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Abstract This research proposes a revised discrete parti-
cle swarm optimization (RDPSO) to solve the permutation
flow-shop scheduling problem with the objective of minimiz-
ing makespan (PFSP-makespan). The candidate problem is
one of the most studied NP-complete scheduling problems.
RDPSO proposes new particle swarm learning strategies to
thoroughly study how to properly apply the global best solu-
tion and the personal best solution to guide the search of
RDPSO. A new filtered local search is developed to filter
the solution regions that have been reviewed and guide the
search to new solution regions in order to keep the search
from premature convergence. Computational experiments on
Taillard’s benchmark problem sets demonstrate that RDPSO
significantly outperforms all the existing PSO algorithms.
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1 Introduction

This research proposes a revised discrete particle swarm opti-
mization (RDPSO) for the minimization of makespan in per-
mutation flow-shop scheduling problems (PFSP-makespan).
The candidate problem determines the best sequence of n
jobs that are to be processed on m machines in the same
order to minimize the completion time of the last job on
the last machine (makespan), and has been proved to be
one of the most studied NP-complete scheduling problems
(Garey et al. 1976). Therefore, the development of approx-
imate algorithms such as metaheuristics has been adopted
to solve PFSP-makespan; these include: simulated anneal-
ing (SA) (Osman and Potts 1989; Ogbu and Smith 1990),
tabu search (TS) (Nowicki and Smutnicki 1996; Grabowski
and Wodecki 2004), genetic algorithms (GA) (Reeves 1995;
Murata et al. 1996; Etiler et al. 2004; Chen et al. 2012), ant
colony optimization (ACO) (Ying and Liao 2004; Rajendran
and Ziegler 2004), discrete differential evolution algorithm
(DDE) (Pan et al. 2008b), particle swarm optimization (PSO)
(Lian et al. 2008; Zhang et al. 2010a, b; Marinakis and Mari-
naki 2013), and bee colony algorithm (Pan et al. 2011).

Particle swarm optimization was proposed by Kennedy
and Eberhart in 1995 (Kennedy and Eberhart 1995). It imi-
tates the behavior of a swarm of birds searching for food. The
searching process of PSO for an optimization problem starts
with a population of randomly generated solutions (particles;
the positions of the birds in the solution space). Applying
the swarm learning strategy, each particle in the population
searches the solution space by considering the effect of the
best solution that all the particles have ever searched (global
best) and the effect of the best solution that the particle itself
has ever searched (personal best). The new position of a parti-
cle in the next population is determined by its current position
plus the effect of the global best solution and the effect of the

123



2272 Chun-Lung Chen et al.

personal best. This process will continue until a termination
criterion is satisfied.

There have been many PSO related algorithms proposed
to solve PFSP-makespan recently, and they will be discussed
briefly below. DPSORam (Rameshkumar et al. 2005) and
SPSOA (Zhigang et al. 2006) are two earlier PSO algorithms
proposed to solve PFSP-makespan. Both of the algorithms
were shown to outperform a basic GA. PSOvns (Tasgetiren
et al. 2007) was developed by embedding the variable neigh-
borhood search (VNS) in a PSO algorithm. The computa-
tional results showed that PSOvns dominated two ant colony
algorithms, M-MMAS and PACO. H-CPSO (Jarboui et al.
2008) is a hybrid heuristic incorporating an idea of simulated
annealing in a PSO algorithm. The computational results
showed that H-CPSO outperformed PSOvns. A discrete PSO
version called NPSO (Lian et al. 2008) was developed and
successfully applied to the candidate problem with results
also proving to be more effective than a basic GA. Another
discrete PSO (DPSOPon) (Ponnambalm et al. 2009) was pre-
sented and was shown to outperform ACO. HPSO (Kuoa et
al. 2009) is a continuous version of PSO which integrates
the random-key (RK) encoding scheme and the individual
enhancement (IE) scheme into PSO. The experimental results
showed that HPSO was superior to a basic GA and NPSO.
ATPPSO (Zhang et al. 2010a) was developed through the
integration of PSO with genetic operators and an annealing
strategy. The results showed that both the solution quality
and the convergence speed of ATPPSO were improved when
compared to NPSO. Zhang et al. (2010b) proposed a circu-
lar discrete particle swarm optimization algorithm (CDPSO).
The particle similarity changes adaptively with the iterations,
and an order based strategy is introduced to preserve the
swarm diversity. If the adjacent particles’ similarity is bigger
than its current similarity threshold, the mutation operator
is used to mutate the inferior particle. Furthermore, a fast
makespan computation method based on matrix is designed
to improve the efficiency of the algorithm. The result showed
that the solution quality and the stability of CDPSO are
superior to both GA and SPSOA. Wang and Tang (2012)
developed a discrete PSO using self-adaptive diversity con-
trol strategy for PFSP with blocking. They also applied their
algorithm to solve PFSP-makespan and showed that their
algorithm outperformed DPSOPon and DPSORam. Marinakis
and Marinaki (2013) presented a PSO with expanding neigh-
borhood topology (PSOENT). The major difference between
PSOENT and the aforementioned PSO algorithms is that
PSOENT does not use local search methods. It combines a
PSO algorithm, a VNS strategy, and a path relinking strategy.
Computational results showed that PSOENT outperforms all
the PSO algorithms without using local search methods.

