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Abstract This paper proposes several hybrid metaheuris-
tics for the unrelated parallel-machine scheduling problem
with sequence-dependent setup times given the objective of
minimizing the weighted number of tardy jobs. The
metaheuristics begin with effective initial solution gener-
ators to generate initial feasible solutions; then, they
improve the initial solutions by an approach, which
integrates the principles of the variable neighborhood
descent approach and tabu search. Four reduced-size
neighborhood structures and two search strategies are
proposed in the metaheuristics to enhance their effective-
ness and efficiency. Five factors are used to design 32
experimental conditions, and ten test problems are gener-
ated for each condition. Computational results show that
the proposed hybrid metaheuristics are significantly supe-
rior to several basic tabu search heuristics under all the
experimental conditions.

Keywords Weighted number of tardy jobs . Unrelated
parallel machine . Sequence-dependent setup . Variable
neighborhood descent . Tabu search

1 Introduction

Unrelated parallel machine scheduling is widely applied in
manufacturing environments such as the drilling operations
for printed circuit board fabrication [1, 2] and the dicing
operations for semiconductor wafer manufacturing [3]. This
paper studies the unrelated parallel machine scheduling
problem with sequence-dependent setup times given the
objective of minimizing the weighted number of tardy jobs.

Much research work has been done to date on the
development of solutions for unrelated parallel machine
scheduling problems tackling a variety of objectives.
Piserma and Van Dijk [4] developed a local search heuristic
and a tabu search (TS) algorithm, while Ghirardi and Potts
[5] developed recovering beam search algorithms to solve
the problems with makespan as their objective. Further-
more, Chen [6] proposed a heuristic for the problems with
job setup times. Weng et al. [7] presented seven heuristics
to achieve a reduction to the weighted completion time.

There are a few papers that dealt with due date-related
measures. Suresh and Chaudhuri [8] developed a GAP–
EDD algorithm minimizing the maximum tardiness, while
Chen [9] presented a TS heuristic with the same objective
considering problems with job setup times. With respect to
the objective of minimizing the mean tardiness, Guinet [10]
proposed a simulated annealing heuristic, while Randhawa
and Kuo [11] examined the factors that may affect the
performance of a parallel machine system and presented
several heuristics to achieve the same objective. In addition,
Kim et al. [3] proposed a simulated annealing heuristic for
the problems with job sequence-dependent setup times.
Considering the objective of minimizing the number of
tardy jobs, Ho and Chang [12] proposed several heuristics
derived from Moore’s algorithm [13] to solve problem with
identical parallel machine, while Ruiz-Torres et al. [14]
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proposed an integer programming formulation and several
heuristics extended from Ho and Chang’s heuristics [12] to
solve problems with uniform parallel machine. M’Hallah
and Bulfin’s [15] research was the only one considering
unrelated parallel machine; they developed branch and
bound algorithms to optimally minimize the weighted and
unweighted number of tardy jobs for the identical and un-
related parallel machine cases.

The review of available literature leads us to conclude that
the candidate problem in this research, the unrelated parallel-
machine scheduling problem with job sequence-dependent
setup times and with the weighted number of tardy jobs as
the objective, has not been studied; also, local search
methods, TS and simulated annealing, are effective tools to
achieve the objective of minimizing the maximum tardiness
and mean tardiness for unrelated parallel machine scheduling
with job sequence-dependent setup times. Therefore, in this
research, we develop hybrid metaheuristics integrating
variable neighborhood descent (VND) and TS principles to
solve the candidate problem. Four reduced-size neighbor-
hood structures and two search strategies are proposed in the
hybrid metaheuristics to enhance their effectiveness and
efficiency. Five factors are used to design 32 production
scenarios, and ten test problems are generated for each
scenario. Computational results show that the reduced-size
neighborhood structures and the search strategies do benefit
the effectiveness and efficiency of the proposed metaheur-
istics, and the performance of the metaheuristics is signifi-
cantly superior to several heuristic rules and a basic TS under
all the production scenarios. Eighty small-sized test prob-
lems, each comprised of eight jobs and two machines, are
also generated under different production scenarios to test
the capability of the proposed metaheuristics for finding the
optimal solutions. The conclusion is also very promising.

