
~ Pergamon Computers ind. Engng Vol. 32, No. 1, pp. 169-185, 1997
Copyright © 1997 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
S0360-8352(96)00208-2 0360-8352/97 $17.00 + 0.00

A T A B U S E A R C H A P P R O A C H T O T H E C E L L F O R M A T I O N

P R O B L E M

NASSER ALJABER, WONJANG BAEK and CHUEN-LUNG CHEN
Department of Industrial Engineering, Mississippi State University, P.O. Drawer U, Mississippi State,

MS 39762, U.S.A.

(Recewed 1 June 1996)

Abstract--The formation of machine cells and part families is a central issue in the design of cellular
production systems In this paper, we propose a tabu search based approach to deal with this problem
by modeling it as a "Shortest Spanning Path" problem with respect to both parts and machines. A
comparison of the proposed method with some of the existing methods is presented. Our results revealed
that the proposed approach possesses several advantages that make it capable of handling the problem
addressed in this paper as it exists in real-world situations. Copyright © 1997 Elsevier Science Ltd

1. INTRODUCTION

Nowadays, manufacturers all over the world are coming under intense global competitive pressure
to simultaneously improve manufacturing flexibility, product quality, and production costs.
Consequently, the Group Technology (GT) approach to manufacturing is receiving a considerable
attention among manufacturers whose production systems are batch-oriented, because GT
promises widespread benefits when applied to such systems. Cellular manufacturing system (CMS)
is the application of GT to manufacturing. In CMS, the entire production system is decomposed
into production cells. Each one of these cells usually consists of a group of dissimilar machines
dedicated to produce one or more group(s) of similar (part families). Vakharia [1] presented three
major causes of the increased interest in CMS. First, the advent of modem manufacturing methods
(especially the concept of Flexible Manufacturing Systems) is really based on the formation of
manufacturing cells. Second, there exists an increasing demand for customized products, which are
produced in smaller lot sizes than before. Thus, there seems to be an increased focus on finding
new methods that have most of the strategic advantages of a job shop but also can provide
some of the operational advantages of an assembly line. CMS seems to be just such a method.
Third, production managers are starting to realize the importance of easing the boredom
and repetitive nature of the worker tasks. In using the GT concept, multifaceted workers are an
essential requirement and consequently this concept holds out some hope in motivating the work
force.

The first problem that needs to be addressed when implementing a CMS is the problem of
forming machine cells and their associated part families. This problem is referred to as the 'Cell
Formation' Problem. The partitioning of machines into cells and parts into part families is
essentially a clustering problem. The number of ways in which n objects can be decomposed into
R subsets is given by the Stirling's number [2], S(n, R),~ R~/R!. This suggests that total
enumeration of all feasible clustering alternatives in large size problems is impossible, even when
large computers are available. Therefore, efficient heuristic methodologies are needed to cope with
the problem under consideration as it exists in today's industrial applications where hundreds of
part types are produced in most average size production plants.

There are many heuristic methods available in the literature to solve CF problems. Burbidge's
Production Flow Analysis (PFA) [3] is one of the first approaches to the problem. In this approach,
part-machine groups are formed by conducting manual analysis of part routings and machines
availability for operations. The majority of existing CF methods are matrix based methods. In such
methods, the problem is formulated as a part-machine matrix in which an entry a~j = 1 or 0,

169

170 Nasser AOaber et al.

depending on whether or not part j visits machine i. In matrix based methods, clustering is made
by permuting the rows and columns of the 0-1 matrix until blocks of nonzero elements are formed
around the main diagonal. The most popular matrix arrangement based methods are: the Rank
Order Clustering (ROC) [4], the Direct Clustering Algorithm (DCA) [5], and the Bond Energy
Algorithm (BEA) [6]. Similarity measures between parts or machines are used by many cell
formation methods as the basis for forming part-machine groups. The well known similarity
coefficient based methods are the Single Linkage Clustering Algorithm (SLCA) [7] and the Average
Linkage Clustering Algorithm (ALCA) [8]. Some CF methods [9-11] use similarity coefficients in
conjunction with graph theory. In such methods, machines or parts are represented by vertices of
a graph in which the edges connecting these vertices represent similarity between machines or parts.
The graphs are decomposed into disconnected subgraphs to identify machine cells or part families.

There are a few CF methods based on meta-heuristic search techniques which include tabu
search, simulated annealing, and genetic algorithms. Simulated annealing based algorithms [12-14]
have appeared in the CF literature more often than the other two approaches. To our knowledge,
[15] and [16] are the only papers that use genetic algorithms and tabu search, respectively, to solve
CF problems. In [16], the CF problem is formulated as an integer programming model in which
the objective is to minimize the total number of inter- and intracell moves. This model contains
nine constraints which can be classified as: assignment, cell design, and machine capacity
constraints. The TS based algorithm proposed in [16] was specifically designed to deal with the
proposed mathematical programming formulation. Therefore, this algorithm cannot be adapted
to matrix representation of CF problems.

The purpose of this paper is to develop a 'Tabu Search' based heuristic algorithm that can deal
with matrix forms of CF problems. This algorithm identifies part-machine clusters, in a
part-machine matrix, with the objective of minimizing the total number of intercell moves. The
problem is solved by first solving two 'Shortest Spanning Path' problems, one for parts (columns)
and one for machines (rows). Then, the resulting spanning paths for parts and machines are
decomposed into subgraphs that represent machine groups and part families, respectively. The
objective of minimizing the total number of intercell moves is achieved, indirectly, through
minimization of distances between machines that belong to the same machine group (machine
subgraph) and parts that belong to the same part family. The remainder of this article is organized
as follows: a brief overview of tabu search techniques is presented in Section 2. Section 3 presents
the proposed method along with some experimental results for selection of tabu search parameter
settings which will be used by the algorithm. Section 4 discusses the practicality of the proposed
approach. Section 5 presents some conclusions and directions for future research.

2. BRIEF OVERVIEW OF TABU SEARCH TECHNIQUE

A tabu search based heuristic is regarded as a "higher level" heuristic for solving combinatorial
optimization problems as it is designed to guide simpler local search procedures to escape the trap
of local optimality. Many successful applications of tabu search for obtaining optimal or
near-optimal solutions to a variety of problems are reported in the literature. For details on some
of these applications refer to the pioneering work by Glover [17, 18]. In general, tabu search is
useful to find a near optimal, or possibly optimal solutions to problems which are of the type [19]:

minimize c(x)
subject to x e X.

