
F. Yin, J. Wang, and C. Guo (Eds.): ISNN 2004, LNCS 3173, pp. 377–382, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Layered Feed-Forward Neural Networks and Its
Rule Extraction

Ray Tsaih and Chih-Chung Lin

Department of Management Information Systems, National Chengchi University, Taipei,
Taiwan

{tsaih,m92014}@mis.nccu.edu.tw

Abstract. A mathematical study of the layered feed-forward neural networks is
proposed here for identifying the rules suggested in the network. The
mathematical study, not a data analysis, is proposed for identifying the premise
association with each rule. It, hopefully, can be used further to deal with the
predicament of ANN being a black box.

1 The Predicament of Being a Black Box

Layered feed-forward neural networks have been widely used in many fields. When
the layered feed-forward neural network is used as a modeling tool, it is interesting to
check if it can display some useful information. It is necessary to have a deeper
analysis of the network structure, an analysis that is rather complicated
mathematically. However, as Yoon, Guimaraes, and Swales in [1] argued that, after
building the layered feed-forward neural networks, reading or understanding the
knowledge in layered feed-forward neural networks was difficult because the
knowledge was distributed over the entire network.

There are some recent studies related with extracting rules from the trained
Artificial Neural Networks (ANN). For instance, in [2] and [3] try to extract rules
from a trained ANN for regression problems. To identify the premise of a single rule,
however, in [2] and [3] implement a data analysis on the training data set or the
generated data set. No matter the data set for extracting rules is the trained one or the
generated one, the amount of data instances is still finite, and the premise of a resulted
rule covers merely discrete points, not an area.

Here we present a mathematical study of the layered feed-forward neural networks
for identifying the rules suggested in the network. The mathematical analysis, not a
data analysis, is proposed for identifying the premise associated with each rule. This
paper is organized as follows. Section 2 gives the detail of the mathematical study and
Section 3 offers some conclusions and future work.

378 R. Tsaih and C.-C. Lin

2 The Study for Identifying the Rules Suggested in the Network

Assume the layered feed-forward neural network f is arranged as the one defined from

equations (1) and (2) below, where tanh(x) ≡
xx

xx

ee

ee
−

−

+
−

. Namely, given the cth

observation cx, the corresponding value of the ith hidden node cai equals tanh(2wi0 +
m

j 1=
∑ 2wij cxj) and the corresponding value of f(cx) equals 3w0 +

p

i 1=
∑ 3wi cai. In equations (1)

and (2), m is the number of explanatory variables xj’s, p is the number of adopted
hidden nodes, 2wi0 is the bias value of the ith hidden node ai, 2wij is the weight between
the jth explanatory variable xj and the ith hidden node ai, 3w0 is the bias value, and 3wi

is the weight between the ith hidden node ai and the output node.

ai(x) ≡ tanh(2wi0 +
m

j 1=
∑ 2wij xj) , (1)

f(x) ≡ 3w0 +
p

i 1=
∑ 3wi ai(x) = 3w0 +

p

i 1=
∑ 3wi tanh(2wi0 +

m

j 1=
∑ 2wij xj) . (2)

In this article, character in bold represents a column vector, a matrix or a set, and
the superscript T indicates the transposition: 2wi

T
 ≡ (2wi1, …, 2wim), 3w

T ≡ (3w1, …,
3wp), 2w

T
 ≡ (2w1

T, 2w2
T, …, 2wp

T), and wT ≡ (2w
T, 3w

T). Here we assume m > 1. We
also assume that 3w and 2w are non-zero vectors. Thus 2W ≡ (2w1, 2w2,…, 2wp)

T is a
non-zero matrix.

The range of f is at most (3w0 -
p

i 1=
∑ |3wi|, 3w0 +

p

i 1=
∑ |3wi|) instead of R. It is because that

-1 < ai < 1, thus -
p

i 1=
∑ |3wi| <

p

i 1=
∑ 3wi ai <

p

i 1=
∑ |3wi| and 3w0 -

p

i 1=
∑ |3wi| < y < 3w0 +

p

i 1=
∑ |3wi|. y is

vague if it cannot be carried out with the network system; otherwise, y is non-vague.