The rest of the paper is organized as follows: In Sections 2
and 3, we describe the candidate problem considered in this
study and the proposed hybrid metaheuristics, respectively.
We proceed to detail the generation test data and analyze
the experimental results in Section 4. Finally, Section 5
summarizes the major findings of this paper and provides
suggested directions for future research in this area.

2 Problem statement

The unrelated parallel machine scheduling problem with
sequence-dependent setup times can be described as follows:
A set of independent jobs Ji i 2 J ¼ 1; 2; :::; nf gð Þ has to be
scheduled on a set of unrelated parallel machines
Mk k 2 M ¼ 1; 2; :::mf gð Þ. Each job Ji has a positive
processing time pik, a positive setup time sijk, and a positive
weight wi, wherein pik is determined by the assigned
machine k and sijk is determined by job Jj, the job scheduled

subsequent to job Ji on machine k. In addition, the number
of machines (m) is at least two, and the number of jobs (n)
is greater than or equal to the number of machines (m). In
addition, we assume that all the jobs are available for
processing at time zero, there is no machine breakdown,
machines can process only one job at a time, and that jobs
cannot be preempted. The objective is to find a schedule
that minimizes the weighted number of tardy jobs and is
defined as follows: Objective ¼ Minimize

Pn
i¼1 wi � Ui,

where wi is the weight of job Ji and Ui equals 1 if job Ji is
tardy; otherwise, Ui equals 0.

3 The proposed hybrid metaheuristics

Two types of generators are used to generate initial
solutions in this research, and the proposed metaheuristics,
integrating the principles of the VND approach and TS, are
applied to improve the initial solutions. Four reduced-size
neighborhood structures and two search strategies are
incorporated in the hybrid metaheuristics to enhance their
effectiveness and efficiency. The main components of the
proposed metaheuristics are described below.

3.1 Variable neighborhood descent heuristic

Variable neighborhood search (VNS) heuristic was developed
by Mladenović and Hansen [16]. This heuristic searches the
solution space with a set of predefined neighborhood
structures and escapes from local optima by systematically
changing the use of the neighborhood structures. The VNS
heuristic has been successfully applied in many areas such as
the traveling salesman problem [16], p median problem [17],
degree-constrained minimum spanning tree problem [18],
median cycle problem [19], vehicle routing problem [20, 21],
maximum clique problem [22], resource-constrained project
scheduling problem [23], and the multiprocessor scheduling
problem with communication delays [24]. Hansen and
Mladenović [17] modified the VNS heuristic and proposed
the VND heuristic. The major difference between the VNS
and VND is that, within each neighborhood structure, VNS
starts the search with a randomly generated neighbor
solution; on the other hand, VND starts the search from the
best solution generated in the previous iteration.

3.2 Tabu search

TS was developed by Glover [25]. It is an iterative process
that explores the solution space by repeatedly making
moves from one solution, x, to another solution, x′, located
on the neighborhood, N(x), of x. These moves are
performed with an ultimate goal of reaching a good
solution by evaluating some objective function f(x).
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However, unlike other search methods, in TS, the objective
value, f(x′), need not be better than f(x) in every iteration.
One of the main ideas of TS, as its name depicts, is its use
of a flexible memory (tabu list) to tabu certain moves for a
number of iterations. In every iteration of TS, a move will
instantly be assigned to the tabu list when the move is
chosen to lead the search from the current solution to its
neighbor solution. This move will no longer be chosen for a
number of immediately succeeding iterations. This number
of iterations is denoted as tabu list size, and the list size is
limited to a certain length. When the list has reached its
specified length, the move that was assigned to the list
earliest is released from the list, and the most current is
placed on top of the list. With an appropriate design of the
tabu list, TS is able to prevent the cycling of the search and
guide the search to the solution regions that have not been
examined and approach good solutions in the solution
space. A great number of successful applications of TS for
scheduling problems have been reported and can be found
in the reviewed literature [2, 11, 26–28].

