1 P

mx1 11 mxm mxm 12 mXxm

%

=W 1 _ +P

mxb bx1 1 meUle’

where * denotes the Hadamard product of the two matrices, obtained by multiplication
element by element.

So U = I-P,)"'W1,

where

P*C = P“*C“ P12*C12 = ‘_V 3.2.10)

0] 0] 0,

U: a mx1 vector, the kth element is Eek,
W: The combination of submatrices P“"‘C11 and P *C ,

P ., P, are defined as in (2.3.3),

11’

C. . C

o € I, CS are defined as in (3.2.1).

The expected cost up to absorption from state 1 is the expected cycle cost
excluding cost of samples and tests; i.e. IVJ1=Eel (where le means the first
elements of vector U). To obtain the expected cycle cost, we need to add the
expected cost of samples and tests. The expected cost of samples and tests in a
cycle is the product of the expected value of N, the number of samples and tests
and the cost of sampling and testing. Hence, the expected cycle cost (Ee ) is:

Ee = ENe(a+bn) + U, (3.2.11)

3.3 The Derivation of Cost Function

Based on the theory of renewal reward processes the asymptotic expected cost
per unit time denoted by EV~ can be derived by obtaining the ratio of expected
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cycle cost and expected cycle time. As a result, the derived asymptotic cost function,
denoted by EVe, is:

(d—P,)"'W1), +EN(a+bn) Ee

EVe = M " (3.3.1)

1 1"

Note that EV~ depends on the design parameters n, h, k; and k,, since the
expected cycle time and expected cycle cost are functions of design parameters.
Hence, the optimal economic design parameters n, h, k;, k,, can be obtained by
applying some optimization techniques to minimize the cost function.

3.4 Conclusion

We have derived the asymptotic cost function for the generalized process model
in which both X and R control charts are used using the Markov property. Compared
to the traditional method, the Markov chain method is much more effective, flexible
and simple. In practice, the calculation of the expected cycle cost would be complex
when there are many assignable causes occurring in the process, but the availability
of computer programs and associated optimization schemes simplifies the complicated
computations. This gives us a practical method for dealing with muitiple assignable
causes.

4. AN EXAMPLE
In this section, an example is given to illustrate the method which was described
in sections 2 and 3.
4.1 Computation of Expected Cycle Time
Clearly the process might have multiple assignable causes. Our model is capable
of dealing with this. However, for ease of exposition we consider the case in which
there are several assumptions; (1) There are only two assignable causes, One of

them causes a shift of process mean, the original (X~N(u,, 6(2))) changes to

— 469 —



The Journal of National Chengchi University Vol. 66, 1993

(X~N(g,, 63)); the other causes an increases in variance, the original (X ~N(g,,
62)) changes to (X~N(u,, 65). and a double occurrence changes both process
mean and variance the original (X ~N(u,, &) changes to (X ~N(g,, &) (2) once
assignable causes occur, they cannot be removed from the process except by repair,
and more than one assignable cause can not happen in a short time. (3) The transition
cost will be taken to be zero in this example.

4.1.1 Definition of the State Space and of the Possible Transitions

Before calculating the expected cycle time, we need to define the possible states
at the end of testing and to calculate transition probabilities in time h. In our example,
there are eight possible states that could happen at the end of testing. These states
are defined as follows:

state 1: no occurrence of any assignable cause and no alarm.

state occurrence of assignable cause 1, but no alarm
state occurrence of assignable cause 2, but no alarm

state occurrence of assignable causes 1, 2, but no alarm

AN

no occurrence of any assignable cause and an alarm, a search and
repair required.

state

state 6: occurrence of assignable cause 1 and an alarm, a search and repair
required.

state 7: occurrence of assignable cause 2 and an alarm, a search and repair
required.

state 8: occurrence of assignable causes 1, 2 and an alarm, a search and repair
required.

In this list, states 1-4 are transient states and states 5-8 are absorbing states.
Before calculating the transition probabilities, p_.(h), in time interval h for the
process which is monitored, we compute the probabilities of type I and type II errors
which will be needed to determine the transition probabilities, pTT.(h), (7,
7=1,2,...,8) for a monitored process, from the transition probabilities, pij(h), in
time h, (i, j=1,2,3,4), for a process which is not monitored by X and R charts.
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There are four states in the process if we do not consider the monitoring process
(which may either given an alarm or not):

state 1: the process is in control;

state 2: assignable cause | occurs in the process;

state 3: assignable cause 2 occurs in the process;

states 4: assignable causes 1 and 2 occur in the process.

