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Abstract--The formation of machine cells and part families is a central issue in the design of cellular 
production systems In this paper, we propose a tabu search based approach to deal with this problem 
by modeling it as a "Shortest Spanning Path" problem with respect to both parts and machines. A 
comparison of the proposed method with some of the existing methods is presented. Our results revealed 
that the proposed approach possesses several advantages that make it capable of handling the problem 
addressed in this paper as it exists in real-world situations. Copyright © 1997 Elsevier Science Ltd 

1. INTRODUCTION 

Nowadays, manufacturers all over the world are coming under intense global competitive pressure 
to simultaneously improve manufacturing flexibility, product quality, and production costs. 
Consequently, the Group Technology (GT) approach to manufacturing is receiving a considerable 
attention among manufacturers whose production systems are batch-oriented, because GT 
promises widespread benefits when applied to such systems. Cellular manufacturing system (CMS) 
is the application of GT to manufacturing. In CMS, the entire production system is decomposed 
into production cells. Each one of these cells usually consists of a group of dissimilar machines 
dedicated to produce one or more group(s) of similar (part families). Vakharia [1] presented three 
major causes of the increased interest in CMS. First, the advent of modem manufacturing methods 
(especially the concept of Flexible Manufacturing Systems) is really based on the formation of 
manufacturing cells. Second, there exists an increasing demand for customized products, which are 
produced in smaller lot sizes than before. Thus, there seems to be an increased focus on finding 
new methods that have most of the strategic advantages of a job shop but also can provide 
some of the operational advantages of an assembly line. CMS seems to be just such a method. 
Third, production managers are starting to realize the importance of easing the boredom 
and repetitive nature of the worker tasks. In using the GT concept, multifaceted workers are an 
essential requirement and consequently this concept holds out some hope in motivating the work 
force. 

The first problem that needs to be addressed when implementing a CMS is the problem of 
forming machine cells and their associated part families. This problem is referred to as the 'Cell 
Formation' Problem. The partitioning of machines into cells and parts into part families is 
essentially a clustering problem. The number of ways in which n objects can be decomposed into 
R subsets is given by the Stirling's number [2], S(n, R),~ R~/R!. This suggests that total 
enumeration of all feasible clustering alternatives in large size problems is impossible, even when 
large computers are available. Therefore, efficient heuristic methodologies are needed to cope with 
the problem under consideration as it exists in today's industrial applications where hundreds of 
part types are produced in most average size production plants. 

There are many heuristic methods available in the literature to solve CF problems. Burbidge's 
Production Flow Analysis (PFA) [3] is one of the first approaches to the problem. In this approach, 
part-machine groups are formed by conducting manual analysis of part routings and machines 
availability for operations. The majority of existing CF methods are matrix based methods. In such 
methods, the problem is formulated as a part-machine matrix in which an entry a~j = 1 or 0, 
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depending on whether or not part j visits machine i. In matrix based methods, clustering is made 
by permuting the rows and columns of the 0-1 matrix until blocks of nonzero elements are formed 
around the main diagonal. The most popular matrix arrangement based methods are: the Rank 
Order Clustering (ROC) [4], the Direct Clustering Algorithm (DCA) [5], and the Bond Energy 
Algorithm (BEA) [6]. Similarity measures between parts or machines are used by many cell 
formation methods as the basis for forming part-machine groups. The well known similarity 
coefficient based methods are the Single Linkage Clustering Algorithm (SLCA) [7] and the Average 
Linkage Clustering Algorithm (ALCA) [8]. Some CF methods [9-11] use similarity coefficients in 
conjunction with graph theory. In such methods, machines or parts are represented by vertices of 
a graph in which the edges connecting these vertices represent similarity between machines or parts. 
The graphs are decomposed into disconnected subgraphs to identify machine cells or part families. 

There are a few CF methods based on meta-heuristic search techniques which include tabu 
search, simulated annealing, and genetic algorithms. Simulated annealing based algorithms [12-14] 
have appeared in the CF literature more often than the other two approaches. To our knowledge, 
[15] and [16] are the only papers that use genetic algorithms and tabu search, respectively, to solve 
CF problems. In [16], the CF problem is formulated as an integer programming model in which 
the objective is to minimize the total number of inter- and intracell moves. This model contains 
nine constraints which can be classified as: assignment, cell design, and machine capacity 
constraints. The TS based algorithm proposed in [16] was specifically designed to deal with the 
proposed mathematical programming formulation. Therefore, this algorithm cannot be adapted 
to matrix representation of CF problems. 

The purpose of this paper is to develop a 'Tabu Search' based heuristic algorithm that can deal 
with matrix forms of CF problems. This algorithm identifies part-machine clusters, in a 
part-machine matrix, with the objective of minimizing the total number of intercell moves. The 
problem is solved by first solving two 'Shortest Spanning Path' problems, one for parts (columns) 
and one for machines (rows). Then, the resulting spanning paths for parts and machines are 
decomposed into subgraphs that represent machine groups and part families, respectively. The 
objective of minimizing the total number of intercell moves is achieved, indirectly, through 
minimization of distances between machines that belong to the same machine group (machine 
subgraph) and parts that belong to the same part family. The remainder of this article is organized 
as follows: a brief overview of tabu search techniques is presented in Section 2. Section 3 presents 
the proposed method along with some experimental results for selection of tabu search parameter 
settings which will be used by the algorithm. Section 4 discusses the practicality of the proposed 
approach. Section 5 presents some conclusions and directions for future research. 