Several factors will affect the performance of TS: initial
solution, type of move, neighborhood size, tabu list size,
aspiration criterion, and stopping criterion. We will first
discuss the last four factors here and detail the first two
factors in the next sections. Neighborhood size is the
number of neighbor solutions to be evaluated in each
iteration. The two most commonly used neighborhood sizes
are considered in this paper. The first type evaluates all
possible neighbor solutions and selects the best non-tabued
solution in each iteration. This type of neighborhood size is
denoted as whole (WHL) size in this paper. The second
type evaluates the neighbor solutions in certain order and
selects the first neighbor solution that is better than the
current solution and that is not tabued in each iteration. This
type of neighborhood size is denoted as random (RAN)
size. Glover [25] indicated that regardless of problem size,
seven is a magic number for tabu list size, so seven is chosen
for the purposes of this research. Aspiration criterion is the
criterion used to override the tabu status of a move. The
most common aspiration criterion is that a tabued move can
be aspired if the move can provide a better solution than the
incumbent solution. A TS application can choose to use or
not to use the aspiration criterion. The stopping criterion is
the criterion used to terminate the search process. The
number of iterations with no improvement in the incumbent
solution is adopted as the stopping criterion in this paper.

3.3 Initial solution generators

Two types of initial solution generators are used to generate
initial solutions for TS and the proposed metaheuristics: the
job based and the machine based. The job-based generator
first arranges jobs in an ascending order based on their

characteristics such as weighted processing time or weight-
ed due date; the weighted processing time of a job is the
ratio of its processing time to its weight, and the weighted
due date of a job is the ratio of its due date to its weight.
Then, each job is assigned to a machine based on the
determined job sequence, enabling the completion of the job
at the earliest time. If there is a tie, the job is assigned to the
machine with the earliest available time. After all the jobs are
scheduled, Moore’s algorithm is applied to each machine
separately. Thus, the two job-based initial solution generators
are referred to as job-based shortest weighted processing time
(JB-SWPT) and job-based earliest weighted due date (JB-
EWDD). On the other hand, the machine-based initial
solution generator first assigns each job to the machine that
processes the job with the shortest processing time; if there is a
tie, break the tie arbitrarily. After all jobs are assigned to the
machines, Moore’s algorithm is applied to each machine
separately. This machine-based generator is denoted as MB.

3.4 Reduced-size neighborhood structures

Of the local search methods for scheduling problems, SWAP
and INSERT are the two most commonly used ways to
define neighbor solutions for a given solution. Given a job
sequence, SWAP finds a neighbor solution by swapping two
selected jobs, and INSERT finds a neighbor solution by
identifying a job and placing the job directly before the first
job, between every two consecutive jobs, and directly
subsequent to the last job. Given a parallel machine schedule
with n jobs and m machines, a direct manner of applying
SWAP to generate its neighborhood structure starts with
swapping every two jobs on the first machine then
swapping each of the jobs on the first machine with the
jobs on all other machines; the same operation is performed
for the second machine, the third machine, and so on until
the m-th machine. The neighborhood size generated by this
procedure is denoted as NSSWAP in this research. The same
procedure can be applied to generate a neighborhood
structure by using INSERT, and the size generated by this
procedure is denoted as NSINSERT.