Based on the assumptions that assignable causes cannot occur simultaneously
and they cannot correct themselves, the transitions from state 1 to state 4, state
2 to state 1, state 2 to state 3, state 3 to state 1, state 3 to state 2 and state 4

to all other states are impossible. So their transition rates are zero. The nonzero
transition rates q; are expressed as follows:

49, 12

93 = Tp3

q, = —(r,+r,)
G, = Ty

Gy = T4

Qi3 = Iy

9y = Ty

To simplify the algebra, and sensitivity analyses, we make the number of parameters
as small as possible. So we consider the special case, r,=r,,=r, and r;=r ,=r,.
The four eigenvalues of the matrix Q are a =0, a,=-r, a,=—r,and
a,=—(r,+r,) and the eigenvectors are uh =(1,1,1,1), u®=(,0,1,0),
u'®=(1,1,0,0), u®=(1,0,0,0) (in a general case, we would use an ecigenvalues
and eigenvectors routine). From (2.2.3), the solution for pij(h), i, j=1, 2,3,4) is:

() = exp((—r,—r)h)
pu() = exp(—rh(l—cxp(—r,h)
pih) = exp(—rh)(1—exp(=r,h)
pM(h) = (1—exp(—rlh))(l—exp(—rzh))
P = exp(—rh)

P = l—exp(—rh)
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Py = exp(—rh)
Py = 1—exp(~rh)
P, = L

(Of course the other pij(h)’s are zero.)
From (2.1.1), the probability of type I error is:
a = 2G(kl)+fw(K2)—2G(k1)_lfw(k2).

From (2.1.3), the probabilities of type II errors are:

B, = Gllpy=pWn/d +k) (Fylk)—1)
+G((uy=p )V 0 /8,—k) (1=F (k)
B, = 1+2G(k8,/8,)Fy(k,8,/6)—2G(k,58,/8,)— F(k,8,/,)

= G(ry—p )V 16,+k8,/8) (F,(k3/8)—1)
+G((py—r )N 118, —k,8,/8)) (1= TF,(k,8,/5,).

@4.1.1.1)

(4.1.1.2)

4.1.1.3)

4.1.1.4)

Since the value of p_.(h) is zero if a transition from state 7 to state 7’ in
time interval h is impossible, (7, 77=1,2,...,8). The structure of the transition

probability matrix is as follows:

Pi Pu Py Py P P Py Py
O Py 0 Py 0 py 0 py
0 O Py Py O 0 Py Py
ol = 0 0 0 p, 0 0 0 p,
Prrlgxs 0 0 0 0 1 0 0 0
0O 0 0 0 0 1 0 0
O 0 0 0 0 0 1 o0
O 0 0 0 0 0 0 1
where
P, = p, ((1—w) p,() = p,(h)B,
p(h) = p(h)B, p, ) = p BB,
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ps() = p, (W P = p,((1A-B)
p,,(h) = p,(A-B) P = p,(M(A-B)
p,,(h) = p, (B, P, = p, (B,
Py = p,()(1—-B) P, = p, (W1 -B,)
py(h) = py(MB, Py, () = p, (B,
py,(h) = py ()15 Py = py,()(1=8)
p.(h) = 8B, ph) = 1-8,

Ps(h) = p(h) = p() = phy = 1

4.1.2 Expected Cycle Time

Having calculated the transition probability from state 7 to 7’ in time interval
h for the process as monitored by X and R charts, we may determine the expected
cycle time as follows.

Based on the model (3.1.1), the cycle time is T,, which satisfies the
following equations:

T

| h+T w.p. ph(h), 7=1,2,3,4

e |e

h+T wp p), 7=5678 4.1.2.1)

(T__ is the search and repair time in state 7).

SIT

Consequently, as shown in appendix B, the expected cycle time is:

ET,

8 4
(1/1—p, (h))(h+Zp, (WET_ +Lp, (WET) (4.1.2.2)
5 ’ 2

[1/1=p,, (] {h[1+p,,(0)/(1 =p,, () +p,,(N)p,,()/(1 —p,, ()P,
+p,,(0)/(1—p,,(0)) +p ()P, (0)/(1 =y, ())p,(h)

+p,,(0)/p (W] +T_(p,,()p,(0)/(1 —p,,(h) +p,(h))
+T_,(p,,(0)p,,(h)/(1 —py, (1) +p,,(h))
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+T 4P, ()P, (1) +p,e(h)/(1—p,,(h)) +
P (0)(P,,(h) +p,o(0))/(1 —py, () +p, () +p, (W] +p (T}

Next, we need to calculate the expected cycle cost. In order to do this, we
first focus on the expected cost of samples and tests.

4.1.3. Expected Number of Samples And Tests

The expected cost of samples and tests is the product of expected number of
samples and tests (EN) and cost of sampling and testing (a+bn) (Recall that each
test is based on a sample of size n). The expected number of samples and tests
depends on whether the production process is continuous or discontinuous.