Where c(x) is any function of a discrete variable x, and X is the set of feasible solutions. A step
of tabu search starts with the current feasible solution x e X to which a function m ~ M(x), that
transforms x into x', is applied to generate a new feasible solution (x' = m(x)). This transformation
is called a move and {x':x' = m(x); x, x' e X; m e M(x)} is called the neighborhood of x.

In order to avoid backtracking to a local optimum, some intelligence is incorporated in the search
process by using a memory structure that forbids or penalizes certain moves that would return to
recently visited solutions. This memory is called 'tabu list' and the moves it contains are called 'tabu
moves'. The suitable size (cardinal) of this list varies from one type of problem to another.

Cell formation problem 171

An application of tabu search is generally characterized by:

1. Initial solution
2. Type of moves applicable to a feasible solution x
3. Size of neighborhood
4. Tabu list size
5. Stopping criteria.

The generic procedure of tabu search techniques as outlined by Taillard [19] is as follows:

1. Start with any feasible solution x0, an empty tabu list T. Let x* = x0, c* = c(xo) and k = 0 (x*
is the best solution found up to now and c* is the value of the objective function for this
solution).

2. In M(x,) choose m, a move transforming xk that minimizes c(m(xk)) and that is not forbidden
by the elements of T. The move can be chosen by complete or partial examination of M(xk).
Let xk+ I = m(xk).

3. If c(xk+~) < c*, let c* = c(xk+~) and x* = xk+~.
4. If I TI = a specified number S, remove the oldest element of T; add the element t defined by

m and xk+~. Increment k by 1.
5. If the stopping condition (optimum reached, k larger than a fixed limit, etc.) is not satisfied,

go back to (2).

3. APPLICATION OF TABU SEARCH TO CF PROBLEMS

3.1. Modeling the CF problem

In order to apply tabu search technique to the cell formation problem, this problem needs to
be modeled in a way that makes tabu search applicable to it. One way of doing that is to model
it as a 'Shortest Spanning Path' (SSP) Problem as suggested by Slagle et al. [20] for general
clustering problems.

3.1.1. The SSP problem. The SSP problem is a special form of the well known combinatorial
optimization problem called Traveling Salesman Problem (TSP). The TSP can be stated as follows
[ll]:

Given a graph G(V, E), where V is the set of vertices and E is the set of edges connecting these
vertices with length Do for each (i , j) E V, find a cycle C that is incident to all v e Vwhich minimizes:

(i,j) • C

The only difference between the two problems (i.e. TSP and SSP) is that the TSP requires a return
to the starting vertex from the last one while SSP does not.

Tabu search can be adapted to the SSP problem by treating it as a permutation problem in which
the objective is to find the permutation that gives the shortest spanning path, i.e.,

rain. DIST(f~)
St. fl:Feasible Permutations of 1 n

where
n = number of vertices in a graph

DIST(f~) = distance corresponding to a given permutation (sequence) fL This distance is
calculated as:

DIST(n) = ~ ~" DuX~ for i ~=j
i f f i l j = l

where
X~ -- 1, if i adjacently preceded j , otherwise X~ = 0
D~j = distance between two vertices (parts or machines) i and j.

172 Nasser Aljaber et al.

Distance between parts (or machines) can be measured using one of the distance measures
available in the literature. For a recent review of distance and similarity measures refer to [21].
Recognize that similarity measures can be converted to distance measures and vice versa. This is
usually made by subtracting their computed values from their upper bounds. For instance, the
Jaccard similarity measure [7] can be converted to a distance measure by subtracting it from its
upper bound which is 1, i.e.,

C/y
D,j= 1 - S ~ = 1 T~+Tj -Co

where
So = computed value of the Jaccard similarity measure between parts (or machines) i andj.
C~ = number of parts common to both machines (or number of machines common to both

parts) i and j.
T~ = total number of parts processed by machine (or total number of machines required by

part) 1; l = i or j .
3.1.2. The relationship between CF and SSP problems. In matrix based cell formation methods,

part machine grouping is made by rearranging rows and columns of the 0-1 matrix so that the
nonzero elements (the 1 s) are grouped into a number of blocks (clusters). Rows and columns that
constitute boundaries of a block represent a machine group and its associated part family,
respectively. Forming this blocks is accomplished by moving some of the nonzero elements from
their positions in the initial matrix to some other positions so that the elements that constitute the
same block are gathered in close proximity around the center of their block. Since positions of
nonzero elements in the final matrix are not known before solving the problem, some criteria must
be used to guide the repositioning process.

In our approach, repositioning of the nonzero elements for the purpose of forming blocks is dealt
with by solving two SSP problems, one for rows and one for columns. In these problems rows or
columns correspond to a set of vertices in a graph, and distances between them correspond to length
of edges connecting the vertices. Solving SSP problems for row and column graphs results in
vertical and horizontal moves, respectively, made by the nonzero elements toward block formation.
This can be explained as follows: by definition, the SSP problem is a problem of sequencing the
vertices in a graph so that the length of the spanning path, as measured by the sum of distances
between adjacent vertices, is minimal. In the context of the problem addressed here, distance
between two vertices (rows or columns) is a function of the number of nonzero elements common
to both vertices, i.e., the distance decreases as the number of common nonzero elements increases.
This makes the horizontal boundaries of these submatrices easy to determine. Hence, by solving
a SSP problem for one dimension, say rows, the rows that have a large number of common nonzero
elements are expected to occupy neighboring positions in the SSP sequence of rows. Consequently,
rearranging the rows in the matrix according to their SSP sequence would cause shifting of the
nonzero elements along the vertical axis so that the elements that belong to highly similar rows
would become closer to each other in the direction of the vertical axis. Such a result leads to a
division of the matrix into a number of submatrices in which intra-submatrix rows are highly
similar while inter-submatrix rows are highly dissimilar. Hence, machine groups, which correspond
to sets of rows within the resulting submatrices, are identifiable. In the context of block formation,
SSP sequencing of rows is only a half way toward complete formation of the blocks since it leads
to the shifting of nonzero elements along the vertical axis only. Therefore, in order to identify the
part families, the process of block formation needs to be completed by solving another SSP problem
considering columns instead of rows.

Illustrative example

To see how cell formation and SSP problems are related, consider the 5 × 5 part-machine matrix
presented in Fig. 1. The distance matrices, which were constructed using the Jaccard distance
measure, for machines and parts are presented in Figs 2 and 3, respectively.

MI

M2

M3

M4

M5

Cell formation problem

P 1 P2 P3 P4 P5

1 0 0 l 0
0 1 1 0 1

1 0 0 0 0
0 I 1 0 0

0 0 0 1 0

Fig. h The initial 0-1 matrix.