2. BRIEF OVERVIEW OF TABU SEARCH TECHNIQUE 

A tabu search based heuristic is regarded as a "higher level" heuristic for solving combinatorial 
optimization problems as it is designed to guide simpler local search procedures to escape the trap 
of local optimality. Many successful applications of tabu search for obtaining optimal or 
near-optimal solutions to a variety of problems are reported in the literature. For details on some 
of these applications refer to the pioneering work by Glover [17, 18]. In general, tabu search is 
useful to find a near optimal, or possibly optimal solutions to problems which are of the type [19]: 

minimize c(x) 
subject to x e X. 

Where c(x) is any function of a discrete variable x, and X is the set of feasible solutions. A step 
of tabu search starts with the current feasible solution x e X to which a function m ~ M(x), that 
transforms x into x', is applied to generate a new feasible solution (x' = m(x)). This transformation 
is called a move and {x':x' = m(x); x, x' e X; m e M(x)} is called the neighborhood of x. 

In order to avoid backtracking to a local optimum, some intelligence is incorporated in the search 
process by using a memory structure that forbids or penalizes certain moves that would return to 
recently visited solutions. This memory is called 'tabu list' and the moves it contains are called 'tabu 
moves'. The suitable size (cardinal) of this list varies from one type of problem to another. 
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An application of  tabu search is generally characterized by: 

1. Initial solution 
2. Type of  moves applicable to a feasible solution x 
3. Size of neighborhood 
4. Tabu list size 
5. Stopping criteria. 

The generic procedure of tabu search techniques as outlined by Taillard [19] is as follows: 

1. Start with any feasible solution x0, an empty tabu list T. Let x* = x0, c* = c(xo) and k = 0 (x* 
is the best solution found up to now and c* is the value of the objective function for this 
solution). 

2. In M(x,) choose m, a move transforming xk that minimizes c(m(xk)) and that is not forbidden 
by the elements of T. The move can be chosen by complete or partial examination of M(xk). 
Let xk+ I = m(xk). 

3. If c(xk+~) < c*, let c* = c(xk+~) and x* = xk+~. 
4. If I TI = a specified number S, remove the oldest element of T; add the element t defined by 

m and xk+~. Increment k by 1. 
5. If the stopping condition (optimum reached, k larger than a fixed limit, etc.) is not satisfied, 

go back to (2). 

3. APPLICATION OF TABU SEARCH TO CF PROBLEMS 

3.1. Modeling the CF problem 

In order to apply tabu search technique to the cell formation problem, this problem needs to 
be modeled in a way that makes tabu search applicable to it. One way of  doing that is to model 
it as a 'Shortest Spanning Path' (SSP) Problem as suggested by Slagle et al. [20] for general 
clustering problems. 

3.1.1. The SSP problem. The SSP problem is a special form of the well known combinatorial 
optimization problem called Traveling Salesman Problem (TSP). The TSP can be stated as follows 
[ll]: 

Given a graph G(V, E), where V is the set of vertices and E is the set of  edges connecting these 
vertices with length Do for each ( i , j )  E V, find a cycle C that is incident to all v e Vwhich minimizes: 

(i,j) • C 

The only difference between the two problems (i.e. TSP and SSP) is that the TSP requires a return 
to the starting vertex from the last one while SSP does not. 

Tabu search can be adapted to the SSP problem by treating it as a permutation problem in which 
the objective is to find the permutation that gives the shortest spanning path, i.e., 

rain. DIST(f~) 
St. fl:Feasible Permutations of 1 . . . . .  n 

where 
n = number of  vertices in a graph 

DIST(f~) = distance corresponding to a given permutation (sequence) fL This distance is 
calculated as: 

DIST(n) = ~ ~" DuX~ for i ~=j 
i f f i l j = l  

where 
X~ -- 1, if i adjacently preceded j ,  otherwise X~ = 0 
D~j = distance between two vertices (parts or machines) i and j.  
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Distance between parts (or machines) can be measured using one of the distance measures 
available in the literature. For a recent review of distance and similarity measures refer to [21]. 
Recognize that similarity measures can be converted to distance measures and vice versa. This is 
usually made by subtracting their computed values from their upper bounds. For instance, the 
Jaccard similarity measure [7] can be converted to a distance measure by subtracting it from its 
upper bound which is 1, i.e., 

C/y 
D,j= 1 - S ~ =  1 T~+Tj -Co  

where 
So = computed value of the Jaccard similarity measure between parts (or machines) i andj. 
C~ = number of parts common to both machines (or number of machines common to both 

parts) i and j.  
T~ = total number of parts processed by machine (or total number of machines required by 

part) 1; l = i or j .  
3.1.2. The relationship between CF and SSP problems. In matrix based cell formation methods, 

part machine grouping is made by rearranging rows and columns of the 0-1 matrix so that the 
nonzero elements (the 1 s) are grouped into a number of blocks (clusters). Rows and columns that 
constitute boundaries of a block represent a machine group and its associated part family, 
respectively. Forming this blocks is accomplished by moving some of the nonzero elements from 
their positions in the initial matrix to some other positions so that the elements that constitute the 
same block are gathered in close proximity around the center of their block. Since positions of 
nonzero elements in the final matrix are not known before solving the problem, some criteria must 
be used to guide the repositioning process. 