RDPSO proposes new particle swarm learning strategies
to thoroughly study how to properly apply the global best
solution and the personal best solution to guide the search

of RDPSO. A new filtered local search (FLS) is developed
to filter the solution regions that have been reviewed and
guide the search to new solution regions in order to keep the
search from premature convergence. Computational experi-
ments on Taillard’s benchmark problem sets (Taillard 1993)
will be performed to evaluate the effectiveness of RDPSO by
comparing its performance with several state-of-the-art PSO
heuristics and DDERLS (Pan et al. 2008b), the most effective
heuristic for PFSP-makespan up to now. The remainder of the
paper is organized as follows: Sect. 2 presents the proposed
RDPSO. Section 3 provides computational experiments, and
conclusions and future works of this study are summarized
in Sect. 4.

2 Proposed RDPSO algorithm

Particle swarm optimization was proposed by Kennedy and
Eberhart in 1995 (Kennedy and Eberhart 1995). It imitates
the behavior of a swarm of birds searching for food. The
standard PSO equations for updating positions for birds are
real-valued equations; therefore, discrete PSO (DPSO) algo-
rithms (Pan et al. 2008a) have been developed to solve PFSP-
makespan. The main components of DPSO include popula-
tion initialization, position update for particles and a local
search for improving the solution quality. A discrete position
update equation can be expressed as follows:

Xt
i = c2 ⊗ F3(c1 ⊗ F2(w ⊗ F1(Xt−1

i ), Pt−1
i ), Gt−1) (1)

Given that the position of particle i in iteration t−1 is
Xt−1

i , this equation first implements function F1 with a prob-
ability of w; function F1 searches the neighborhood of Xt−1

i .
Then the equation implements function F2 with a probability
of c1. Function F2 exchanges information with the solution
generated by function F1 and the personal best solution of
particle i(Pt−1

i ); it refers to the condition that particle i will
learn from its personal best solution. Finally, this equation
implements function F3 with a probability of c2. Function F3

exchanges information with the solution generated by func-
tions F2 and the global best solution; it refers to the condition
that particle i will learn from the global best solution.

In this research, we alter the DPSO algorithm to develop
RDPSO. New particle swarm learning strategies are pro-
posed to update particle position in order to guide the search
of RDPSO. A new FLS is developed to filter the solution
regions that have been reviewed and guide the search to new
solution regions in order to keep the search from prema-
ture convergence. The flowchart of RDPSO is presented in
Fig. 1. It first randomly generates the initial population with
Pnum particles. The new particle swarm learning strategies
are then applied to update the positions of the particles. Three
learning parameters, c1, c2 and w, are used to determine the
probabilities that a particle will learn from the global best

123



A revised discrete particle swarm optimization algorithm 2273

Fig. 1 The flowchart for RDPSO

solution, its personal best solution and searching its neighbor-
hood. When the positions of all the particles are updated, the
new filtered local search will be implemented. This search-
ing process will continue until a termination criterion is
satisfied.

The details of the new particle swarm learning strate-
gies and the new filtered local search are discussed in the
following subsections and the notations used in Fig. 1 are
described as follows: �i is the solution of particle i ; V pbest

i
is the objective value of the personal best solution of particle

i (�pbest
i ); V gbest is the objective value of the global best

solution (�gbest ); V hbest
i is the objective value of the hybrid

best solution of particle i (�hbest
i ); V temp is the objective

value of a temporary solution (�temp); Pnum is the number
of particles generated in an iteration; and V F L S is the objec-
tive value of the solution (�F L S) generated by the filtered
local search. The hybrid best solution of particle i (�hbest

i )

is constructed by applying a crossover operation to the per-
sonal best solution of particle i (

∏pbest
i ) and the global best

solution (�gbest ).
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Table 1 The six combinations of c1 and c2 considered in the first phase
of the new particle swarm learning strategies

c1 c2 pg pp ph

0.9 0.1 0.1 0.81 0.09

0.9 0.3 0.3 0.63 0.07

0.9 0.5 0.5 0.45 0.05

0.9 0.7 0.7 0.27 0.03

0.9 0.9 0.9 0.09 0.01

0.1 0.1 0.1 0.09 0.81

2.1 The new particle swarm learning strategies

Several DPSO algorithms (Kuoa et al. 2009; Zhang et al.
2010a, b) have been developed for solving PFSP-makespan.
Most of them follow the learning strategy of Eq. (1), that is a
particle will start learning from searching its neighborhood
(function F1), then from its personal best solution (function
F2), and then from the global best solution (function F3).
Since both of the parameters, c1 and c2, in the equation are
less than or equal to1.0, they may cause F2 and F3 to not be
implemented, and accordingly, a particle will not learn from
its personal best solution and the global best solution.