If y ∈ (-∞, 3w0 -
p

i 1=
∑ |3wi|) ∪ (3w0 +

p

i 1=
∑ |3wi|, ∞), y is surely vague.

As Rumelhart and his collagues in [4] proposed the interesting Back-Propagation
learning algorithm for training layered feed-forward neural networks, the information
x coming to the input nodes is re-coded into a ≡ (a1, a2, …, ap)

T ∈ (-1, 1)p and the
output y is generated by a rather than the original pattern x. In other words, f can be
viewed as the composite g ° h where h is defined by (h(x))i, the ith component of h(x),

≡ tanh(2wi0 +
m

j 1=
∑ 2wij xj) and ai = (h(x))i for every i ∈ P ≡ {1, 2, …, p}, and g is

defined by g(a) ≡ 3w0 +
p

i 1=
∑ 3wi ai. The hidden-layer set is (-1, 1)p because the tanh

activation function is used here.

The Layered Feed-Forward Neural Networks and Its Rule Extraction 379

For any non-vague y, let X(y) ≡ f -1(y), the set of all elements of the input space
whose images under f are y. Any input stimulus x in X(y) will result in an output
value y. Thus, the following rule is suggested from the network:

Rule: If the input x is in the region of X(y), then the output value of the network is y.
X(y) can be viewed as the composite h-1

 ° g-1(y), where g-1(y) is the set of all
elements of the hidden-layer set whose images under g are y, and h-1(a) is the set of
all elements of the input space whose images under h are a.

h-1(a) equals {x|
m

j 1=
∑ 2wij

 xj = tanh-1(ai) - 2wi0 for all i ∈ P} where tanh-1(x) ≡ 0.5

ln(
-x

x

1

1+
) is the inverse function of tanh. When 2wi is non-zero, there are parallel

activation level hyperplanes, {x|
m

j 1=
∑ 2wij

 xj = tanh-1(a) - 2wi0} for all a ∈ (-1, 1), in the

input space. As stated in [5], these activation level hyperplanes make a scalar
activation field in the input space. Through each point of the input space, there passes
merely an activation level hyperplane that determines the associated activation value

ai of that point. All points on the level hyperplane {x|
m

j 1=
∑ 2wij

 xj = tanh-1(ai) - 2wi0}

have the same activation value ai in the ith hidden node. p hidden nodes set up p
activation fields in the input space, but these activation fields do not interfere with

each other. Thus, h-1(a) equals
p

i 1=
∩ {x|

m

j 1=
∑ 2wij

 xj = tanh-1(ai) - 2wi0}, which also equals

{x|
m

j 1=
∑ 2wij

 xj = tanh-1(ai) - 2wi0 for all i ∈ P}.

{x|
m

j 1=
∑ 2wij

 xj = tanh-1(ai) - 2wi0 for all i ∈ P} can also be represented as {x| 2W x =

ω(a)}. The function ω : (-1, 1)p Rp is defined by ω(a) ≡ (ω1(a1), ω2(a2),…, ωp(ap))
T

with ωi(ai) ≡ tanh-1(ai) - 2wi0 for every i. Given the vector a, ω(a) is determined.
Accordingly, given the vector a, the system 2W x = ω(a) is a system of p linear
equations in m unknowns. If rank(2W : ω(a)) = rank(2W) + 1, where rank(2W : ω(a))
is the rank of the augmented matrix (2W : ω(a)), the system 2W x = ω(a) has no
solution. (cf. [6], p. 108) In other words, if rank(2W : ω(a)) = rank(2W) + 1, h-1(a) is
an empty set and the activation value a cannot be carried out with the neural network.

The point a in the hidden-layer set is vague if the activation values of a cannot be
carried out with the neural network; otherwise, a is non-vague. Namely, the point a in
the hidden-layer set is vague if a is mapped from nowhere in the input space. Lemma
1 gives the situation of the point a being vague.
Lemma 1: If rank(2W : ω(a)) = rank(2W) + 1, the point a is vague.