In our approach, repositioning of the nonzero elements for the purpose of forming blocks is dealt 
with by solving two SSP problems, one for rows and one for columns. In these problems rows or 
columns correspond to a set of vertices in a graph, and distances between them correspond to length 
of edges connecting the vertices. Solving SSP problems for row and column graphs results in 
vertical and horizontal moves, respectively, made by the nonzero elements toward block formation. 
This can be explained as follows: by definition, the SSP problem is a problem of sequencing the 
vertices in a graph so that the length of the spanning path, as measured by the sum of distances 
between adjacent vertices, is minimal. In the context of the problem addressed here, distance 
between two vertices (rows or columns) is a function of the number of nonzero elements common 
to both vertices, i.e., the distance decreases as the number of common nonzero elements increases. 
This makes the horizontal boundaries of these submatrices easy to determine. Hence, by solving 
a SSP problem for one dimension, say rows, the rows that have a large number of common nonzero 
elements are expected to occupy neighboring positions in the SSP sequence of rows. Consequently, 
rearranging the rows in the matrix according to their SSP sequence would cause shifting of the 
nonzero elements along the vertical axis so that the elements that belong to highly similar rows 
would become closer to each other in the direction of the vertical axis. Such a result leads to a 
division of the matrix into a number of submatrices in which intra-submatrix rows are highly 
similar while inter-submatrix rows are highly dissimilar. Hence, machine groups, which correspond 
to sets of rows within the resulting submatrices, are identifiable. In the context of block formation, 
SSP sequencing of rows is only a half way toward complete formation of the blocks since it leads 
to the shifting of nonzero elements along the vertical axis only. Therefore, in order to identify the 
part families, the process of block formation needs to be completed by solving another SSP problem 
considering columns instead of rows. 

Illustrative example 

To see how cell formation and SSP problems are related, consider the 5 × 5 part-machine matrix 
presented in Fig. 1. The distance matrices, which were constructed using the Jaccard distance 
measure, for machines and parts are presented in Figs 2 and 3, respectively. 



MI 

M2 

M3 

M4 

M5 

Cell formation problem 

P 1 P2 P3 P4 P5 

1 0 0 l 0 
0 1 1 0 1 

1 0 0 0 0 
0 I 1 0 0 

0 0 0 1 0 

Fig. h The initial 0-1 matrix. 

MI M2 M3 M4 M5 

MI 1 0.5 1 0.5 

M2 ! 0.33 1 

M3 1 1 

M4 1 

M5 

Fig. 2. Distance matrix ~ r  machines. 

PI P2 P3 P4 P5 
PI 1 1 0.67 1 

P2 0 I 0.5 

P3 I 0.5 

P4 1 

P5 

Fig. 3. Distance matrix for parts. 
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A s  we m e n t i o n e d  ear l ie r ,  we need  to  o b t a i n  SSP  sequences  for  b o t h  m a c h i n e s  a n d  pa r t s :  

(i) Obtaining SSP sequence for machines 

Let  f2m r e p r e s e n t  the  sequence  o f  m a c h i n e s  in the 0-1  ma t r ix .  In  the  in i t ia l  ma t r ix :  

fL~ = 1 -2 -3 - -4 -5  = .  X,2 = X23 = X34 = X45 = 1, o t h e r  X,js = 0. 

T h e  c o r r e s p o n d i n g  d i s t a n c e  wil l  be: 

DIST(~m) = DI2XI2 + D23X23 + O34X34 --{- D45J(45 = Dl2 + D23 + D34 + D45 = 1 + 1 + 1 + 1 = 4 

- - S w a p  m a c h i n e s  1 a n d  2 to  o b t a i n  a new sequence:  

fire = 2 - 1 - 3 - - 4 - 5 ;  DIST(f2m) = D21 + Dr3 + D34 + D45 = 1 + 0.5 + 1 + I = 3.5 

- - S w a p  m a c h i n e s  1 a n d  4 to  get:  

~'~m = 2 - - 4 - 3 - 1 - 5 ;  D I S T ( f l , , )  = D24 + D43 + D31 + D15 = 0.33 + 1 + 0.5 + 0.5 = 2.33. 

P! P2 P3 P4 P5 

M2 0 1 l 0 1 
M4 0 1 1 0 0 
M3 ! 0 0 0 0 

MI ! 0 0 I 0 

M5 0 0 0 1 0 

Fig. 4. The 0-1 matrix with machines ordered. 
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P5 P2 P3 P4 PI 

MI 0 0 6 1 1 
M2 1 1 I 0 0 
M3 0 0 0 0 1 
M4 0 1 I 0 0 
M5 0 0 0 1 0 

Fig. 5. The 0-1 matrix with parts ordered. 

The 0-1 matrix corresponding to the best machine sequence found so far is presented in Fig. 4. 
By inspecting this matrix we can see that the objective function (DIST(~m)) cannot be minimized 
any further. 

(ii) Obtaining SSP sequence for parts 

Let Ilp represent the sequence of  parts in the part-machine matrix. In the initial matrix: 

f~p = 1-2-3-4-5; DIST(~p) = D~2 + 023 -'1- 034 --]- D45 = 1 + 0 + 1 + 1 = 3.0 

- -Swap parts 1 and 5 to get: 

lie = 5-2-3~1--1; DIST(f~p) = Ds2 + D23 + D34 + D4~ = 0.5 + 0 + 1 + 0.67 = 2.17/ 

The 0-1 matrix shown in Fig. 5 which corresponds to the new parts' sequence (5-2-3-4-1),  
indicates that there is no further improvement that can be achieved by generating a new sequence. 
The 0-1 matrix in which machines and parts are ordered according to their SSP sequences is shown 
in Fig. 6. There are two clusters appearing in this matrix with no intercell moves. The first cluster 
contains machine set {2, 4} and part family {2, 3, 5}. The other cluster contains machine set { 1, 3, 5} 
and part family { 1, 4}. Note that the example problem was solved optimally by making few number 
of  moves which were decided upon simply by inspecting the 0-1 matrix. However, if a larger 
problem (say 10 x 10) is to be solved, then, efficient search procedure such as tabu search is 
required. 