This research proposes new learning strategies that guar-
antee a particle to learn from its personal best solution or the
global best solution. The learning strategy is separated into
two phases. In the first phase, a particle will learn sequentially
first from the global best solution, then its personal best solu-
tion, and finally its hybrid best solution. In the second phase,
the particle will search its neighborhood. (In this research,
the proposed learning strategy is denoted as two-phase strat-
egy, and the strategy following equation is denoted as single-
phase strategy.) The values of the parameters (c1, c2 and w)

are properly determined in order to generate the probabilities
that a particle will learn from the global best solution (pg),
its personal best solution (pp), and its hybrid best solution
(ph) in the first phase, and the particle will search its neigh-
borhood with probability (w) in the second phase. Table 1
presents six combinations of c1 and c2 that are considered
in the first phase. The pg , pp, and ph values for each of the
combinations are calculated following the flow chart in Fig.
1. It will first test c2 to determinepg (pg = c2), then it will
test c1 to determine pp (pp = (1 − c2) × c1) and the rest of
the probability is the probability of ph(ph = 1 − pg − pp).
For instance, if c1 = 0.9 and c2 = 0.1 (the first combination
in Table 1), then pg = c2 = 0.1, pp = (1 − c2)× c1 = 0.81
and ph = 1 − pg − pp = 0.09. The pg , pp, and ph values
for the combinations in Table 1 demonstrate the purpose of
selecting the six combinations. A combination with smaller
c2 (when c1 = 0.9) will have a smaller pg and a larger pp;
it infers that, under this condition, a particle will learn more
from its personal best solution. On the contrary, a combina-

Table 2 The 12 F-Strategies used in the new particle swarm learning
strategies

F-Strategy First 500 iterations Second 500 iterations

pg pp p∗
g p∗

p

F-Strategy 1 0.1 0.81 0.1 0.81

F-Strategy 2 0.1 0.81 0.81 0.1

F-Strategy 3 0.3 0.63 0.3 0.63

F-Strategy 4 0.3 0.63 0.63 0.3

F-Strategy 5 0.5 0.45 0.5 0.45

F-Strategy 6 0.5 0.45 0.45 0.5

F-Strategy 7 0.7 0.27 0.7 0.27

F-Strategy 8 0.7 0.27 0.27 0.7

F-Strategy 9 0.9 0.09 0.9 0.09

F-Strategy 10 0.9 0.09 0.09 0.9

F-Strategy 11 0.1 0.09 0.1 0.09

F-Strategy 12 0.1 0.09 0.09 0.1

tion with larger c2 (when c1 = 0.9) will have a larger pg

and a smaller pp, and a particle will learn more from the
global best solution under this condition. The last combina-
tion (c1 = 0.1 and c2 = 0.1) is designed for the condition
that a particle will particularly learn from its hybrid best solu-
tion (ph = 0.81). In addition, the six levels of w are 0.0, 0.2,
0.4, 0.6, 0.8 and 1.0.

Another idea is further considered for the learning strate-
gies. Given a combination in Table 1, a learning strategy
using the same pg and pp of the combination in the whole
searching process is denoted as a fixed learning strategy; a
strategy using the pg and pp in the first half of the search-
ing process and using p∗

g(=pp) and p∗
p(=pg) in the second

half of the searching process is denoted as a variable learning
strategy. For instance, if a learning strategy employs the pg

and pp values of the first combination in Table 1 and 1,000
iterations are used in the searching process, then a variable
learning strategy searches the solution space using pg = 0.1
and pp = 0.81 in the first 500 iterations and using pg = 0.81
and pp = 0.1 in the second 500 iterations. The motivation
of using the variable learning strategy is to overcome cer-
tain limitations present with a fixed learning strategy. When
a fixed learning strategy is applied with a large pg value, par-
ticles will learn mostly from the global best solution and may
cause the search to quickly trap into local optima. Further-
more, when a fixed strategy is applied with a large pp value,
particles will learn mostly from the personal best solution
and may keep the search from converging into good solu-
tion regions. Therefore, it is speculated that a variable learn-
ing strategy with proper pg and pp values may enhance the
performance of RDPSO. Table 2 summarizes 12 different
strategies used in the first phase, denoted as F-Strategy, of
the particle swarm learning strategies.
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Fig. 2 An example for the random-block crossover