The fact that rank(2W : ω(a)) = rank(2W) implies ω(a) is in the linear hull spanned
by column vectors of 2W (cf. [6], p. 92). Therefore, as stated in Lemma 2 and Lemma
3, {a| rank(2W : ω(a)) = rank(2W)} is either the whole hidden-layer set, or a

380 R. Tsaih and C.-C. Lin

manifold1 or a linear hull bounded by (-1, 1)p. Moreover, whether there are vague
points in the hidden-layer set can be determined by comparing values of rank(2W)
and p. In other words, the range of h is {a| rank(2W : ω(a)) = rank(2W)} instead of (-
1, 1)p.
Lemma 2: If rank(2W) = p, {a| rank(2W : ω(a)) = rank(2W)} equals (-1, 1)p and
there are no vague points in the hidden-layer set.
Lemma 3: If rank(2W) = r and r < p, {a| rank(2W : ω(a)) = rank(2W)} is a r-
manifold or a linear hull of dimension r bounded by (-1, 1)p and there are vague
points in the hidden-layer set.

Lemma 4 states that h-1(a) is a single point in the input space when a is a non-
vague point and rank(2W) = m; Lemma 5 states that h-1(a) is an affine space of
dimension m - r in the input space when a is a non-vague point, rank(2W) = r and r <
m. In other words, h-1(a) is an affine space of dimension m - rank(2W) when h-1(a) is
non-empty.
Lemma 4: Each non-vague point a is mapped from a single point x in the input space
provided that rank(2W) = m.
Lemma 5: Each non-vague point a is mapped from any point x in an affine space of
dimension m - r in the input space provided that rank(2W) = r and r < m.

Conversely, g-1(y) equals {a|
p

i 1=
∑ 3wi ai = y – 3w0, a ∈ (-1, 1)p}, and g-1(y) is a

hyperplane bounded by (-1, 1)p. When 3w is non-zero, there are parallel hyperplanes,

g-1(y)s for all y ∈ (3w0 -
p

i 1=
∑ |3wi|, 3w0 +

p

i 1=
∑ |3wi|), in (-1, 1)p. These hyperplanes make a

scalar field (activation field) in the hidden-layer set. Through each point of the
hidden-layer set, there passes merely one hyperplane that determines the associated
activation value y of that point. All points on the g-1(y) hyperplane have the same
value y.

g-1(y) ≡ Av(y) ∪ Anv(y) where Av(y) and Anv(y) are the sets of vague and non-vague
points in g-1(y), respectively. From Lemma 1, Anv(y) ≡ {a| a ∈ g-1(y), rank(2W : ω(a))
= rank(2W)}. Anv(y) can be viewed as {a| rank(2W : ω(a)) = rank(2W)} ∩ g-1(y).
From Lemma 6 and Lemma 7, Anv(y) is either a hyperplane bounded by (-1, 1)p or an
intersection of a hyperplane and a r-manifold or a linear hull of dimension r in (-1,
1)p.
Lemma 6: Anv(y) equals g-1(y) provided that rank(2W) = p.
Lemma 7: Anv(y) is an intersection of a hyperplane and a r-manifold or a linear hull
of dimension r in (-1, 1)p provided that rank(2W) = r and r < p.

Let h-1(g-1(y)) ≡ {h-1(a)| a ∈ g-1(y)} and h-1(Anv(y)) ≡ {h-1(a)| a ∈ Anv(y)} = {x| 2W
x = ω(a) with all a ∈ Anv(y)}. h-1(g-1(y)) equals h-1(Anv(y)) because that g-1(y) ≡ Av(y)
∪ Anv(y) and Av(y) is mapped from nowhere in the input space. Thus X(y) equals {x|
2W

 x = ω(a) with all a ∈ Anv(y)}. Theorems 1 and 2 show that, when rank(2W) = p,
X(y) is either a hyperplane or a manifold in the input space and the dimension of X(y)
is m-1.
Theorem 1: X(y) is a hyperplane in the input space provided that m > p, p = 1 and
rank(2W) = 1.

1 The definition of manifold please refer to [7].

The Layered Feed-Forward Neural Networks and Its Rule Extraction 381

Theorem 2: X(y) is a (m-1)-manifold in the input space provided that m ≥ p, p > 1
and rank(2W) = p.