3.2. Developing the TS based algorithm 

As it has been mentioned earlier, there are some parameters that affect the performance of  tabu 
search. The best parameter settings for tabu search differ from one type of  problem to another. 
This section presents the specific characteristics of the proposed TS algorithm and the results of 
the experiments that we carried out to select the best combination of  parameter settings that suit 
the type of  problem under consideration. 

3.2. I. Initial solution. The initial solution in tabu search applications can be either a random 
or a heuristic solution. Our algorithm uses the sequences in which the parts and the machines are 
given in the initial part-machine matrix (i.e., machine in row (i) = i, part in column (/) = j )  as 
initial solutions to the problems of  sequencing parts and machines, respectively. 

M2 

M4 

M3 

M1 

M5 

P5 P2 P3 P4 P1 

1 i 1 0 0 

0 1 1 0 0 

0 0 0 0 1 

0 0 0 I i 

0 0 0 I 0 

Fig. 6. The solution matrix. 
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3.2.2. Basic neighborhoods (moves). For permutation problems, the neighborhood may be 
defined in several ways. The most common types of neighborhoods are as follows: 

(1) Adjacent Pairwise Interchange 

This type of neighborhood contains all those permutations a '  obtained from a by exchanging two 
adjacent jobs placed at the ith and the (i + 1)th positions, i.e., 

a = (xl . . . . .  xi, x~ + 1 . . . . .  x, ) 

a ' = ( x ,  . . . . .  x,+,,x~ . . . . .  x , ) ;  V i t { 1 , . . . , n -  1} 

(2) Insert 

This type of move contains all those permutations a '  obtained from a by inserting the component 
in position j before component in position i, i.e., 

= ( x ,  . . . . .  x ,  . . . . .  x j  . . . . .  x . )  =~ 

a ' = ( x ,  . . . . .  x~_~,xj, xi, x~+~ . . . . .  xj_,,xj+~ . . . . .  x, ) ;  V i , j ~ { 1  . . . .  , n } , i ~ j , j -  1 

(3) Swap 

This neighborhood contains all those permutations a '  obtained from a by swapping the 
components in positions i and j ,  i.e., 

a = (x, . . . .  ,x~ . . . . .  xj . . . . .  x . )  =~ 

a ' = ( x ,  . . . . .  xj . . . .  ,x ,  . . . . .  x , ) ;  V i , j e { 1 , . . . , n } , i ¢ j .  

3.2.3. Size o f  tabu list. Several applications of tabu search have found the magic number 7(_+2) 
to be a remarkably good choice for tabu list size [22]. This outcome has invited speculations as 
to whether the role of such a number in human short term memory is the result of a natural 
selection process related to human problem solving ability [22]. Obviously, characteristics of the 
solution space can affect the ideal tabu list size, but it may also be that problems typically 
encountered in practice favor a range of values that cluster around 7. 

3.2.4. Size o f  neighborhood. Size of neighborhood determines how to examine the neighborhood 
before choosing a move leading to the next step. Two possible choices are: 

(1) Whole Neighborhood 

Examine the entire neighborhood and take the most successful move that is not tabu. This 
method needs more computation time before a move is made. 

(2) Partial Neighborhood 

Generally, partial neighborhood is defined as the search method in which acceptance of a move 
is made by examining only part of the entire neighborhood. Such broad definition suggests that 
partial neighborhood can be defined in many ways (see [23] for details). For example, examine the 
neighborhood and take the first improving solution, that is not tabu, as the candidate solution in 
the next search. Under this definition, which is adopted in this study, the size of the neighborhood 
that needs to be covered by the search process before a new move is accepted is unknown. Simply 
because the location of the next improving solution, in the solution space, is unknown. 

3.2.5. Defining and storing the tabu moves. There are several different approaches in the literature 
for defining and storing the tabu moves. In our algorithm, however, we are adopting the most 
widely recognized approach. In this approach, the tabu moves are defined as the reversals of the 
latest S accepted moves. This means that the tabu list is manipulated like a FIFO queue in that 
each time a new move is posted to one end of the list, it pushes the oldest move out the other end. 
In tabu search, the trap of local optimality becomes escapable by making a sort of temporary hold 
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on repeating certain moves (i.e., recently accepted moves), so that the search process is given the 
chance to tackle uncharted regions in the solution space. Forbidding occurrence of the reversal of 
an undesired move is made to avoid coming back to the condition (solution) that has already led, 
and therefore might lead again, to the occurrence of this move. The reason for using recency based 
tabu lists can be explained as follows: in tabu search, the search process moves successively from 
one region to another in the solution space, and recency of a move reflects the likelihood that the 
search is being conducted in the region where this move belongs. Thus, in order to expand the 
diversity of the search (i.e., by moving, as quickly as possible, from the currently searched region 
to another region in the solution space), it is relevant to consider recent moves only. 