As the objective of the candidate problem is to minimize
the total weighted number of tardy jobs, we propose four
reduced-size neighborhood structures to enhance both
efficiency and effectiveness of the proposed metaheuristics.
The first two neighborhood structures are constructed by
first choosing the machine with the largest total weighted
number of tardy jobs. Then, the neighbor solutions in the
first neighborhood structure (NS1) are generated by
applying SWAP to swap each of the tardy jobs on the
chosen machine with the jobs on the same machine and
with the jobs on the other machines. The neighbor solutions
in the second neighborhood structure (NS2) are generated
by applying INSERT to insert each of the tardy jobs on the
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chosen machine and on the other machines. As SWAP or
INSERT is applied to only the tardy jobs on the chosen
machine, the size of NS1 is obviously much smaller than
the size of NSSWAP, and the size of NS2 is much smaller
than the size of NSINSERT. Furthermore, as the chosen
machine has the largest total weighted number of tardy
jobs, there is a higher possibility that applying SWAP or
INSERT to the tardy jobs on the machine will generate
improved solutions. The third and the fourth neighborhood
structures consider all the machines except the machine
with the largest total weighted number of tardy jobs. In
these machines, the third neighborhood structure (NS3) is
constructed by applying SWAP to swap each of the tardy
jobs with the other jobs on the machines, and the fourth
neighborhood structure (NS4) is constructed by applying
INSERT to insert each of the tardy jobs on all the possible
positions on the machines. It is clear that the size of NS3 is
larger than the size of NS1, but it is still much smaller than
the size of NSSWAP. Similarly, the size of NS4 is larger than
that size of NS2, but it is still much smaller than the size of
NSINSERT. In addition, as SWAP or INSERT is only applied
to the tardy jobs on the machines, it may still provide a
good possibility to generate improved solutions.

3.5 The proposed hybrid metaheuristics (VND-TS)

As mentioned, VND searches the solution space with a set of
predefined neighborhood structures and escapes from local
optima by systematically changing the use of neighborhood
structures. VND can apply different search algorithms to
search the solution space. In this research, we integrate TS into
VND; applying TS to search the solution space with the pre-
defined neighborhood structures: NS1, NS2, NS3, and NS4.
Given an initial solution, the proposed metaheuristics im-
plement the following four steps to search the solution space:

Step 1: Apply TS with NS1, which defines the neighbor-
hood structure to search the solution space. When

the stopping criterion is satisfied, go to step 2 with
the incumbent solution produced in step 1 as the
initial solution.

Step 2: Apply TS with NS2 to search the solution space.
When the stopping criterion is satisfied, evaluate
the incumbent solution produced in step 2. If the
incumbent solution produced in step 2 is better
than that produced in step 1, return to step 1 and
empty the tabu list produced in step 1; otherwise,
go to step 3 and use the incumbent solution
produced in step 2 as the initial solution.

Step 3: Apply TS with NS3 to search the solution space.
When the stopping criterion is satisfied, evaluate
the incumbent solution produced in step 3. If the
incumbent solution produced in step 3 is better
than that produced in step 1, return to step 1 and
empty the tabu lists produced in step 1 and step 2;
otherwise, go to step 4 and use the incumbent
solution produced in step 3 as the initial solution.

Step 4: Apply TS with NS4 to search the solution space.
When the stopping criterion is satisfied, evaluate
the incumbent solution produced in step 4. If the
incumbent solution produced in step 4 is better
than that produced in step 1, return to step 1 and
empty the tabu lists produced in step 1, step 2, and
step 3; otherwise, stop.

The idea behind the procedure is to efficiently guide the
search of TS to better solution regions by searching a small
number of neighbor solutions in step 1 and step 2. If the
search traps in a local optimum, the number of neighbor
solutions searched is then increased in step 3 and step 4. It
is expected that increasing the neighborhood size while
maintaining a good possibility for improving the solutions
may help the search escape from the local optimum.

Table 1 Experimental design used in random problem generation

Factors Values used Total values

Number of jobs 40, 80 2
Number of machines 4, 8 2
Processing times DU[50, 70], DU[20, 100] 2
Setup times DU[0.2, 0.4]×60,

DU[0.6, 0.8] ×60
2

Tardiness factors and
due-date range (T, R)

(0.4, 0.8), (0.5, 0.8) 2

Total parameter
combinations

32

Number of problems/
combinations

10

Total problems 320

Table 2 ANOVA table for testing the significance of the initial
solution generators and the heuristics (α=0.01)

Source Sum of
squared
error

Degree of
freedom

Mean
squared
error

F-ratio

Initial solution
generators

24.1132 2 12.0566 419.6826

Heuristics 235.0055 4 58.7514 2045.1010
Number of jobs 4.1875 1 4.1875 145.7647
Number of
machines