MI M2 M3 M4 M5

MI 1 0.5 1 0.5

M2 ! 0.33 1

M3 1 1

M4 1

M5

Fig. 2. Distance matrix ~ r machines.

PI P2 P3 P4 P5
PI 1 1 0.67 1

P2 0 I 0.5

P3 I 0.5

P4 1

P5

Fig. 3. Distance matrix for parts.

173

A s we m e n t i o n e d ear l ie r , we need to o b t a i n SSP sequences for b o t h m a c h i n e s a n d pa r t s :

(i) Obtaining SSP sequence for machines

Let f2m r e p r e s e n t the sequence o f m a c h i n e s in the 0-1 ma t r ix . In the in i t ia l ma t r ix :

fL~ = 1 -2 -3 - -4 -5 = . X,2 = X23 = X34 = X45 = 1, o t h e r X,js = 0.

T h e c o r r e s p o n d i n g d i s t a n c e wil l be:

DIST(~m) = DI2XI2 + D23X23 + O34X34 --{- D45J(45 = Dl2 + D23 + D34 + D45 = 1 + 1 + 1 + 1 = 4

- - S w a p m a c h i n e s 1 a n d 2 to o b t a i n a new sequence:

fire = 2 - 1 - 3 - - 4 - 5 ; DIST(f2m) = D21 + Dr3 + D34 + D45 = 1 + 0.5 + 1 + I = 3.5

- - S w a p m a c h i n e s 1 a n d 4 to get:

~'~m = 2 - - 4 - 3 - 1 - 5 ; D I S T (f l , ,) = D24 + D43 + D31 + D15 = 0.33 + 1 + 0.5 + 0.5 = 2.33.

P! P2 P3 P4 P5

M2 0 1 l 0 1
M4 0 1 1 0 0
M3 ! 0 0 0 0

MI ! 0 0 I 0

M5 0 0 0 1 0

Fig. 4. The 0-1 matrix with machines ordered.

174 Nasser Aljaber et al.

P5 P2 P3 P4 PI

MI 0 0 6 1 1
M2 1 1 I 0 0
M3 0 0 0 0 1
M4 0 1 I 0 0
M5 0 0 0 1 0

Fig. 5. The 0-1 matrix with parts ordered.

The 0-1 matrix corresponding to the best machine sequence found so far is presented in Fig. 4.
By inspecting this matrix we can see that the objective function (DIST(~m)) cannot be minimized
any further.

(ii) Obtaining SSP sequence for parts

Let Ilp represent the sequence of parts in the part-machine matrix. In the initial matrix:

f~p = 1-2-3-4-5; DIST(~p) = D~2 + 023 -'1- 034 --]- D45 = 1 + 0 + 1 + 1 = 3.0

- -Swap parts 1 and 5 to get:

lie = 5-2-3~1--1; DIST(f~p) = Ds2 + D23 + D34 + D4~ = 0.5 + 0 + 1 + 0.67 = 2.17/

The 0-1 matrix shown in Fig. 5 which corresponds to the new parts' sequence (5-2-3-4-1),
indicates that there is no further improvement that can be achieved by generating a new sequence.
The 0-1 matrix in which machines and parts are ordered according to their SSP sequences is shown
in Fig. 6. There are two clusters appearing in this matrix with no intercell moves. The first cluster
contains machine set {2, 4} and part family {2, 3, 5}. The other cluster contains machine set { 1, 3, 5}
and part family { 1, 4}. Note that the example problem was solved optimally by making few number
of moves which were decided upon simply by inspecting the 0-1 matrix. However, if a larger
problem (say 10 x 10) is to be solved, then, efficient search procedure such as tabu search is
required.

3.2. Developing the TS based algorithm

As it has been mentioned earlier, there are some parameters that affect the performance of tabu
search. The best parameter settings for tabu search differ from one type of problem to another.
This section presents the specific characteristics of the proposed TS algorithm and the results of
the experiments that we carried out to select the best combination of parameter settings that suit
the type of problem under consideration.

3.2. I. Initial solution. The initial solution in tabu search applications can be either a random
or a heuristic solution. Our algorithm uses the sequences in which the parts and the machines are
given in the initial part-machine matrix (i.e., machine in row (i) = i, part in column (/) = j) as
initial solutions to the problems of sequencing parts and machines, respectively.

M2

M4

M3

M1

M5

P5 P2 P3 P4 P1

1 i 1 0 0

0 1 1 0 0

0 0 0 0 1

0 0 0 I i

0 0 0 I 0

Fig. 6. The solution matrix.

, ¢

[-

e~

e~

tm

t~

Cell ~ a t i o n problem

i

~ N ~ M ~ M M ~ " ~ M ~

. ~ N ~ g ~ N ~

M ~ o ~ ¢ ~ M ~ - - ~ " ~ o d ~

~ ~ d ~ ~ d " ~

m m ~

~ ~ & ~ ~ " ~

~ - ~ " ~ o ~ N ~ # ~ $ _ _ _ ~ . ~

- - - ~ ~ ~

&

z

6
z

I

Z ~ ~

z z .~X

175

176 Nasser Aljaber et al.

3.2.2. Basic neighborhoods (moves). For permutation problems, the neighborhood may be
defined in several ways. The most common types of neighborhoods are as follows:

(1) Adjacent Pairwise Interchange

This type of neighborhood contains all those permutations a ' obtained from a by exchanging two
adjacent jobs placed at the ith and the (i + 1)th positions, i.e.,

a = (xl xi, x~ + 1 x,)

a ' = (x , x,+,,x~ x ,) ; V i t { 1 , . . . , n - 1}

(2) Insert

This type of move contains all those permutations a ' obtained from a by inserting the component
in position j before component in position i, i.e.,

= (x , x , x j x .) =~

a ' = (x , x~_~,xj, xi, x~+~ xj_,,xj+~ x,) ; V i , j ~ { 1 , n } , i ~ j , j - 1

(3) Swap

This neighborhood contains all those permutations a ' obtained from a by swapping the
components in positions i and j , i.e.,

a = (x, ,x~ xj x .) =~

a ' = (x , xj ,x , x ,) ; V i , j e { 1 , . . . , n } , i ¢ j .

3.2.3. Size o f tabu list. Several applications of tabu search have found the magic number 7(_+2)
to be a remarkably good choice for tabu list size [22]. This outcome has invited speculations as
to whether the role of such a number in human short term memory is the result of a natural
selection process related to human problem solving ability [22]. Obviously, characteristics of the
solution space can affect the ideal tabu list size, but it may also be that problems typically
encountered in practice favor a range of values that cluster around 7.