3.2.6. Stopping criteria. The stopping criteria plays a major rule in determining the computation 
time and the quality of solution obtained by tabu search. The most commonly used stopping rules 
are [19]: 

(1) Stop if the number of iterations made without improving the current solution exceeds a 
specified constant kj 

(2) Stop if the number of iterations exceeds a specified constant k2. 

The TS based algorithm proposed here uses rule (1) because it sounds more relevant to the search 
process since we do not have any idea beforehand about the number of iterations required to reach 
a good solution. Hence, using rule (2) might lead to termination of the search process even if rapid 
improvement is taking place, or it might result in unnecessary computation time if the best solution 
is obtained in the early stages of the search process. 

3.2.7. Experimental results. In order to select the tabu search parameter settings that suit the 
type of problem addressed in this paper, a comparative experimentation was conducted. The 
experiments consist of 20 different size problems which were sampled from a uniform distribution 
with the number of columns (parts) ranging between 5 and 100, while the number of rows was 
set at 25. In these problems, tabu search was only used to perform SSP sequencing of parts. 
Recognize that the fashion in which the sequencing of parts is made, is exactly the same as that 
of the machines' sequencing. Hence, it is sufficient to make selection of TS parameter settings based 
on a study that is conducted on either one of these two dimensions. In our experimentations, tabu 
search was applied to each one of the 20 generated problems using each possible combination of 
the following parameter settings: 

(1) Size of neighborhood:Partial and Whole 
(2) Type of move:Insert, Swap, and Adjacent Pairwise Interchange (API) 
(3) Size of tabu list:5, 7, 9, and 11. 

This results in a total of 480 runs (i.e., 2 x 3 x 4 x 20 problems). In order to evaluate the 
goodness of solutions, values of the associated objective functions (DIST(fl)) are used. The criteria 
for selecting the best combination of parameter settings is the number of times in which a 
combination gives the best result (the least objective function values) over the 20 generated 
problems. Throughout the experiments, stopping rule (1), which was presented earlier in this paper, 
is used with KI = number of parts. 

Results of the experiments are presented in Table 1. The entries of this table are the computed 
values of the objective functions, using the Jaccard distance measure. According to these results, 
the most suitable combination of parameter settings for our problem is: Partial neighborhood size, 
Insert type of move, and tabu list size of 7. This combination was able to obtain the best results 
more frequently (16 times) than the rest of the combinations. There are two comments which are 
worth making here concerning our findings. First, superiority of the 'Partial' neighborhood over 
the 'Whole' neighborhood may be attributed to the perturbation (i.e., exploration of more new 
regions) introduced in the solution space by accepting every successful move that is not tabu. 
Second, the Adjacent Pairwise Interchange (API) type of move was notably inefficient with respect 
to goodness of its solutions, as indicated by its large objective function values in comparison with 
Insert type of move. A possible reason for such a finding could be the API's number of moves 
(cardinal), made in each iterations, which is only (N - 1). This number is very small as compared 
to the cardinal of the Insert type of move which is (N - 1) 2. 
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3.3. The proposed CF method 

The proposed cell formation procedure consists of the following three phases: (I) obtaining SSP 
sequences for parts and machines using tabu search, (II) constructing the solution matrix, and (III) 
determining the boundaries of the part-machine clusters. These phases are presented below. 

P H A S E  L" the TS algorithm for sequencing machines and parts 

The proposed TS algorithm is used to construct the SSP sequences for the parts and machines 
independently. This algorithm will be presented after we define the following notations: 

m =  

N I W I  = 
N,(x)  = 

S =  
T =  
X = 

DIST(x) = 
k~ = 

(x, y> = 

number of parts (columns) in the part-machine matrix 
number of machines (rows) in the part-machine matrix 
number of iterations made without improving the current solution 
the neighborhood defined by the insert type of moves 
size of the tabu list 
the set of tabu moves 
sequence (permutation) of rows or columns 
distance corresponding to sequence x 
a specified number of iterations corresponding to Stopping rule (1) 
a move that transforms a solution x into another solution y 

(i) Constructing SSP  sequence for  the machines 

Step 0: Input the part-machine matrix 
Set: k~ = m 
N I W I  = 0 

S = 7  
T = {0} 
x = x0 (hint: x0 is the order of machines as given in the initial matrix) 

Step 1: Construct the distance matrix for machines 
Step 2: Calculate 'DIST(x)' and set: incumbent = DIST(x) 
Step 3: Let N I W I  = N I W I  + 1 
Step 4: Make a move ( x ,  x ' )  ~ N~(x) with (x, x')¢{T} 
Step 5: Calculate 'DIST(x')' 
Step 6: If (DIST(x') < incumbent) then 

--update T by including (x', x)  
--set: incumbent = DIST(x') 
- - X  = X ~ 

- - N I W I  = 0 
--go to step 3 
Else 
- - I f  ( N I W I  < K~) then 
--go to step 3 
Else 
--stop 

(ii) Constructing S S P  sequence for  the parts 

--repeat all the above steps considering parts (columns) instead of machines (rows). 