6.3515 1 6.3515 221.0929

Processing times 3.1705 1 3.1705 110.3642
Setup times 0.0002 1 0.0002 0.0085
Due-date
tightness

0.2796 1 0.2796 9.7326

Error 137.5490 4788 0.0287
Total 410.6571 4799
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Furthermore, note that two ways of searching the generated
neighbor solutions, WHL and RAN, are considered in TS in
this research, so they are also used in the TS in each step in
the proposed metaheuristics. However, as the design of the
reduced-size neighborhood structures and the four-step
search strategy, WHL and RAN may contribute differently
to the performance of the metaheuristics than that of the
basic tabu search. In this research, we define the search
strategy using WHL as VND/WHL and define the search
strategy using RAN as VND/RAN. In addition, the
metaheuristic using the search strategy VND/WHL is
defined as VND-TS/WHL and as VND-TS/RAN when
the search strategy VND/RAN is used.

4 Computational experiments

A series of computational experiments have been con-
ducted to evaluate the performance of the proposed
metaheuristics. Table 1 summarizes the experimental
factors used in generating different test problems: number
of jobs, number of machines, range of job processing times,
range of setup times, and tightness of job due dates. The
number of jobs has two levels, with values set at 40 and 80,
and the number of machines has two levels, with values set
at 4 and 8. The processing times of a job on different
machines are generated from a discrete uniform distribu-
tion; two ranges, [50, 70] and [20, 100], with equal mean,
but unequal variations are considered for uniform distribu-
tion. The due dates of jobs are generated from a discrete
uniform distribution U(L(1-T-R/2), L(1-T + R/2)), where L
is a lower bound of makespan and T and R are the tardiness
factor and due date range, respectively. A straight lower
bound for makespan of the candidate problem is
L ¼ Pn

i¼1 pmin
i þ smin

i

� ��
m, where pmin

i is the minimum

processing time of job i on the machines and smin
i is the

minimum setup time of job i [3, 29]. This lower bound is
used in this paper with two levels of [T, R], [0.4, 0.8] and
[0.5, 0.8] considered in generating the due date. Two
ranges, [12, 24] and [24, 36], are used in generating job
setup times. These two ranges are 20% to 40% and 40% to
60% of the mean, which is 60, of the distributions for
generating job processing times. The setup time matrices
are asymmetric and satisfy the triangle inequality (for
details, see Rios-Mercado [30]). Finally, the weight of job i,
wj is randomly generated from U[1, 10]. With the five two-
level factors considered, there are a total of 32 experimental
combinations, and ten test problems are generated for each
combination in the experiment.

The basic TS (BTS) in this research uses SWAP to
generate neighbor solutions and uses WHL and RAN as
neighborhood sizes, respectively. The BTS using WHL is

Table 3 Results of Duncan’s multiple range test for the initial
solution generators (α=0.01)

Initial solution generators Results (groups) Average RDI

MB A 0.2313
JB-EWDD B 0.3526
JB-SWPT C 0.3995

Table 4 Results of Duncan’s multiple range test for the heuristics
(α=0.01)

Heuristics Results (groups) Average RDI

VND-TS/RAN A 0.1726
VND-TS/WHL B 0.2150
BTS/RAN C 0.2393
BTS/WHL C 0.2447
NONE D 0.7674

Table 6 Results of Duncan’s multiple range test for the heuristics
combining the three initial solution generators and the five heuristics
(α=0.01)

Heuristics Results (groups) Average RDI

MB/VND-TS/RAN A 0.0529
MB/VND-TS/WHL B 0.0874
MB/BTS/RAN C 0.1548
MB/BTS/WHL C 0.1608
JB-EWDD/VND-TS/RAN D 0.2161
JB-SWPT/VND-TS/RAN DE 0.2489
JB-EWDD/VND-TS/WHL EF 0.2628
JB-EWDD/BTS/RAN EF 0.2661
JB-EWDD/BTS/WHL EFG 0.2693
JB-SWPT/VND-TS/WHL FG 0.2948
JB-SWPT/BTS/AN FG 0.2971
JB-SWPT/BTS/WHL G 0.3038
MB H 0.7005
JB-EWDD I 0.7486
JB-SWPT J 0.8531