3.2.4. Size o f neighborhood. Size of neighborhood determines how to examine the neighborhood
before choosing a move leading to the next step. Two possible choices are:

(1) Whole Neighborhood

Examine the entire neighborhood and take the most successful move that is not tabu. This
method needs more computation time before a move is made.

(2) Partial Neighborhood

Generally, partial neighborhood is defined as the search method in which acceptance of a move
is made by examining only part of the entire neighborhood. Such broad definition suggests that
partial neighborhood can be defined in many ways (see [23] for details). For example, examine the
neighborhood and take the first improving solution, that is not tabu, as the candidate solution in
the next search. Under this definition, which is adopted in this study, the size of the neighborhood
that needs to be covered by the search process before a new move is accepted is unknown. Simply
because the location of the next improving solution, in the solution space, is unknown.

3.2.5. Defining and storing the tabu moves. There are several different approaches in the literature
for defining and storing the tabu moves. In our algorithm, however, we are adopting the most
widely recognized approach. In this approach, the tabu moves are defined as the reversals of the
latest S accepted moves. This means that the tabu list is manipulated like a FIFO queue in that
each time a new move is posted to one end of the list, it pushes the oldest move out the other end.
In tabu search, the trap of local optimality becomes escapable by making a sort of temporary hold

Cell formation problem 177

on repeating certain moves (i.e., recently accepted moves), so that the search process is given the
chance to tackle uncharted regions in the solution space. Forbidding occurrence of the reversal of
an undesired move is made to avoid coming back to the condition (solution) that has already led,
and therefore might lead again, to the occurrence of this move. The reason for using recency based
tabu lists can be explained as follows: in tabu search, the search process moves successively from
one region to another in the solution space, and recency of a move reflects the likelihood that the
search is being conducted in the region where this move belongs. Thus, in order to expand the
diversity of the search (i.e., by moving, as quickly as possible, from the currently searched region
to another region in the solution space), it is relevant to consider recent moves only.

3.2.6. Stopping criteria. The stopping criteria plays a major rule in determining the computation
time and the quality of solution obtained by tabu search. The most commonly used stopping rules
are [19]:

(1) Stop if the number of iterations made without improving the current solution exceeds a
specified constant kj

(2) Stop if the number of iterations exceeds a specified constant k2.

The TS based algorithm proposed here uses rule (1) because it sounds more relevant to the search
process since we do not have any idea beforehand about the number of iterations required to reach
a good solution. Hence, using rule (2) might lead to termination of the search process even if rapid
improvement is taking place, or it might result in unnecessary computation time if the best solution
is obtained in the early stages of the search process.

3.2.7. Experimental results. In order to select the tabu search parameter settings that suit the
type of problem addressed in this paper, a comparative experimentation was conducted. The
experiments consist of 20 different size problems which were sampled from a uniform distribution
with the number of columns (parts) ranging between 5 and 100, while the number of rows was
set at 25. In these problems, tabu search was only used to perform SSP sequencing of parts.
Recognize that the fashion in which the sequencing of parts is made, is exactly the same as that
of the machines' sequencing. Hence, it is sufficient to make selection of TS parameter settings based
on a study that is conducted on either one of these two dimensions. In our experimentations, tabu
search was applied to each one of the 20 generated problems using each possible combination of
the following parameter settings:

(1) Size of neighborhood:Partial and Whole
(2) Type of move:Insert, Swap, and Adjacent Pairwise Interchange (API)
(3) Size of tabu list:5, 7, 9, and 11.

This results in a total of 480 runs (i.e., 2 x 3 x 4 x 20 problems). In order to evaluate the
goodness of solutions, values of the associated objective functions (DIST(fl)) are used. The criteria
for selecting the best combination of parameter settings is the number of times in which a
combination gives the best result (the least objective function values) over the 20 generated
problems. Throughout the experiments, stopping rule (1), which was presented earlier in this paper,
is used with KI = number of parts.

Results of the experiments are presented in Table 1. The entries of this table are the computed
values of the objective functions, using the Jaccard distance measure. According to these results,
the most suitable combination of parameter settings for our problem is: Partial neighborhood size,
Insert type of move, and tabu list size of 7. This combination was able to obtain the best results
more frequently (16 times) than the rest of the combinations. There are two comments which are
worth making here concerning our findings. First, superiority of the 'Partial' neighborhood over
the 'Whole' neighborhood may be attributed to the perturbation (i.e., exploration of more new
regions) introduced in the solution space by accepting every successful move that is not tabu.
Second, the Adjacent Pairwise Interchange (API) type of move was notably inefficient with respect
to goodness of its solutions, as indicated by its large objective function values in comparison with
Insert type of move. A possible reason for such a finding could be the API's number of moves
(cardinal), made in each iterations, which is only (N - 1). This number is very small as compared
to the cardinal of the Insert type of move which is (N - 1) 2.

178 N a s s e r A l j a b e r e t a l .

3.3. The proposed CF method

The proposed cell formation procedure consists of the following three phases: (I) obtaining SSP
sequences for parts and machines using tabu search, (II) constructing the solution matrix, and (III)
determining the boundaries of the part-machine clusters. These phases are presented below.

P H A S E L" the TS algorithm for sequencing machines and parts

The proposed TS algorithm is used to construct the SSP sequences for the parts and machines
independently. This algorithm will be presented after we define the following notations:

m =

N I W I =
N,(x) =

S =
T =
X =

DIST(x) =
k~ =

(x, y> =

number of parts (columns) in the part-machine matrix
number of machines (rows) in the part-machine matrix
number of iterations made without improving the current solution
the neighborhood defined by the insert type of moves
size of the tabu list
the set of tabu moves
sequence (permutation) of rows or columns
distance corresponding to sequence x
a specified number of iterations corresponding to Stopping rule (1)
a move that transforms a solution x into another solution y

(i) Constructing SSP sequence for the machines

Step 0: Input the part-machine matrix
Set: k~ = m
N I W I = 0

S = 7
T = {0}
x = x0 (hint: x0 is the order of machines as given in the initial matrix)

Step 1: Construct the distance matrix for machines
Step 2: Calculate 'DIST(x)' and set: incumbent = DIST(x)
Step 3: Let N I W I = N I W I + 1
Step 4: Make a move (x , x ') ~ N~(x) with (x, x')¢{T}
Step 5: Calculate 'DIST(x')'
Step 6: If (DIST(x') < incumbent) then

--update T by including (x', x)
--set: incumbent = DIST(x')
- - X = X ~

- - N I W I = 0
--go to step 3
Else
- - I f (N I W I < K~) then
--go to step 3
Else
--stop

(ii) Constructing S S P sequence for the parts

--repeat all the above steps considering parts (columns) instead of machines (rows).