• P H A S E  H: constructing the solution matrix 

----construct the final matrix by rearranging the rows and columns of the initial matrix according 
to their SSP sequences obtained in Phase I. 
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PHASE III: determining boundaries of part-machine clusters 

In this part of our paper, we present a heuristic procedure to determine boundaries of the 
part-machine clusters in TSA's solution matrices. The problem of determining the horizontal and 
vertical boundaries of the clusters is equivalent to the problem of finding the edges in the machines' 
and parts' spanning paths, respectively, that need to be eliminated in order to decompose these 
two paths into a number of subpaths (machine cells or part families), so that the overall length 
of these subpaths is minimized. The number of subpaths, into which the machines' and parts' 
spanning paths should be decomposed, is determined by the number of natural part-machine 
groups (clusters) that exist in the given data set. In ideal cases, where the groups are mutually 
independent, the number of groups can be determined easily by inspecting the solution matrix. 
However, in cases where high interactions exist between the groups, the number of natural groups 
that exist in the data set, is difficult to determine. In order to overcome this problem, our heuristic 
procedure starts by decomposing both the machines' and parts' spanning paths into a user-specified 
number of segments, UL, that represents an upper limit to the number of groups. Then, it reduces 
the number of groups iteratively, using maximum reduction in number of intercell moves as a 
criteria, until a specified stopping criteria is satisfied. Clearly, the value of UL has to be greater 
than or, at least, equal to the number of natural groups in the data set. Therefore, if a rough 
estimate, to the maximum number of groups, cannot be made by inspecting the solution matrix, 
then, UL can be assigned a feasible large value (e.g., UL = min{n, m}/2). The algorithmic form 
of the proposed procedure will be presented after we defined the following notations: 

UL = a user-specified upper limit to the number of part-machine groups. 
ng = the current number of part-machine groups. 

PF(j) = part family J. 
MG(I) = machine group I. 

H(I) = the horizontal line that separates MG(I) and MG(I + 1). 
V(j) = the vertical line that separates PF(j) and PF(j + 1). 

S(I, J)  = the submatrix formed by the intersection between row set I and column set J. 
NS(I, J)  = the number of ls in S(I, J). 

X(I, J)  = 1, if MG(I) and PF(j) are assigned to each other. Otherwise, X(I, J) = 0 
B = {S(I, J)IX(I, J) = 1}. The elements of B are referred to as 'blocks'. 

A(I, J)  = the change (increase or decrease), in number of intercell moves, that results from 
breaking block S(I, J) ~ B. 

The proposed procedure 

Step 0: Set ng = UL and B = {0} 
Step 1: Determine the boundaries of ng machine groups (row sets) and ng part families (column 

sets). This is accomplished by drawing a horizontal line (H(I)) and a vertical line (V(/')) 
across each one of the longest ng - 1 edges in the machines' and the parts' spanning 

Table 2. Results of comparisons 

Original solution TSA solution 
Data Size Source of 
set M x N data set NI Nc Ne MAX Nc Ne MAX 

1 12 x 19 [11] 75 3 23 4 3 22 4 
2 14 x 24 [26] 58 4 4 9 4 2 9 
3 16 x43  [11] 126 5 29 5 5 27 5 
4 20 x 35 [27] 152 4 39 7 4 35 7 
5 24 x 40 [28], DATA SET 1 131 7 0 5 7 0 5 
6 24 x 40 [28], DATA SET 2 130 7 l0 5 7 l0 5 
7 24 x 40 [28], DATA SET 5 130 7 49 6 7 46 5 
8 24 x 40 [28], DATA SET 6 131 6 54 6 7 52 6 
9 24 x 40 [28], DATA SET 7 131 8 64 l0 9 61 7 

l0 30 x 40 [29] 152 5 21 8 5 18 8 

NI = Number of '1' elements in the 0-1 matrix. 
Nc = Number of cells (clusters). 
Ne = Number of intercell moves.  
MAX ~ Number of machines in the largest cell. 
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paths, respectively. This results in partitioning of the solution matrix into (ng) 2 
submatrices. 

Step 2: Assign each part family to one machine group, and vice versa. This is done by solving 
the linear assignment problem presented below. This problem can be solved by using the 
Hungarian algorithm. For details on this algorithm, the reader is referred to [24]. 

Maximize 

UL UL 

Z ~_, NS(I, J)X(I, J) 
l = l J = l  

Subject to 

UL 

X(I, J ) =  1 
J = l  

f o r / =  1,2 . . . . .  UL 

UL 

~., X(I, J ) =  1 
1 ~ 1  

for J =  1,2 . . . . .  UL 

X(1, J) = 0 or 1 for I, J = 1, 2 . . . . .  UL 

Step 3: Iteratively, reduce the number of groups until the specified stopping criteria (see (3) below) 
is reached. In each iteration, the number of groups is reduced, by one group, by breaking 
the block, among the currently existing blocks, that results in the largest reduction in 
number of intercell moves. Breaking a block, S(I, J) ~ B, means that the assignment that 
was made between MG(I) and PF(j) is broken, so that the machines in MG(I) are 
included in an adjacent machine group (i.e., in MG(I + 1) or M G ( I -  1)) and the parts 
in PF(j) are included in an adjacent part family. This means that a block is broken by 
eliminating one of its bordering 'horizontal-vertical' line combinations. Hence, for each 
block, at most, two horizontal lines (H(I) and H ( I -  1)) and, at most, two vertical lines 
(V(j) and V(j - 1)) have to be checked in order to find the best candidates (one vertical 
and one horizontal) for elimination. The stopping rule, used here, is to stop when the 
number of intercell moves cannot be reduced, any further, by breaking any one of the 
remaining blocks. The algorithmic form of the proposed procedure is as follows: 

(1) For each S(I, J) ~ B, compute: A(I, J)  = AH(I) + AV(j) - NS(I, J), 
where: 