Table 5 ANOVA table for testing the significance of the heuristics
combining the initial solution generators and the heuristics (α=0.01)

Source Sum of
squared
error

Degrees of
freedom

Mean
squared
error

F-ratio

Heuristics 261.0713 14 18.6479 657.3712
Number of jobs 4.1875 1 4.1875 147.6166
Number of
machines

6.3515 1 6.3515 223.9018

Processing times 3.1705 1 3.1705 111.7663
Setup times 0.0002 1 0.0002 0.0087
Due-date
tightness

0.2796 1 0.2796 9.8563

Error 135.5964 4,780 0.0284
Total 410.6571 4,799
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denoted as BTS/WHL, and the BTS using RAN is denoted
as BTS/RAN. It uses seven as the tabu list size and 50
iterations with no improvement as the stopping criterion
and chooses to use aspiration criterion. As in the VND-TS/
WHL and VND-TS/RAN, the TS uses the same tabu list
size and aspiration criterion, but uses a smaller number of
iterations as the stopping criterion. Note that the VND-TS/
WHL and VND-TS/RAN procedures will be terminated
when the stopping criterion of the TS in all four stages are
satisfied. If we use 50 iterations with no improvement as
the stopping criterion in the TS in each stage, the stopping
criterion of the procedure becomes 200 iterations with no
improvement. To make the stopping criterion of the
procedure in line with that of the BTS, we use 15 iterations
with no improvement as the stopping criterion for the TS in
each stage of the procedure.

The relative deviation index (RDI) and the number of
best solutions (NBS) are the criteria used to evaluate the
performance of the heuristics. The RDI was used by Lee et
al. [31] and Choi et al. [32] and is defined as:

RDI ¼
Sa�Sb
Sw�Sb

if Sw � Sbð Þ 6¼ 0;

0 otherwise:

�

Sa is the solution value obtained by method a, and Sb and
Sw are, respectively, the best and the worst solution values
among those obtained by the methods included in the
comparison. If Sw equals Sb in a problem, then RDIs of all
algorithms are set to 0.

We applied the analysis of variance (ANOVA) and
Duncan’s multiple range test to analyze the output (RDI) of
the test problems. Table 2 presents the results of the
ANOVA, which show that both initial solution generators

and heuristics significantly affect the output (RDI) of the
test problems. The initial solution generators include JB-
SWPT, JB-EWDD, and MB, and the heuristics include
BTS/WHL, BTS/RAN, VND-TS/WHL, VND-TS/RAN,
and NONE, which represents making no modifications on
the solutions produced by the initial solution generators. We
further applied Duncan’s multiple range test to measure if
the performance of any two of the initial solution generators
or any two of the heuristics is significantly different.
Table 3 presents the results of Duncan’s test on the initial
solution generators. Note that the initial solution generators
are sequenced in ascending order based on the average
RDI. If two generators have the same letter in the column
of results (groups), the performance of the two generators is
not considered to be significantly different. As all the
generators in Table 3 have different letters, the performance
of every pair of generators is significantly different with α=
0.01. The average RDIs of MB, JB-EWDD, and JB-SWPT
are 0.2313, 0.3526, and 0.3995, respectively. These data
show that the machine-based generator significantly dom-
inates job-based generators. Table 4 presents the results of
Duncan’s test on the heuristics. The average RDIs of VND-
TS/RAN, VND-TS/WHL, BTS/RAN, BTS/WHL, and
NONE are 0.1726, 0.2150, 0.2393, 0.2447, and 0.7674,
respectively. The test results show that both the VND-TS
heuristics, VND-TS/RAN and VND-TS/WHL, significantly
dominate the two BTS heuristics, BTS/WHL and BTS/
RAN. The performance of BTS/RAN and BTS/WHL is not
significantly different; however, VND-TS/RAN significant-
ly dominates VND-TS/WHL. These results demonstrate the
effectiveness of the proposed metaheuristics and confirm
our expectation that WHL and RAN contribute significant-