• P H A S E H: constructing the solution matrix

----construct the final matrix by rearranging the rows and columns of the initial matrix according
to their SSP sequences obtained in Phase I.

M

A
C
H
I

N

E
S

(a)

l
MG(1) 2

3

MCR2) 4 1
5 1

MG(3) 6
7

8 !!iiiiii::iiiii!~! iii[:: i iii~ iiii~iiii

~ o .) lO i!ii!iiiiii!~ ii~iji~i!~i i! i~i
ii i~4!iiiiiiii ii!!i~ilii i{i il
12 iiiiiiiiiiiii iii!ii!iiiiii~!~:~:i~iiiiiii~il

........................ ::+::i:::i:i::i
13 1
14 1

MG(5) 15
16 1

17
18

MCR6) 19
20

D1d+~

Cell fo rma t ion prob lem

P A R T S

PF(I) PF(2) PF(3) PF(4) PF(5) PF(6)
1 2 3 4 5 6 7 8 9 10 11 12 13 141 15 16 17 18 19 20 Oi.i+l

::i::i::~i ~::itii; i ::i ::::i::i~i iiiiiJ::i::i!i ii::i 0.25
~ ~iii~iiiiiiiiiiiiii~iiiiiiiiiiii~iiii!ii 0.50

1

1 1 1 iiiiiiilii ~i 0.50 H(1)

i i[ii::ii::iiiii::]iii::i::!::i iii::~i::i::iiii 0.40 H(2)
1 1 ii~ii ~iiiiiiii~iiii 0.77

I 0 .17 H(3)
0.20
0.33

1 0.29

l l 0.75

0.00 H(4)
0.40

i :iii~i iii~ii:i!!:ii 0.33
1 l 0 .7 l =: : :::::::::>::

t; i:i:!::: :1 : i 1 : 1 0.25 H(5)
t: ::i I ::!::i::ii~i::ii :i 0.25

1]:: !i :: ::ii i i: i:::i:ili::iilii i 0.33
l l

5 2 1 3 8 5 2 6 5 0 0 6 5 6 2 2 8 2 4
0 0 7 8 6 0 0 7 O, 0 0 0 0 7 0 9 0 9 3

V(l) V(2) , V(3) V(4) V(5)

Co)

l
MC~I) 2

3
4 1
5 1

MCR2) 6
M 7

A 8
C 9
H MCR3) 10
l 11
N 12

E 13
S 14

i MG(4) 15
16 I

17
18

MG(5) 19
20

P A R T S

PF(1) PF(2) PF(3) PF(4) PF(5)
1 2 3 4 5 6 7 8 9 lO I 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20 Di,i+l

ii/iilii!iiii::i!i::i~i::i!iii::::::i~ili~i~i:.
i! ~f!iiiii!!!ii~iiiiiiiiii:iiiiiiiiii

1 i!i iiiiiiiiiiiiiiiiiiiiiii:i!iiiiiiiLl l 1

::: ~ : i : : : : : : : ~:~::::::::

. ~iiiiiii~iiiiiiiiiiii~iiiiii.

1
[1 l

::::::::::::::::::::::::::::::::::::::i!~i::i
~:iiiiiiiUiii!i :~:~!!iiiiii ii

l iiiiiii~ii!ii!iiiiiiii i ~ iii
l

1

l 1

i%iii:: ii:::%ii i~ ~: ::i ~iiiiiil:i ?: :: :: :: ii!::!iii

1
1

5 2 1 3 8 5 2 6 5 0 0 6 5 6 2 2 8 2 4
0 0 7 8 6 0 0 7 0 0 0 0 0 7 0 9 0 9 3

0.25
0.50
0.70
0.50 H(l)
0.60
0.40
0.77

1 0 .17 H(2)
0.20
0.33
0.29
0.75

0 . 0 0 H(3)
O.4O
0.33
0.71

0.25 H(4)
0.25
0.33

V(I) V(2) V(3) V(4)

Fig. 7(a). A 20 x 20 solut ion mat r ix obta ined by the TSA.

Fig. 7(b). T h e resul t ing mat r ix after de te rmin ing the g roups boundar ies .

179

180 Nasser Al jaber et al.

PHASE III: determining boundaries of part-machine clusters

In this part of our paper, we present a heuristic procedure to determine boundaries of the
part-machine clusters in TSA's solution matrices. The problem of determining the horizontal and
vertical boundaries of the clusters is equivalent to the problem of finding the edges in the machines'
and parts' spanning paths, respectively, that need to be eliminated in order to decompose these
two paths into a number of subpaths (machine cells or part families), so that the overall length
of these subpaths is minimized. The number of subpaths, into which the machines' and parts'
spanning paths should be decomposed, is determined by the number of natural part-machine
groups (clusters) that exist in the given data set. In ideal cases, where the groups are mutually
independent, the number of groups can be determined easily by inspecting the solution matrix.
However, in cases where high interactions exist between the groups, the number of natural groups
that exist in the data set, is difficult to determine. In order to overcome this problem, our heuristic
procedure starts by decomposing both the machines' and parts' spanning paths into a user-specified
number of segments, UL, that represents an upper limit to the number of groups. Then, it reduces
the number of groups iteratively, using maximum reduction in number of intercell moves as a
criteria, until a specified stopping criteria is satisfied. Clearly, the value of UL has to be greater
than or, at least, equal to the number of natural groups in the data set. Therefore, if a rough
estimate, to the maximum number of groups, cannot be made by inspecting the solution matrix,
then, UL can be assigned a feasible large value (e.g., UL = min{n, m}/2). The algorithmic form
of the proposed procedure will be presented after we defined the following notations:

UL = a user-specified upper limit to the number of part-machine groups.
ng = the current number of part-machine groups.

PF(j) = part family J.
MG(I) = machine group I.

H(I) = the horizontal line that separates MG(I) and MG(I + 1).
V(j) = the vertical line that separates PF(j) and PF(j + 1).

S(I, J) = the submatrix formed by the intersection between row set I and column set J.
NS(I, J) = the number of ls in S(I, J).

X(I, J) = 1, if MG(I) and PF(j) are assigned to each other. Otherwise, X(I, J) = 0
B = {S(I, J)IX(I, J) = 1}. The elements of B are referred to as 'blocks'.