AH(I) = max{NS(I, J+(I)), NS(I, J-(I))} 

AV(j) = max{NS(I+(j), S), NS(I-(j),  J)}, 

where: 

I+(j) = IlS(I, J + 1) ~ B; and I-( j)  = IIS(I, J - 1) 6 B 

J+(I) = JIS(I + 1, J) ~ B; and J-( / )  = J I S ( I -  1, J) ~ B 

(2) Identify: A(I*, J*) = maximum {A(I, J)IS(1, J) e B}. 
(3) If  A(I*, J*)~< 0, go to 6. Otherwise, break the block S(I*, J*) by eliminating the line 

combination H* - V*, that maximizes the reduction in number of intercell moves. H* and 
V* are determined as follows: 

IfNS(I*,  J+(I*)) > NS(I*, J-(I*)), let H* = H(I*). Otherwise, let H* = H(I* - 1). Also, 
if NS(I+(j*), J*) > NS(I-(j*), J*), let V* = V(j*). Otherwise, let V* = V(j* - 1). 
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(4) Break the assignment that was made between MG(I*) and PF(j*). Combine MG(I*) with 
the adjacent machine group that was separated from MG(I*) by the horizontal line H*. 
Similarly, combine PF(j*) with the adjacent part family that was separated from PF(j*) by 
the vertical line V*. 

(5) Update the partitioned matrix and the set B in accordance with (4) and (5), let ng = ng - 1, 
and go to (1) 

(6) Stop; the number of intercell moves cannot be reduced by breaking one of the remaining 
blocks. 

E X A M P L E  
In order to illustrate the proposed procedure for determining boundaries of the part-machine 

groups, consider the TSA's solution matrix presented in Fig. 7(a). A step by step illustration of 
the proposed procedure, using UL = 6, is given below. 

Step 1: The longest 5 edges in the machines' spanning path are: (3, 4), (5, 6), (7, 8), (12, 13) and 
(16, 17), with length (Du+ 1) of 0.70, 0.60, 0.77, 0.75, and 0.71, respectively. The longest 
5 edges in the parts' spanning path are: (5, 6), (8, 9), (12, 13), (14, 15), and (17, 18), with 
length (Djj+I)of  0.86, 0.67, 0.67, 0.60, and 0.80, respectively. The partitioned matrix is 
presented in Fig. 7(a). 

Step 2: In this step, the Hungarian algorithm gives the following part family-machine group 
assignments: 1-[MG(4), PF(1)], 2-[MG(5), eF(6)], 3-[MG(6), eF(5)], 4-[MG(1), PF(3)], 
5-[MG(3), PF(2)] and 6-[MG(2), eF(4)]. The set B = {S(4, 1), S(5, 6), S(6, 5), S(1, 3), 
S(3, 2), S(2, 4)). 

Step 3: Iteration 1 
(1) The computed values of A(I, J), for each S(I, J) ~ B, are as follows: 

A(1, 3) = - 18, A(2,4) = + 5, A(3, 2) = - 3, A(4, 1) = - 17, A(5, 6) = - 6, and A(6, 5) = - 8. 
To illustrate, we show below how A(2, 4) was computed, A(2, 4) = AH(2) + A V(4) - 
NS(2, 4) 

AH(2) = max{NS(2, J+(2)), NS(2, J-(2))} 
J+(2) = JIS(3, J)  ~ B = 2; and J-(2) = JIS(1, J)  ~ B = 3; 
=, AH(2) = max{US(Z, 2), US(Z, 3)} = max{4, 1} = 4 

A V(4) = max{NS(I+(4), 4), NS(I-(4), 4)} 
•+(4) = IIS(I, 5) ~ B = 6; and •-(4) = IIS(I, 3) ~ B = 1; 
=~ AV(4) = max{US(6, 4), US(l ,  4)} = max{3, 2} = 3 
=~A(2,4) = 4 +  3 -  2 = 5 

(2) A(I*, J*) = maximum{ - 17, - 8, - 8, - 6, - 3, + 5} = + 5 = A(2,4) =~ I* = 2 
and J* = 4. 

(3) Since A(2, 4) > 0, then, we break block S(2, 4) by eliminating the horizontal line H* and 
the vertical line V*. These two lines are determined as follows: 

-- NS(2, J+(2)) > NS(2, J-(2)) ~ H* = H(I*) = H(2). 

-- US(I+(4), 4) > NS(I-(4), 4) ~ V* = V(j*) = V(4). 

(4) Break the assignment that was made between MG(2) and PF(4). Combine MG(2) with 
MG(3), and combine PF(4) with PF(5). 

(5) The partitioned matrix is updated in accordance with (4) and (5). The updated matrix 
is presented in Fig. 7(b). Set B is also updated as: B = {S(3, 1), S(2, 2), S(1, 3), S(5, 4), S(4, 5)}. 

Iteration 2 
The computed values of A(I ,J )  for S ( L J ) ~ B  are as follows: A(3, 1 ) = -  15, 

A(2, 2) = - 5, A(1, 3) = - 9, A(5, 4) = - 11, and A(4, 5) = - 7. None of these values 
is greater than zero, therefore, the procedure stops here, with ng= 5. 
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4. P R A C T I C A L I T Y  OF THE PROPOSED A P P R O A C H  

Unlike most of the existing cell formation methodologies, the tabu search based approach 
proposed in this paper possesses several advantages which bring it closer to industrial reality. First, 
this method offers good quality solutions. Second, it can deal with cell formation problems with 
non-binary part-machine matrices. Third, it can handle large size problems efficiently. 