Table 7 Performance comparisons of the heuristics combining the three initial solution generators and the five heuristics (in RDI and NBSa)

RDI NBSa

NONE BTS/WHL BTS/RAN VND-TS/WHL VND-TS/RAN NONE BTS/WHL BTS/RAN VND-TS/WHL VND-TS/RAN

JB-SWPT 0.8531 0.3038 0.2971 0.2948 0.2489 0 15 18 14 26
JB-EWDD 0.7486 0.2693 0.2661 0.2628 0.2161 0 15 17 13 28
MB 0.7005 0.1608 0.1548 0.0874 0.0529 0 37 45 89 162

a NBS found in a total of 320 problems.

Table 8 Results of the heuristics under different experimental factors (in RDI)

Heuristics Number of Jobs Number of machines Processing time Setup time Due date tightness

Low High Low High Low High Low High Low High

MB 0.7106 0.6905 0.6009 0.8002 0.8187 0.5823 0.7031 0.698 0.7212 0.6799
MB/BTS-WHL 0.1687 0.153 0.1512 0.1704 0.1926 0.129 0.1662 0.1555 0.1827 0.1389
MB/BTS-VAN 0.155 0.1547 0.1462 0.1634 0.1906 0.119 0.1581 0.1515 0.1757 0.134
MB/VND-TS/WHL 0.1053 0.0696 0.0814 0.0935 0.0921 0.0828 0.0927 0.0822 0.0783 0.0966
MB/VND-TS/RAN 0.0755 0.0303 0.0457 0.06 0.0565 0.0493 0.0527 0.0531 0.0506 0.0552
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ly differently to the performance of the metaheuristics when
compared to that of the basic tabu search. The contribution
of the proposed search strategies to the proposed meta-
heuristics can be further investigated into the average
effects of the search strategies on the performance of the
metaheuristics. The average effect of the proposed strategy,
VND/RAN, on the performance of VND-TS/RAN can be
estimated by the difference between the average RDIs of
BTS/RAN and VND-TS/RAN (0.2393−0.1726=0.0667).
The average effect of the search strategy, VND/WHL, on
the performance of VND-TS/WHL can be estimated by the
difference between the average RDIs of BTS/WHL and
VND-TS/WHL (0.2447−0.2150=0.0297). These average
effects reveal that the search strategies make the metaheur-
istics dominate the BTS heuristics. This is a noteworthy
point because local search methods, such as TS, simulated
annealing and genetic algorithms, are commonly used
methods for the candidate problem and other scheduling
problems. Therefore, the proposed metaheuristic approach
deserves to be studied for solving other scheduling
problems or to integrate with other local search methods.
In addition, the average effects show that RAN makes the
search strategies more effective. This may be resulted from
the fact that RAN guides the search more randomly and
may increase the explorative capability of the search;
however, this deserves to be further studied.

Furthermore, we investigate the performance of the
heuristics, which combine the three initial solution gen-
erators and the five heuristics; the ANOVA and Duncan’s
test are applied to measure the performance of the 15
heuristics. Tables 5 and 6 present the results of the ANOVA
and the Duncan test. The results in Table 6 show that the
performance of MB/VND–TS/RAN, the heuristic combin-
ing MB and VND-TS/RAN, significantly dominates all the
other heuristics. Table 7 summarizes the average RDI and
NBS for the 15 heuristics. The average RDI and NBS of
MB/VND–TS/RAN are 0.0529 and 162, respectively. That
is MB/VND–TS/RAN generated 162 best solutions out of
320 test problems; also, although it does not produce the
best solutions in all of the test examples, on average, it
deviates from the best solutions by only about 5%. Therefore,
we choose MB/VND–TS/RAN as the best heuristic for the