A(I, J) = the change (increase or decrease), in number of intercell moves, that results from
breaking block S(I, J) ~ B.

The proposed procedure

Step 0: Set ng = UL and B = {0}
Step 1: Determine the boundaries of ng machine groups (row sets) and ng part families (column

sets). This is accomplished by drawing a horizontal line (H(I)) and a vertical line (V(/'))
across each one of the longest ng - 1 edges in the machines' and the parts' spanning

Table 2. Results of comparisons

Original solution TSA solution
Data Size Source of
set M x N data set NI Nc Ne MAX Nc Ne MAX

1 12 x 19 [11] 75 3 23 4 3 22 4
2 14 x 24 [26] 58 4 4 9 4 2 9
3 16 x43 [11] 126 5 29 5 5 27 5
4 20 x 35 [27] 152 4 39 7 4 35 7
5 24 x 40 [28], DATA SET 1 131 7 0 5 7 0 5
6 24 x 40 [28], DATA SET 2 130 7 l0 5 7 l0 5
7 24 x 40 [28], DATA SET 5 130 7 49 6 7 46 5
8 24 x 40 [28], DATA SET 6 131 6 54 6 7 52 6
9 24 x 40 [28], DATA SET 7 131 8 64 l0 9 61 7

l0 30 x 40 [29] 152 5 21 8 5 18 8

NI = Number of '1' elements in the 0-1 matrix.
Nc = Number of cells (clusters).
Ne = Number of intercell moves.
MAX ~ Number of machines in the largest cell.

Cell formation problem 181

paths, respectively. This results in partitioning of the solution matrix into (ng) 2
submatrices.

Step 2: Assign each part family to one machine group, and vice versa. This is done by solving
the linear assignment problem presented below. This problem can be solved by using the
Hungarian algorithm. For details on this algorithm, the reader is referred to [24].

Maximize

UL UL

Z ~_, NS(I, J)X(I, J)
l = l J = l

Subject to

UL

X(I, J) = 1
J = l

f o r / = 1,2 UL

UL

~., X(I, J) = 1
1 ~ 1

for J = 1,2 UL

X(1, J) = 0 or 1 for I, J = 1, 2 UL

Step 3: Iteratively, reduce the number of groups until the specified stopping criteria (see (3) below)
is reached. In each iteration, the number of groups is reduced, by one group, by breaking
the block, among the currently existing blocks, that results in the largest reduction in
number of intercell moves. Breaking a block, S(I, J) ~ B, means that the assignment that
was made between MG(I) and PF(j) is broken, so that the machines in MG(I) are
included in an adjacent machine group (i.e., in MG(I + 1) or M G (I - 1)) and the parts
in PF(j) are included in an adjacent part family. This means that a block is broken by
eliminating one of its bordering 'horizontal-vertical' line combinations. Hence, for each
block, at most, two horizontal lines (H(I) and H (I - 1)) and, at most, two vertical lines
(V(j) and V(j - 1)) have to be checked in order to find the best candidates (one vertical
and one horizontal) for elimination. The stopping rule, used here, is to stop when the
number of intercell moves cannot be reduced, any further, by breaking any one of the
remaining blocks. The algorithmic form of the proposed procedure is as follows:

(1) For each S(I, J) ~ B, compute: A(I, J) = AH(I) + AV(j) - NS(I, J),
where:

AH(I) = max{NS(I, J+(I)), NS(I, J-(I))}

AV(j) = max{NS(I+(j), S), NS(I-(j), J)},

where:

I+(j) = IlS(I, J + 1) ~ B; and I-(j) = IIS(I, J - 1) 6 B

J+(I) = JIS(I + 1, J) ~ B; and J-(/) = J I S (I - 1, J) ~ B

(2) Identify: A(I*, J*) = maximum {A(I, J)IS(1, J) e B}.
(3) If A(I*, J*)~< 0, go to 6. Otherwise, break the block S(I*, J*) by eliminating the line

combination H* - V*, that maximizes the reduction in number of intercell moves. H* and
V* are determined as follows:

IfNS(I*, J+(I*)) > NS(I*, J-(I*)), let H* = H(I*). Otherwise, let H* = H(I* - 1). Also,
if NS(I+(j*), J*) > NS(I-(j*), J*), let V* = V(j*). Otherwise, let V* = V(j* - 1).

182 Nasser Aljaber et al.

(4) Break the assignment that was made between MG(I*) and PF(j*). Combine MG(I*) with
the adjacent machine group that was separated from MG(I*) by the horizontal line H*.
Similarly, combine PF(j*) with the adjacent part family that was separated from PF(j*) by
the vertical line V*.

(5) Update the partitioned matrix and the set B in accordance with (4) and (5), let ng = ng - 1,
and go to (1)

(6) Stop; the number of intercell moves cannot be reduced by breaking one of the remaining
blocks.

E X A M P L E
In order to illustrate the proposed procedure for determining boundaries of the part-machine

groups, consider the TSA's solution matrix presented in Fig. 7(a). A step by step illustration of
the proposed procedure, using UL = 6, is given below.

Step 1: The longest 5 edges in the machines' spanning path are: (3, 4), (5, 6), (7, 8), (12, 13) and
(16, 17), with length (Du+ 1) of 0.70, 0.60, 0.77, 0.75, and 0.71, respectively. The longest
5 edges in the parts' spanning path are: (5, 6), (8, 9), (12, 13), (14, 15), and (17, 18), with
length (Djj+I)of 0.86, 0.67, 0.67, 0.60, and 0.80, respectively. The partitioned matrix is
presented in Fig. 7(a).

Step 2: In this step, the Hungarian algorithm gives the following part family-machine group
assignments: 1-[MG(4), PF(1)], 2-[MG(5), eF(6)], 3-[MG(6), eF(5)], 4-[MG(1), PF(3)],
5-[MG(3), PF(2)] and 6-[MG(2), eF(4)]. The set B = {S(4, 1), S(5, 6), S(6, 5), S(1, 3),
S(3, 2), S(2, 4)).