For any non-vague y1 and y2 with 3w0 -
p

i 1
Σ
=

|3wi| < y2 ≤ y1 < 3w0 +
p

i 1
Σ
=

|3wi|, the

prediction y ≤ y2 is activated by any a in
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ Anv(y) or any input x in

2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ X(y). In other words, there is a rule:

Rule: If the input x is in the region of
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ X(y), then the output value of the

network is less than or equals y2. Similarly, the prediction y2 ≤ y ≤ y1 is activated by

any a in
1

2

y

yy=
∪ Anv(y) or any input x in

1

2

y

yy=
∪ X(y); the prediction y ≥ y1 is activated by

any a in

∑
=

+

=

p

i
iww

yy

1
303

1

||

∪ Anv(y) or any input x in

∑
=

+

=

p

i
iww

yy

1
303

1

||

∪ X(y).

Theorem 3 shows that, when rank(2W) = p, the set
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ Anv(y) is an union of

adjacent hyperplanes bounded by (-1, 1)p. Combined with Theorem 1, the set
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ X(y) is an union of adjacent hyperplanes in the input space when m > p, p

= 1 and rank(2W) = 1; combined with Theorem 2, the set
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ X(y) is an union

of adjacent (m-1)-manifolds in the input space when m ≥ p, p > 1 and rank(2W) = p.

Theorem 3: For any non-vague y1 and y2 with 3w0 -
p

i 1
Σ
=

|3wi| < y1 ≤ y2 < 3w0 +
p

i 1
Σ
=

|3wi|,

sets of
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ Anv(y),
1

2

y

yy=
∪ Anv(y) and

∑
=

+

=

p

i
iww

yy

1
303

1

||

∪ Anv(y) are convex polytopes

provided that rank(2W) = p.

382 R. Tsaih and C.-C. Lin

3 Summary

In conclusion, for any non-vague y1 and y2 with 3w0 -
p

i 1
Σ
=

|3wi| < y1 ≤ y2 < 3w0 +
p

i 1
Σ
=

|3wi|,

the following four rules are suggested from the trained network:
Rule 1: If the input x is in the region of X(y), then the output value of the network is
y.

Rule 2: If the input x is in the region of
2

1
303 ||

y

wwy
p

i
i∑

=
−=

∪ X(y), then the output value of the

network is less than or equals y2.

Rule 3: If the input x is in the region of
1

2

y

yy=
∪ X(y), then the output value of the

network is within [y2, y1].

Rule 4: If the input x is in the region of

∑
=

+

=

p

i
iww

yy

1
303

1

||

∪ X(y), then the output value of the

network is greater than or equals y1, where X(y) = {x| 2W
 x = ω(a) with all a ∈

Anv(y)}.

References

1. Yoon, Y., Guimaraes, T., Swales, G.: Integration Artificial Neural Networks with Rule-
Based Expert System in Decision Support Systems. Vol. 11. (1994) 497-507

2. Setiono, R., Leow, W. K., Zurada, J. M.: Extraction of Rules from Artificial Neural
Networks for Nonlinear Regression. IEEE Transactions on Neural Networks, Vol. 13.
(2002) 564-577

3. Saito, K., Nakano, R.: Extracting Regression Rules from Neural Networks in Neural
Networks. Vol. 15. (2002) 1279-1288

4. Rumelhart, D. E., Hinton, G. E., Williams, R.: Learning Internal Representation by Error
Propagation in Parallel Distributed Processing. Vol. 1, Cambridge, MA: MIT Press (1986)
318-362

5. Tsaih, R.: An Explanation of Reasoning Neural Networks in Mathematical and Computer
Modelling. Vol. 28. (1998) 37-44

6. Murty, K.: Linear Programming. John Wiley & Sons, New York (1983)
7. Munkres, J.: Topology: A First Course. Prentice-Hall, Englewood Cliffs, New Jersey (1975)

	The Predicament of Being a Black Box
	The Study for Identifying the Rules Suggested in the Network
	Summary