candidate problem and further study the robustness of its
performance. Table 8 summarizes the average RDI for the
heuristics using MB as the initial solution generator at each
level of the experimental factors. The results show that MB/
VND–TS/RAN consistently dominates all the other heuris-
tics under different experimental conditions. Furthermore,
the data in the table show that, except the number of jobs, the
average RDIs of MB/VND–TS/RAN under all the factors,
regardless of low level or high level, are all around 0.05.
Therefore, we may conclude that the performance of MB/
VND–TS/RAN is quite robust to the experimental condi-
tions. In addition, the average RDI of MB/VND–TS/RAN
decreases to 0.0303 at a high level of jobs, which are 80-job
problems. This may be resulted to the effectiveness of MB/
VND–TS/RAN for more complicated problems.

The efficiency of the proposed heuristics is further
discussed. All the heuristics are coded using the C++
language, and all the experiments are performed on a PC with
AMD 1.8 GHz and 448 MB RAM. Table 9 displays the
average computation time (in seconds) required for the
heuristics using MB as the initial solution generator. The
results indicate that the proposed metaheuristics not only
dominate the BTS, but is more efficient than the BTS. It
reduces the CPU times by about 50%. This efficiency should
be resulted from the effect of the reduced-size neighborhood
structures. In addition, the average CPU time for MB/VND–
TS/RAN to solve an 80-job, eight-machine problem is
23.15 s, making it fast enough to be used in practice.

Finally, we study the capability of MB/VND–TS/RAN
for finding optimal solutions. As no research has been
conducted for finding optimal solutions for the candidate
problem, a set of small-size (eight-job and two-machine)
test problems are generated based on the combinations of
the remaining three experimental factors: range of job
processing times, range of setup times, and tightness of job
due dates, and ten test problems are generated for each
combination. The enumerative method is applied to find the
optimal solutions for all the 80-test problems. Table 10
presents the average RDI and the NBS produced by
applying MB, MB/BTS/RAN, and MB/VND–TS/RAN to
solve the test problems. The resulting data show that MB/
VND–TS/RAN is able to find optimal solutions for 62 out
of the 80 test problems, and its average RDI is as low as

Table 9 Average computation time required for the heuristics
(seconds)

Heuristics Job sizes * Machine sizes Average

40×4 40×8 80×4 80×8

MB <0.01 <0.01 <0.01 <0.01 <0.01
MB/BTS/WHL 6.98 6.82 38.98 40.41 23.30
MB/BTS/VAN 7.39 7.21 40.19 40.71 20.58
MB/VND-TS/WHL 2.27 3.17 12.05 15.39 8.22
MB/VND-TS/RAN 3.09 3.79 18.85 23.15 12.22

Table 10 Performance comparisons of MB/VND-TS/RAN vs. opti-
mal solutions

RDI NBSa CPU times

Optimal Solutions 0 80 496
MB 0.3425 14 0.0006
MB/BTS/RAN 0.0592 51 0.0109
MB/VND-TS/RAN 0.0239 62 0.0062

a NBS found in a total of 80 problems.
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0.0239. These results once again confirm that MB/VND-
TS/RAN is a promising heuristic for the candidate problem.

5 Conclusions

This paper develops hybrid metaheuristics to minimize the total
weighted number of tardy jobs for the unrelated parallel
machine problemwith sequence-dependent setup times. Taking
the characteristic of the objective into consideration, the hybrid
metaheuristics propose four reduced-size neighborhood struc-
tures and two search strategies; the computational results show
that the reduced-size neighborhood structures and the search
strategies significantly enhance the effectiveness and efficiency
of the proposed metaheuristics such that the proposed
metaheuristics significantly outperform the BTS. As local
search methods, such as TS, simulated annealing, and genetic
algorithms, are commonly used methods for scheduling
problems, applying the hybrid metaheuristic approach to other
scheduling problems with the neighborhood structures and
search strategies considering the characteristics of the schedul-
ing problems is a valuable research subject. Furthermore,
combining VND with other local search methods or path-
relinking procedures can be another interesting subject.
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