Step 3: Iteration 1
(1) The computed values of A(I, J), for each S(I, J) ~ B, are as follows:

A(1, 3) = - 18, A(2,4) = + 5, A(3, 2) = - 3, A(4, 1) = - 17, A(5, 6) = - 6, and A(6, 5) = - 8.
To illustrate, we show below how A(2, 4) was computed, A(2, 4) = AH(2) + A V(4) -
NS(2, 4)

AH(2) = max{NS(2, J+(2)), NS(2, J-(2))}
J+(2) = JIS(3, J) ~ B = 2; and J-(2) = JIS(1, J) ~ B = 3;
=, AH(2) = max{US(Z, 2), US(Z, 3)} = max{4, 1} = 4

A V(4) = max{NS(I+(4), 4), NS(I-(4), 4)}
•+(4) = IIS(I, 5) ~ B = 6; and •-(4) = IIS(I, 3) ~ B = 1;
=~ AV(4) = max{US(6, 4), US(l , 4)} = max{3, 2} = 3
=~A(2,4) = 4 + 3 - 2 = 5

(2) A(I*, J*) = maximum{ - 17, - 8, - 8, - 6, - 3, + 5} = + 5 = A(2,4) =~ I* = 2
and J* = 4.

(3) Since A(2, 4) > 0, then, we break block S(2, 4) by eliminating the horizontal line H* and
the vertical line V*. These two lines are determined as follows:

-- NS(2, J+(2)) > NS(2, J-(2)) ~ H* = H(I*) = H(2).

-- US(I+(4), 4) > NS(I-(4), 4) ~ V* = V(j*) = V(4).

(4) Break the assignment that was made between MG(2) and PF(4). Combine MG(2) with
MG(3), and combine PF(4) with PF(5).

(5) The partitioned matrix is updated in accordance with (4) and (5). The updated matrix
is presented in Fig. 7(b). Set B is also updated as: B = {S(3, 1), S(2, 2), S(1, 3), S(5, 4), S(4, 5)}.

Iteration 2
The computed values of A(I ,J) for S (L J) ~ B are as follows: A(3, 1) = - 15,

A(2, 2) = - 5, A(1, 3) = - 9, A(5, 4) = - 11, and A(4, 5) = - 7. None of these values
is greater than zero, therefore, the procedure stops here, with ng= 5.

MI

M2

M3

M4

M5

M6

M7

M8

M9

Fig.

Cell formation problem

PI P2 P3 P4 P5 P6 P7 P8 P9

3 1 3

1 3 1 3

3 3 3

1 3 1 1

3 I 3 1

I 1 2

3 3 1

3 I 1 I 3

3 2 3

8. Non-binary matrix of Steudel and Ballakur.

183

4. P R A C T I C A L I T Y OF THE PROPOSED A P P R O A C H

Unlike most of the existing cell formation methodologies, the tabu search based approach
proposed in this paper possesses several advantages which bring it closer to industrial reality. First,
this method offers good quality solutions. Second, it can deal with cell formation problems with
non-binary part-machine matrices. Third, it can handle large size problems efficiently.

4.1. Quality of solutions
In order to examine the effectiveness of the TSA, it has been applied to 10 data sets (problems)

which were collected from the literature. The distance measure which was used by the TSA
throughout the comparisons is the Jaccard distance measure [7], which was presented earlier in this
paper. Table 2 presents the sources of the test problems, their solutions as reported in their sources,
and their solutions as obtained by the TSA. The criteria, based on which the comparison is made,
is the number of intercell moves. However, in order to ensure a fair comparison, the conditions
(number of cells and maximum cell size) associated with the number of intercell moves, in a given
solution, are reported because the number of intercell moves can be decreased or increased by
manipulating these conditions (e.g., the number of intercell moves can be reduced by combining
two or more cells). Obviously, when two clustering algorithms are to be compared with each other,
a better clustering algorithm is supposed to give less number of intercell moves accompanied by
the same or higher number of cells, and the same or less maximum cell size.

The results of the comparison indicate that the TSA was able to obtain better results than the
original solutions 8 times out of 10, and it gave the same solutions as the original ones for the
two remaining test problems. However, we believe that these results do not reflect superiority of
the TSA as it exists, and if, larger size problems (e.g., 200 x 200) with somewhat ill structured
matrices are used, then, superiority of the TSA will become more apparent.

4.2. Dealing with non-binary problems
There are many cell formation methods that cannot handle problems in which the entries of the

part-machine matrix are non-binary (e.g., processing time, operations sequence, etc.). This property
affects the practicality of such methods because real life applications involve many factors other
than part routings. Our approach can be adjusted very easily to make it capable of handling
non-binary matrices. This is achieved by using a distance measure that can accommodate binary
data. Figure 7 presents the example problem presented by Steudel and Ballakur [25] where the
entries of the part-machine matrix are the processing times of parts on machines. Figures 8 and
9 present the solutions obtained using the Steudel and Ballakur's dynamic programming procedure
and the TSA, respectively. These two solutions are identical.

Deviation of the similarity measure proposed by Steudel and Ballakur from its upper bound,
which is 2, was used by the TSA to measure distance between parts or machines. Hence, the distance
measure used by the TSA is as follows:

{ Tc~ Tci~

C.AIE 3Z-|-G

184

M7

M3

M8

M4

M5

MI

M2

M9

M6

Nasser Aljaber et al.

P7 P3 P8 P4 P5 Pl P2

................. i i iiii',iiii !iiiiii!!iiii!iiiiiiiii',! i i
l !',i' iiillii',i!iiiiiiii', ii iiiiiiii!ii: i

1

P9 P6

i!iiii iiiiiiii!iiiii iiiiiiiiiiiii iiii!
i!iiii iiiiiiiiiiiiiiii !!!iii iil
iiiii !ii!!!iii!i!ii! !!i!!ii!i!!i ii!!ii

Fig. 9. Steudel and Ballakur's solution.

where:
D U = Distance between two machines (or t w o parts) i and j.
Tc~ = Total processing time on machine i required by all parts common to both

machines i and j (or total processing time required by part i on all machines
common to both parts i and j)

T, = Total processing time on machine i (or total processing time required by part i).

4.3. Dealing with large size problems

Another factor that assures practicality of our tabu search approach is its ability to deal with
large size problems efficiently. The proposed Tabu Search procedure was coded in Fortran and run
on a SUN 4/490 computer system. Table 3 shows the CPU times required to solve five large size
problems. To generate these problems, part-machine matrices with number of machines equal to
100 and number of parts ranging between 100 and 500, were deliberately designed to have perfect
Block Diagonal Forms (BDF) with 25 equal size blocks (clusters). Then, the columns of each one
of these matrices were randomly permuted to generate initial matrices.