For continuous process, the expected number of samples and tests is:

8 4

EN = {(I/(1—-p,,(h) (h+Ep, (WET_+Zp, (WET )l/h. 4.1.3.1)
5 2

In the discontinuous process, the expected number of samples and tests is:
4

EN = [(1/(1-p, () (h+Zp, (WET)]/h. (4.1.3.2)
2

Note, the difference between (4.1.3.1) and (4.1.3.2) is that there is no ET_ in
(4.1.3.2). The difference between (4.1.2.2) and (4.1.3.1) is that ET,

instead of ETm.

r appears

4.2 Computation of Expected Cycle Cost

The expected cumulative cost up to absorption from state 1 is the expected
cycle cost excluding cost of samples and tests. To find this, the expected cost
associated with transition from state 7 to 7°, c_.(h), in time h, (r, 7=1,2,...,8),

for the monitored process should be computed first. The procedure to compute the
c_.(h) is complex. It will be described in the next section.

4.2.1 The Structure of the Cost Matrix

Let the cost matrix C be lIcTT,(h)Ilf_T,:l. The value of c¢_.(h) will be zero if
the corresponding transition probability in time h, p,,.(h), is zero, or if state 7 is
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absorbing, 7,77=1,2,...,8. So the cost matrix has following structure.

C11 12 C13 C14 ClS Cl() C17 ClS
0 C22 0 CZ4 O C26 O C28
g 8 C(3)3 C34 8 8 C87 C38
C C
Ll =19 0 o o 0o 0 0 0 “.2.1.1)
o 0 0 0 O 0 0 0
0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0

(note that all the c_’s are actually functions of h)

In order to obtain the expected cost, c__, associated with transition from state
7 to 7 in time interval h, we need to know the expected cost, 7ij(h)’ associated
with transition from state i to state j in time h for an unmonitored process,and
the expected cost, ECS”,, of search and repair, where i, j=1,2,3,4, and 7 ,
7=1,2,...,8.

For calculating Vij(h)’ we need to know

(1) eigenvalues and eigenvectors for infinitesimal generator matrix.
(2) expected cost per hour for state k, k=1,2,3,4.

(3) transition probability, pij(h), from state i to state j in time h for the
unmonitored process, i, j=1,2,3,4.

Then the solution of 'Yij(h) can be derived using the model (3.2.1).
The 'Yij(h) are calculated as follows (from model 3.2.1):

'y”(h) = hélexp((—rl—rz)h)
v, = hézexp(—rzh)—hélexp((—r‘~r2)h)

— &~ &)exp((—T, ~rh) —exp(~r,)h/r,
(M) = hEexp(—rh)—hé,exp((—r,~r,)h)

— (&, —¢&)(exp((—r, —r)h) —exp(—r h)/r,
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Yie(h) = h¢ —h¢exp(—r h)—h&exp(—r,h)+h& exp((—r,~r)h)
+(&,—&)(exp((—r,~r)h) —exp(—r h))
+(&,—&,)(exp((—r,—r1,)h) —exp(—r,h))/r,

Y»®{ = héexp(—rh)

v, () = he ,—hé exp(— rzh) —(¢,— ¢ )(exp(— r,h)—1)/ r,
Y, = héexp(—rh)

Y3 = h& —h&exp(—rh)—- (€;—¢)(exp(—rh)—1)/r,
Yu() = he,.

(¢, is expected cost per hour, where i=1,2,3,4.)

Eventually, the expected cost, c_. (h), associated with transition from state 7 to
7' in time interval h, for the monitored process is computed from model 3.2.5 as:

ey = v, () cih) = 7, + EC,
c,(h) = v,,() 016(h) = v, + ECSr6
cu® = v, ey = v, + EC
c ) = v,M) ¢ = v, ,h + EC_,
C(h)y = 7, (h) Cu(h) = 7y,

() = v,,(h) e = v,(H)

C(h) = () + EC . c(h) = v+ EC_,
cym = v,,(h) + EC_ Cuh) = v,(h) + EC_,
) = v,(h

ceh) = v, + EC_.

4.2.2 Expected Cycle Cost Excluding Cost of Samples and Tests

After we have the cost matrix (4.2.1.1), let the random variable €, be the
cost up to absorption from state 1, then the expectation (Ee,) can be obtained by
applying the formula in (3.2.8).
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c,.(h w.p. p,,(h), 7=5, 6, 7, 8

e &

¢, (W+e w.p. p, ), r=1,2, 3, 4

The expected cycle cost, as shown in appendix C, excluding cost of samples and
tests is:

Ee, = %plr(h)C]T(h)+Z‘:3plr(h)EeT.
or
Ee, = (1/p“(h))($ph(h)ch(h)+%p17(h)EeT). (4.2.2.1)
= [l/p,(WNZp,,(h)c, (h)+p,,(h)/(1—-p,,h))

[Py, (h)c,,(h) +p, (h)c,,(h) +p, (h)c, (h) +p,g(h)c, (h) +

P,,(Mp,, (e, (h)/p, (1) +p, (h)c  (h)]+

(5 (/1= p,,())[p,,(h)c,,(h) +p,, (he,, (h) +

Py, (h)cy;(h) +pygh)c, (h) +p,, (h)p, (h)c  (h)/p,4(h) +

Py, (h)e (W] +p  (p,, (e, ()/p, (h)+p, (h)c,(h)

Ee, does not include the cost of samples and tests; hence, to obtain the expected
cycle cost we need to add the expected cost of samples and tests.