4.1. Quality of solutions 
In order to examine the effectiveness of the TSA, it has been applied to 10 data sets (problems) 

which were collected from the literature. The distance measure which was used by the TSA 
throughout the comparisons is the Jaccard distance measure [7], which was presented earlier in this 
paper. Table 2 presents the sources of the test problems, their solutions as reported in their sources, 
and their solutions as obtained by the TSA. The criteria, based on which the comparison is made, 
is the number of intercell moves. However, in order to ensure a fair comparison, the conditions 
(number of cells and maximum cell size) associated with the number of intercell moves, in a given 
solution, are reported because the number of intercell moves can be decreased or increased by 
manipulating these conditions (e.g., the number of intercell moves can be reduced by combining 
two or more cells). Obviously, when two clustering algorithms are to be compared with each other, 
a better clustering algorithm is supposed to give less number of intercell moves accompanied by 
the same or higher number of cells, and the same or less maximum cell size. 

The results of the comparison indicate that the TSA was able to obtain better results than the 
original solutions 8 times out of 10, and it gave the same solutions as the original ones for the 
two remaining test problems. However, we believe that these results do not reflect superiority of 
the TSA as it exists, and if, larger size problems (e.g., 200 x 200) with somewhat ill structured 
matrices are used, then, superiority of the TSA will become more apparent. 

4.2. Dealing with non-binary problems 
There are many cell formation methods that cannot handle problems in which the entries of the 

part-machine matrix are non-binary (e.g., processing time, operations sequence, etc.). This property 
affects the practicality of such methods because real life applications involve many factors other 
than part routings. Our approach can be adjusted very easily to make it capable of handling 
non-binary matrices. This is achieved by using a distance measure that can accommodate binary 
data. Figure 7 presents the example problem presented by Steudel and Ballakur [25] where the 
entries of the part-machine matrix are the processing times of parts on machines. Figures 8 and 
9 present the solutions obtained using the Steudel and Ballakur's dynamic programming procedure 
and the TSA, respectively. These two solutions are identical. 

Deviation of the similarity measure proposed by Steudel and Ballakur from its upper bound, 
which is 2, was used by the TSA to measure distance between parts or machines. Hence, the distance 
measure used by the TSA is as follows: 

{ Tc~ Tci~ 

C.AIE 3Z-|-G 
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Fig. 9. Steudel and Ballakur's solution. 

where: 
D U = Distance between two machines (or t w o  parts) i and j. 
Tc~ = Total processing time on machine i required by all parts common to both 

machines i and j (or total processing time required by part i on all machines 
common to both parts i and j)  

T, = Total processing time on machine i (or total processing time required by part i). 

4.3. Dealing with large size problems 

Another factor that assures practicality of our tabu search approach is its ability to deal with 
large size problems efficiently. The proposed Tabu Search procedure was coded in Fortran and run 
on a SUN 4/490 computer system. Table 3 shows the CPU times required to solve five large size 
problems. To generate these problems, part-machine matrices with number of machines equal to 
100 and number of parts ranging between 100 and 500, were deliberately designed to have perfect 
Block Diagonal Forms (BDF) with 25 equal size blocks (clusters). Then, the columns of each one 
of these matrices were randomly permuted to generate initial matrices. 

The reported CPU times are the times required by Phase I of the proposed TS based method 
to re-obtain the original matrices (i.e., the matrices that have perfect BDF's). Note that the 
proposed method needs to be applied to the columns only sine the rows of the original matrices 
were not permuted. In the TS based algorithm (Phase I), Stopping rule (1) is used with kr = number 
of parts. The results indicate that the TSA's CPU time requirements are very reasonable since a 
problem with 500 parts was solved optimally in less than 10 min. 

5. CONCLUSIONS AND AVENUES FOR FUTURE RESEARCH 

In this paper, a new machine-component clustering heuristic based on tabu search concept has 
been proposed. An investigation was conducted to select the tabu search parameter settings that 
suit the type of problem under consideration. The proposed heuristic was compared with some of 
the existing heuristics to cell formation. The results of the comparisons indicate that the proposed 
method is very efficient with respect to quality of its solutions. Although it requires somewhat larger 
CPU times as compared to simpler clustering algorithms, we believe that this could be justified 
by the quality of solutions it offers as well as its other features, which bring it closer to industrial 
reality, such as its ability to solve large size problems efficiently and to deal with non-binary 
part-machine matrices. 

This study can be extended in the following two ways: (1) development of a new distance measure 
based on the specific objectives of CMS. For instance, one of the major objectives in adopting CMS 
is setup time reduction. This suggests the need for a distance measure that considers part tooling 
and setup time requirements. (2) The performance of the TS based heuristic, developed in this 
paper, can be enhanced by extending the study conducted in Section 3. Some of the factors that 

Table 3. CPU time in seconds using the TSA 

No. of parts 100 200 300 400 500 

CPU time 19.7 58.6 162.1 319.5 503.3 
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need  to be  inves t iga t ed ,  in e x t e n d i n g  this s tudy ,  inc lude  d ivers i f i ca t ion  and  in tens i f i ca t ion  s t ra tegies ,  

n e i g h b o r h o o d  d e c o m p o s i t i o n  s t ra tegies ,  a n d  a s p i r a t i o n  cond i t i ons .  
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