The reported CPU times are the times required by Phase I of the proposed TS based method
to re-obtain the original matrices (i.e., the matrices that have perfect BDF's). Note that the
proposed method needs to be applied to the columns only sine the rows of the original matrices
were not permuted. In the TS based algorithm (Phase I), Stopping rule (1) is used with kr = number
of parts. The results indicate that the TSA's CPU time requirements are very reasonable since a
problem with 500 parts was solved optimally in less than 10 min.

5. CONCLUSIONS AND AVENUES FOR FUTURE RESEARCH

In this paper, a new machine-component clustering heuristic based on tabu search concept has
been proposed. An investigation was conducted to select the tabu search parameter settings that
suit the type of problem under consideration. The proposed heuristic was compared with some of
the existing heuristics to cell formation. The results of the comparisons indicate that the proposed
method is very efficient with respect to quality of its solutions. Although it requires somewhat larger
CPU times as compared to simpler clustering algorithms, we believe that this could be justified
by the quality of solutions it offers as well as its other features, which bring it closer to industrial
reality, such as its ability to solve large size problems efficiently and to deal with non-binary
part-machine matrices.

This study can be extended in the following two ways: (1) development of a new distance measure
based on the specific objectives of CMS. For instance, one of the major objectives in adopting CMS
is setup time reduction. This suggests the need for a distance measure that considers part tooling
and setup time requirements. (2) The performance of the TS based heuristic, developed in this
paper, can be enhanced by extending the study conducted in Section 3. Some of the factors that

Table 3. CPU time in seconds using the TSA

No. of parts 100 200 300 400 500

CPU time 19.7 58.6 162.1 319.5 503.3

Cell formation problem 185

M7

M3

M8

M4

M,5

M1

MY.

M6

M9

P9 P6 P2 P1 P5 P4 P8 P3 P7

Fig. 10. Solution using the TSA.

need to be inves t iga t ed , in e x t e n d i n g this s tudy , inc lude d ivers i f i ca t ion and in tens i f i ca t ion s t ra tegies ,

n e i g h b o r h o o d d e c o m p o s i t i o n s t ra tegies , a n d a s p i r a t i o n cond i t i ons .

REFERENCES

1. A. J. Vakharia. Methods of cell formation in group technology: a framework for evaluation. J. Op Mgmt 6, 257-271
(1986).

2. H. Lee and A. D. Garcia. A network flow approach to solve clustering problems in group technology. Int. J. Prod.
Res. 31, 603-612 (1993).

3. J. L. Burbidge. A manual method for production flow analysis. Prod. Engng 56, 34-38 (1977).
4. J. R. King. Machine-component grouping in production flow analysis: an approach using a rank order clustering

algorithm. Int. J. Prod. Res. 18, 213-219 (1980).
5. H. M. Chan and D. A. Milner. Direct clustering algorithm for group formation in cellular manufacture. J. Manufact.

Syst. 1, 64-76 (1982).
6. W. T. McCormick, R. J. Schweitzer and T. W. White. Problem decomposition and data reorganization by clustering

techniques. Op. Res. 20, 993-1009 (1972).
7. J. McAuley. Machine grouping for efficient production. Prod. Engng 51, 53-57 (1972).
8. H. Seifoddini and P. M. Wolfe. Application of the similarity coefficient method in group technology, l i e Trans. lg,

271-277 (1986).
9. R. Rajagopalan and J. L. Batra. Design of cellular production systems--a graph theoretic approach. Int. J. Prod. Res.

13, 567-579 (1975).
10. C. Y. Chen and S. A. Irani. Cluster first-sequence last heuristics for generating block diagonal forms for a machine-part

matrix. Int. J. Prod. Res. 31, 2623-2647 (1993).
11. D. G. Askin, S. H. Crosswell, J. H. Goldberg and A. J. Vakharia. A hamiltonian path approach to reordering the

part-machine matrix for cellular manufacturing. Int. J. Prod. Res. 9, 1081-1100 (1991).
12. W. H. Chen and B. Srivstava. Simulataed annealing procedures for forming machine cell in group technology. Eur.

J. Op. Res. 71, 100-111 (1994).
13. F. F. Boctor. A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29, 343-356 (1991).
14. V. Venugopal and T. T. Narendran. Cell formation in manufacturing systems through simulated annealing: an

experimental evaluation. Eur. J. Op. Res. 63, 409-422 (1992).
15. V. Venugopal and T. T. Narendran. A genetic algorithm approach to the machine-component grouping problem with

multiple objectives. Computers Ind. Engng 22, 469-480 (1992).
16. R. Logendran and P. Ramakrishna. Manufacturing cell formation in the presence of lot splitting and multiple units

of the same machine. Int. J. Prod. Res. 31, 657-693 (1993).
17. F. Glover. Tabu search, part I. ORSA J, Computing 1, 190-206 (1989).
18. F. Glover. Tabu search, part II. ORSA J. Computing 2, 4-32.
19. E. Taillard. Some efficient heuristic methods for flow shop sequencing problem. Eur. J. Op. Res. 47, 65-74 (1990).
20. J. R. Slagle, C. L. Chang and R. C. Lee. A clustering and data-reorganizing algorithm. IEEE Trans. Systems, Man

Cybernetics 5, 126-128 (1975).
21. S. M. Shafer and D. F. Rogers. Similarity and distance measures for cellular manufacturing. Part II. An extension

and comparison. Int. J. Prod. Res. 31, 1315-1326 (1993).
22. F. Glover and H. J. Greenberg. New approaches for heuristic search: a bilateral linkage with artificial intelligence. Eur.

J. Op. Res. 39, 119-130 (1989).
23. F. Glover, E. Taillard and D. De werra. A user's guide to tabu search. Ann. Ops Res. 41, 3-28 (1993).
24. N. Wu and R. Coppins. Linear Programming and Extensions. McGraw-Hill, New York (1981).
25. H. J. Steudel and A. Ballakur. A dynamic programming based heuristic for machine grouping in manufacturing cell

formation. Computers Engng 12, 215-222 (1987).
26. R. G. Askin and S. P, Subramanian. A cost based heuristic for group technology configuration. Int. J. Prod. Res. 25,

101-113 (1987).
27. W. J. Boe and C. H. Cheng. A close neighbor algorithm for designing cellular manufacturing systems. Int. J. Prod.

Res. 29, 2097-2116 (1991).
28. M. P. Chandrasekharan and R. Rajagopalan. Groupability: an analysis of the properties of binary data matrices for

group technology. Int. J. Prod. Res. 27, 1035-1052 (1989).
29. M. T. Tabucanon and R. Ojha. ICERMA--a heuristic approach for intercell flow reduction in cellular manufacturing

systems. Mater. Flow 4, 189-197 (1987).