4.2.3 Expected Cycle Cost

The expected cycle (Ee) is the sum of the expected cost up to absorption from
state 1 (Ee) and the expected cost of samples and tests.
So the expected cycle cost is:

Ee = (l/p“(h))(gph(h)Clr(h)+)§Iplr(h)Ee7)+EN(a+bn). 4.2.3.1)
1

4.3 Cost Model
The asymptotic expected hourly cost (EVx) is obtained by dividing the
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expected cycle cost (Ee) by the expected cycle time (ET|) applying the property
of renewal reward processes (Ross 1983).

EVe=Ee¢/ET,=f(n, h, k,, k) 4.3.1)

The asymptotic hourly cost function depends on the design parameters, since
the expected cycle cost and the expected cycle time are both functions of design
parameters. The asymptotic expected hourly cost function may be minimized with
respect to design parameters, (n, h, k,, k,), by optimization techniques.

5. DATA ANALYSES

A general Fortran program has been written to solve this type of problem.
To use this Fortran program (Figure 5.1.1),we need to specify the number of
assignable causes, the expected costs and the expected times of search and repair
at various states, the transition rates and the transition costs, the costs per unit time
at various states, changes in process mean and variance, a specified sample size
and whether the process is continuous or discontinuous. The eigenvalues and
eigenvectors of the infinitesimal generator matrix can be calculated by routine
EVCRG. The transition probabilities and expected cost associated with transition
from a state to another state in time h for the process which has not been monitored
can be obtained using the eigenvectors 'and eigenvalues in routines LINRG and
MRRRR (for inverting and multiplying matrices). Expected cycle time and expected
cycie cost can also be calculated using routine LINRG and MRRRR. The optimal
design parameters for a specified sample size can be obtained using direct search
algorithm which minimizes the asymptotic hourly cost function. These subroutines
of the program are obtained from the IMS Library (1989). Using this program,
the data analyses can be performed. In the data analyses, we perform the sensitivity
analyses for the example which is described in Chapter 4, but with the sample size
restricted to be less than 21 and with the continuous process model. Montgomery
(1985) suggested that the continuous process model is most likely to occur in practice.

In this chapter, the global minima in the parameter region considered are
presented. The optimization scheme, subject to constraints used, follows the direct
search method which is described in the figure 5.1.2. The advantages of our model
for economic design of X and R charts are shown by comparing them with the
cost of Shewhart control charts. We also discuss how the optimal design
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FIGURE 5.1.1
FLOW CHART FOR FORTRAN PROGRAM

input: d, Q, ECsr,Msr,Caq, Mu, SD
n>1,cp=1or2

+ call EVCRG

D(h),U
call LINRG
call LINRG call MRRRR
call MRRRR o
p = UDMU " A=U CaU
bi + call MRRRR
combine N
Y test results B = ,D)AD(h-t)dt
compute: p l call MRRRR
call LINRG )
call MRRRR I' = UBU
M =h({I—Pi1)1+(I—Pi1)P12Msr combine test
results
' compute: C
expected cycle time = M *
W = PxC
expected number || 0
of samples & tests + call MRRRR
call LINRG
Y —
if cp=1 then U=(a-Pu )Wl
EN=Mi/h v
otherwise
=(T— expected cycle
EN=(I—-Pu)n cost:
Ee=Ui+EN(a+bn)
expected cost
output: per unit time
h,ki1,k2 direct search
given n il min. EVe EVew=Ee/M1
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Note on Figure 5.1.1:

d=number of assignable causes.

cp=1 means the manufacturing process model is continuous, otherwise it is
discontinuous.

EVCRG: A routine to obtain eigenvalues and eigenvectors for a matrix.

LINRG: A routine for finding the inverse matrix.

MRRRR: A routine for multiplying two real matrices.

FIGURE 5.1.2
THE PROCEDURE TO FIND THE OPTIMAL PARAMETERS

n=I]
compute EV,

minimal solution
h* ki* ko*, EV¥

computer error
for two
successive
function values

error < 1.0E-6

yes

1=1+1
a<21

creat new ranges
for h,ki1,k2 base
on h* ki* ko*

optimal solution
(h, k1, k2)
for given n

compare cost
for every n

EV,=Min(EV,)
with optimum
n,h,ki,k2
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parameters of the X and R control charts are affected by various parameters.

5.1 Optimization Technique: Direct Search Method

After deriving the cost function which is a function of the design parameters
n, h, k, kZ, the optimal design parameters, h, k], kz, are obtained using the direct
search method for a specified integer n, and specified values of parameters in the
estimated range. The model requires that eighteen cost and process parameters be
specified by the user. In practice, the values of the parameters will need to be
supplied by experts in the production process, such as production engineers. Under
the estimated ranges of the parameters, the results of data analyses can offer reliable
information to understand the effect of each parameter and help decision-makers
make more precise decisions.

Table 5.1.1 shows the ranges of the parameters used in the Numerical examples.
The ranges of most parameters are based on Duncan (1971) and Saniga (1979). Others
are set up to satisfy reasonable requirements. For example, the cost per unit time
when the process is in control should be smaller than that when the process is out
of control, the cost of search and repair when the process is influenced by multiple
assignable causes should be larger than that when the process is influenced by single
assignable cause. Similar considerations apply to the times of search and repair. For
minimizing the cost function which is subject to constraints, the method starts by
searching a coarse grid to find an approximate solution; the process is repeated with
finer grids until sufficient accuracy is obtained. The iterative procedure is terminated
when the difference of successive cost values is less than 1.0E-6 for every given
sample size n (1<n), so that the values of h, kw kz, for the minimum point are
computed. The value of h is limited to be at most eight, becaue eight hours is the
usual length of an industrial shift, and in most circumstances the quality control
engineer does not like a shift to go by without some information on the process
(See Duncan 1971). The values of k and k, are less than 4 and 8 respectively
because 'arger values give the cumulative Normal and Relative range probabilities
approximately 1. The objective function and constraints expressed mathematically are:

Min. EVe = { (n, h, k,, k)

st. 0 < h=28
0 <k =4
0 <k, =8
1 < n, nis integer.
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TABLE 5.1.1.
NUMERICAL EXAMPLE: THE RANGES OF PARAMETERS

Parameters Lower bound Upper bound
r 0.1 1.0
T 0.1 0.5
Mu=pu,—u, 0.5 4.0
SD=4/4, 1.5 4.0
EC_, 50.0 500.0
a 5.0 100.0
b 0.5 10.0
ET . 0.3 0.6
ET . 1.0 2.0
ET , 1.5 2.0
ET . 2.0 35
EC_, 80.0 500.0
EC_, 100.0 300.0
EC_, 150.0 400.0
o 15.0 25.0
¢, 20.0 30.0
¢, 40.0 60.0
¢ 50.0 70.0

w

We optimize EV~ with respect to h, k,, k, for integers n starting at n=2
and increasing, and then choose the optimum value of n. Considered as a function
of n, the graph of minimal asymptotic expected cost per hour for a specific case
is illustrated in Figure 5.1.3. Typical shapes of graphs are presented in Figure 5.1.3.
(a) to (b). In picture (a) the global minimum is at the beginning; n=2. The
asymptotic expected cost per hour increases when sample size increases. The objective
function in picture (b) has an interior minimum; the asymptotic expected cost per
hour falls to a minimum and then rises. The shapes of the graphs are sensitive
to changes in the values of (i) the expected costs of search and repair, (EC_,
EC_,, EC ., EC ), (i) the fixed cost (a) and unit cost (b) of sampling and
testing, (iii) the size of the shift of process mean, (Mu), (iv) the ratio of the in
and out of control process standard deviations, (SD), and (v) the transition rates,
(r,, r,). For example, if the expected costs of search and repair are high the graph
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FIGURE 5.1.3
GRAPH OF MINIMUM ASYMPTOTIC EXPECTED COST
PER HOUR AND SAMPLE SIZE
(a)

43 4
MIN. ASYMP' ﬂmc EXPECTED COST PER HOUR

424 a

414 o"
! a

40+ a

39+ o

38 T v T T T {
0 10 20 30

SAMPLE SIZE
A=5b=.9 Mu=.5 SD=1.5 n=.33 n=1.0
o=15 &1=20 &2=40 &3=50 ECsr5=50
ECsr6=80 ECsr7=100 ECsis=150 ETsrs=.5
ETs6=1 ETsr7=1.5 ETs8=2.0

(b)

. 26
)
T
Y
= o
= a®
D 9s
& 25 o
© =]
2 o
= R a
Q [a]
& a
el ]
=24+ a
E o
o

E o

7 o
b
> LR - s " 20 30
S SAMPLE SIZE

a=5 b=0.9 EC«5=50 ECsr6=80 ECsr7=100 ECsr8=150
n=0.5 r2=0.1 ¢o=15 &1 =20 & =40 &3=50 ETsrs=.5

ETsi6=2 ETsi7=2.5 ETs8=3.0 Mu=0.5 SD=1.5
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will have an interior minimum; if these costs are low, then the minimum is achieved
for n=2. However, a high value of the shift in the process mean will cause the
graph to have a global minimum at the beginning; if the shift is small, then the
graph will have an interior minimum. We find similar behavior for the parameters
SD, a, b and r; high values of them will cause the graphs to have global minima
at the beginning, but low values of them will be associated with interior minima.
For low values of ECSU., (j=5, 6, 7), changing the values of penalty costs, (¢,

w

¢, ¢, &), cannot change the shapes of the graphs; the graphs all have global

minimum at the beginning; n=2.

5.2 A Cost Comparison of Shewhart’s Design and Our Model for Economic
Design

The control limits of Shewhart’s control charts are fixed at k,=3.0 and
k,=5.4 with the probability of type I error being .0027. (Choosing k, to take the
quite natural value k =3, we find a type I error probability of .0027; this leads
to a value 5.4 for kz. These values arec the ones customarily used. Also, see
Saniga 1979) To compare the asymptotic expected cost of the Shewhart’s design
(EVS) and our .model for economic design (EV), the optimal cost of Shewhart’s
design is obtained by fixing k,=3, k,=5.4, n=5 and optimal h (Figure 5.2.1).
Then the cost difference is computed. In Table 5.2.1 we present results showing
the gains due to using our economic design method. These are expressed in terms
of ic (=EVS—EVx) and p (=100 X ic/EVw).

Table 5.2.1 shows that the improvements are quite large, and correspond to
percentage increases of between 4—103%. Most of numerical examples have the
values of p higher than 20%. We find from Table 5.2.1 that the percentage increase
(p) is not sensitive to change in the costs of sampling and testing (a and b) and

sr5° ECsr()’ ECsr7’
» &, and &), to change in the transition rates (r
and r,), to the process mean (Mu) and the process standard deviation (SD).
wsr EC e EC,

and 62 all decrease the

the costs of search and repair (EC and EC_.), but it is sensitive

to penalty costs (¢, ¢

Changing a and b causes a small change in p. Increasing EC
EC_, all decrease the value of p. Increasing ¢, ¢
value of p. Small changes in r, cause larger increases in the p value. Small
changes in r, cause larger changes in the value of p. Increases in the shift
of process mean (Mu) and changes of process standard deviation (SD) increase

the p values.
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TABLE 5.2.1
The OPTIMUM h, INCREASE IN COST (ic), AND PERCENTAGE (p)

(1) For various costs of sampling and testing, and costs of false alarm:

a b EC . h ic P
5 0.5 50 1.58 11.33 21.11
250 1.58 7.21 18.40

500 1.58 6.25 15.56

5 5.0 50 8.00 13.70 36.10
250 8.00 9.73 23.83

500 8.00 9.4 22.20

50 0.5 50 8.00 7.17 15.16
250 8.00 6.98 14.70

300 8.00 6.73 14.10

50 5.0 50 8.00 8.88 18.34
250 8.00 8.67 17.83

500 8.00 8.07 16.39

100 0.5 50 8.00 7.17 13.39
250 8.00 6.96 12.95

500 8.00 6.73 12.47

100 5.0 50 8.00 8.26 15.01
250 8.00 8.63 15.79

500 8.00 8.43 15.36

EC_ =80 EC_ =150 ET =1 EC_,=2 Mu=. =.25 =100
ET_=.5 ET_,=1.5 SD=L5 r=.33 ¢ =15 ¢,=40 ¢.=50
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(2) For various costs of search and repair:

EC_, EC_, EC_, h ic p
80 100 150 1.58 11.32 20.70
250 100 150 1.58 3.65 8.50
500 3.02 3.20 7.25
80 200 150 3.02 6.47 15.82
300 3.02 3.08 6.92
80 100 250 8.00 9.22 22.11
200 250 8.00 2.76 5.73
100 400 8.00 3.65 7.26
a=5 EC_;=50 ET =15 r=.33 Mu=.5 ¢,=20 b=.5 ET_ =1
ET ,=2.0 r,=.25 SD=1.5 ¢,=40 ET =.5 ¢c,=50 ¢ =15
(3) For various penalty costs:
S <, ¢, ¢, h ic p
15 20 40 50 3.02 12.83 36.64
20 3.02 7.12 17.27
25 3.02 6.51 14.30
15 25 40 50 3.02 8.61 21.9
30 5.46 8.57 21.25
15 20 50 50 3.02 8.60 21.57
60 8.00 8.59 21.32
15 20 40 55 1.58 12.18 31.92
15 20 40 70 1.28 15.94 43.26

a=5 EC_,=50 EC_.=100 ET =1 ET

sr8

EC_,=150 ET_=1.5 ET_=0.5 r,=.33 SD=1.5 Mu=.5
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(4) For various transition rates:

T, I, h ic 0
0.1 0.1 1.49 12.15 27.30
0.25 2.32 12.73 29.40
0.50 2.79 13.36 37.34
0.33 0.1 1.55 15.82 65.10
0.25 3.01 12.54 34.28
0.50 8.00 9.12 21.46
0.5 0.1 1.99 16.31 66.14
0.25 3.27 11.61 30.96
0.5 3.27 5.14 11.13
1.0 0.1 2.14 20.92 103.64
0.25 4.73 12.30 33.62
0.50 8.00 3.05 6.36

a=8, b=0.5, 60=15, 51=20’ 62=40, 63250, ECM:SO, the values of other

parameters are same as Table in the last page.

(5) For various process mean (Mu) and process variance (SD)

Mu SD h ic p
0.5 1.5 8.00 2.45 4.71
1.5 8.00 2.32 4.73
2.0 8.00 2.41 4.92
3.0 8.00 5.29 11.46
0.5 2.0 8.00 3.96 8.38
3.0 5.46 4.92 11.11
4.0 5.46 5.48 12.25
a=5 ¢,=15 ¢,=40 EC_,=100 EC_ =250 ET =1 ET =2 b=.9 ¢, =20
¢, =50 EC =180 EC =100 ET _,=1.6 r,=.33 ET_,=.5 r,=.25
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In practice, when Shewhart’s design is used the value of h is decided by
the manager. Under this condition, the chosen value of h may not be the
optimum. Table 5.2.2 shows the effects of eight values on h on the percentage
increase in cost for a specified case resulting from use of Shewhart’s design
instead of the economic design (Figure 5.2.2). We found the larger the difference
between the chosen h value and optimum h value, the larger the percentage
increase in cost will be. Besides, our model is designed to minimize cost
(which is not a specific objective of Shewhart’s); it monitors process behavior,
and considers the effects of assignable causes. The advantage of the economic
design is apparent (Table 5.2.3).

FIGURE 5.2.1
FLOW CHART FOR CALCULATING THE DIFFERENTIAL COST

input EV, n=35, ki=3, ko=5.4
EVS=t(h)

(
call routine
Direct Search method

optimal h
min. EVS
compare
to EV,
ic=EVS—-EV_
p=ic/EV_, (%)

TABLE 5.2.2
PERCENTAGE INCREASE IN COST (p,» p,) FOR SHEWHART'S DESIGN
AND ECONOMIC DESIGN WITH 8 VALUES OF h FOR A SPECIFICED CASE

h 1 2 3 4 5 6 7 8
P, 2.2 0.1 3.1 6.1 8.15 10.15 11.68 13.08
P, 40.31 39.70 40.72 41.84 42.66 43.45 44.05 44.61

a=8, b=0.5, EC_ =50, Mu=.5, SD=1.5, ¢ =15, ¢,=20. ¢,=40, ¢&,=50,
ET ;=.5, ET =1, ET_,=1.5, ET =2, EC , =80, EC =100, EC_ =150,
r,=.1, r,=.1. The optimum h is 1.49 for Shewhart’s design. The optimum h is

5.85 for economic design
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TABLE
COMPARISON OF ECONOMIC AND

523
SHEWHART’S CONTROL CHARTS

Economic Design Shewhart’s Design

1. motivation min. cost a=.0027
2.k always <4 k =3
3. k, always<5.4 k,=5.4
4. n always < 10 n=4 or 5
5. h depends on cost depends on manager
6. monitor process

behavior? yes no
7. consider effects of

assignable causes? yes no
8. cost low high

FIGURE 5.2.2

FLOW CHART FOR CALCULATING THE PERCENTAGE INCREASE IN COST

FOR VARYING VALUES OF h

1,8

h=I, n=5,

EV,=26.75, EVS=40.14

k1=3, k2=5.4

comp

for each h

ute cost (EVS’)

Pi1=| EVS’—EVSVEVS (%)
P2=| IEVS’—EVI/EV, (%)

6. SUMMARY

An expected cost model for a generalized process model in which we use both
X and R charts to test whether the process is out of control, is formulated. Numerical
problems have been solved by using a general Fortran program and the sensitivity
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of the optimal design to changes in the model inputs can be down. Compared with
other models, our model is more reasonable and flexible, since it considers
multiple assignable causes, allows multiple occurrence of assignable causes
simultaneously, allows the departure of several assignable causes at the same time,
and it considers the transition costs for all possible transitions. The production process
is expressed as a renewal process and Markov process within cycles. This makes
the derivation of expected cycle time and expected cycle cost easier than if we try
to extend the Duncan’s approach or other approaches to cover the case of multiple
assignable causes.

The cost of the optimal design has been compared to the cost of Shewhart’s
design. We examine in detail the case where two assignable causes lead to changes
in the mean, variance or both, and where the k], k2 for Shewhart’s design are
known. Here, Shewhart’s design results in high cost. Our numerical results show that
the economic design is preferred. Although the computed procedure is complex, the
availability of computer programs and associated optimization schemes make it easier.

The economic design method can be used for a variety of control charts and
various process models. It can also be applied to nonnormally distributed process
variables.

We could also apply our method in the case of multiple process variables,
but there might be some difficult distributional problems.

APPENDICES
A. Calculation of the distribution of the sample range
For sample size n, Xi~N(;L, &), i=1,2,...,n. The range is RZXW—X(”.
The p.d.f. of R is
fR(r) =n(n—1) ® fx(x)[Fx(x+r) —Fx(x)]""fx(x-i-r)dx,
and the c.d.f. of R is
Fom=n{*_f (x)[F (x+r)—F (x)]"'dx.

(see, for example, David 1970)
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Since X(n)—X(U=(X(n)—p)—(Xm—u) the distribution of R does not depend on
w. In fact, the distribution of R/é depends only on n, and not on (g, §). Therefore
it is sufficient to consider the standardized case where u=0, 6=1. Writing W =R/},
the relative range, we work in term of W.

Let random variable Z ~N(0,1).

In this case, we find the c.d.f. of W is

F (w) = nSfmfz(z)[FZ(z+w)—Fz(z)]"“dz
= (/27) [*_exp(—7*/2)[F (z+wW)—F ()] dz, w>0

Let Y = Z/\J/?2,

then F (w)= (/A7) _exp( —yz)[Fz(ﬁy +w)—F (V2 y)]"" 'dy and we approximate
this using Hermite polynomials as follows:

F,w) = W) T afF,W2y+w—F 2yl

The value of ns, o and y can be obtained from the table of the zero and
weight factors of the first twenty Hermite polynomials in the paper by Sulzer, Zucker
and Capuano (1952).

B. Calculation of expected times to absorption, starting from transient states

Conditioning on the first step and using the Markov property, we see that the
absorption times T, satisfy the following equations.
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T, % h+T_ W.p. P T, %h+TSr7 W.p. P,
§ h+T_ . W.p. Py, a—- h+T . W.p. Py
z h+T_ . W.p. P E h+T, W.p. Py,
g h+T, w.p. p,, = h+T, W.p. Py,
: h+T, W.p. Py, q
E h+T, W.p. P, T, 3 h+T W.P. Py
= h+T, W.p. P, = h+T, W.P. Py
= h+T_ W.p. Pys
d

T, j h+T_, W.p. Py
g h+T_ . W.p. Py
g h+T, W.p. P,,
= h+T, W.p. P,

(Note that P7r7" are actually functions of h, where 7, 77=1,2,...,8.)

The expected time for T, k=1,...,4 can be expressed as follows:

ET, = h+p ET +p,ET,+p ET,+p ET,+p, T +p T
+p,, TP s

ET, = h+p,ET,+p,ET,+p, T +p,T

ET, = h+p, ET,+p, ET,+p, T ,+p;T 4

ET, = h+p ET, +p,T .

From this we may verify that ET is as given in (4.1.2.2).

C. Calculation of expected costs to absorption, starting from transient states

Condistioning on the first step and using the Markov property. we see that the
absorption cost ¢ satisfy the following equations.
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€, % ¢, (h) w.p.p,, 7=5,.6,7,8 ¢ % ¢,(h)  w.p.p,, 7=6,8
3 ¢, (h)+e  w.p.p, 3 ¢p(h)+e, w.p. py,
E c,(+e, w.p.p, = ¢, (h)+e,wW.p. Py
3 ¢ (h)y+e, wW.p.p;
= c,,(W+e, wW.p.py
d d
& 3 c, (h) w.p. p,, 7=7, 8 €, j C () W.P. Py
z[ c33(h)e3 W.p. Py, = c44(h)+e4 W.p. Py
== ¢, (h)e, W.p. Py,

(Note that p_° are actually functions of h, where 7,7=1, 2,....,8.)

The expected cost for ¢ can be obtained

Ee, = ‘r)i:l pchlT(h)+ é‘ p,,Ee,

Ee, = pyc(M+ P,,Coa() + PsCa6) + P5Co() +PypEe, + P2E€,
Ee, = P;;C3 () + Py, Cyy (M) + P3sCys() + Py Ees+ Py.Ee, 4 P3,C14(h)
Ee, = pMcM(h) + p48C48(h) +p,,Ee,-

Fromn the above results the Ee, is as given in (4.2.2.1)
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