The learning operation of a particle from a chosen solution
is executed by applying a random-block crossover operation
to the particle and the chosen solution. Given �i is the solu-
tion of particle i and �gbest is the chosen solution, apply-
ing the random block crossover operation to �i and �gbest

includes three steps. The first step is to randomly choose a
consecutive job sequence, a random block, from �gbest . The
size of the random block is equal to Int(B × n), where Int()
is the integer function, B is a predefined real value between
0.0 and 1.0, and n is the number of the jobs considered in
a solution. The second step is to construct a new solution
by assigning the random block to the same position in the
new solution as that in �gbest . The last step is to sequentially
assign the jobs in �i , which is not in the random block, to
the empty positions in the new solution. A simple example
illustrating the crossover operation is shown in Fig. 2; let
�gbest = (1, 2, 3, 4, 5, 6, 7),�i = (1, 3, 5, 7, 6, 2, 4), and
B = 0.5, so the size of a random block is Int(0.5×7) = 3. A
block (3, 4, 5) is randomly chosen in Step 1, so the new solu-
tion constructed in Step 2 is (–, –, 3, 4, 5, –, –). The last step
will then assign job 1, the first job in �i , to the first position
in the new solution. Since job 3 and job 5, the second and
the third jobs in �i , belong to the random block, job 7, the
fourth job in �i , will then be assigned to the second position
in the new solution, and job 6 and job 2 will be assigned to
the last two positions in the new solution.

After a particle learns from its personal best solution and
the global best solution in the first phase of a learning strat-
egy, it explores its neighborhood, a self-exploration opera-
tion, in the second phase of the strategy with a probability
w. The algorithm of the self-exploration operation is inspired
by Ruiz and Stutzle’s (2007) destruction and the construction
procedures. Given a solution �, the self-exploration opera-
tion first randomly chooses four jobs from the solution. Let
the job sequence of the four jobs be �1 and the job sequence
of the rest of the jobs be �2. Then, insert the first job in
�1 into the first position, the last position and the posi-
tions between every two consecutive jobs in �2 and choose
the sequence with the smallest makespan; repeat the same
process until all the four jobs in �1 are inserted in �2.

2.2 Filtered local search

When all the particles generate their solutions in an iteration,
the FLS is applied to improve the global best solution. Local
search methods are crucial for improving the effectiveness
of population-based metaheuristics such as DPSO (Zhang et
al. 2010b; Pan et al. 2008a) and ACO (Rajendran and Ziegler
2004; Dorigo and Stützle 2004). They usually are applied to
the best solution in an iteration or the global best solution to
improve the quality of the solution; however, this may cause
a search trap into local optima. The FLS first applies a filter
function to find a solution in an iteration, and then applies a
local search method to the chosen solution. The purpose of
the filter function is to guide the search to the solution regions
which have not been examined and protect the search from
trapping into local optima.

The proposed filter function is applied when all the Pnum

solutions are generated in an iteration. We define filter-list as
a first-in, first-out queue to store the makespan of the solution
chosen in each iteration and set a parameter called filter-size
to define the size of the queue. The queue is set to be empty
initially. When all the Pnum solutions are generated in an iter-
ation, the solutions are sorted according to their makespans in
ascending order, and the filter function is applied from the top
of the Pnum solutions until the first solution, whose makespan
is different from all the makespans in the filter-list, is found
and store the makespan of the solution in the filter list. If
none of the Pnum solutions has a different makespan from
the makespans in the filter-list, the last of the Pnum solutions
is chosen but the makespan will not store in the filter-list. The
purpose of comparing makespans instead of job-sequences of
solutions while using the filter function is twofold. Firstly, it
may guide the search to the solution regions which have not
been examined. Secondly, it can significantly reduce com-
putation time by comparing the solution constructed by an
individual and the solutions stored in the filter-list; this is
especially critical when the number of jobs considered in a
problem is large. The ten 50-job and 20-machine instances
chosen from the well-known Taillard’s test problems are used
to compare the performance of the RDPSO with comparing
makespan and that with comparing job-sequence. Computa-
tional results demonstrate that the RDPSO with comparing
makespan on average dominates the RDPSO with comparing
job-sequence by 30 % using 16 % less execution time. These
findings reveal the rationale for comparing makespan while
using the filter function.

Once a solution is chosen using the filter function, the
local search method NEHT_LS is applied to improve the
makespan of the solution. NEHT_LS integrates Taillard’s
Modified-NEH method (Taillard 1990) with Ruiz and Stut-
zle’s (2007) iterative improvement method. Given that � is
the job sequence of the chosen solution, NEHT_LS first ran-
domly chooses a job k and removes it from �. Then it inserts
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job k into the first position, the last position, and the posi-
tions between every two consecutive jobs in � to generate
n different solutions, and lets �′′ be the best of the n gen-
erated solutions. If the makespan of �′′ is smaller than that
of �, NEHT_LS will update � with �′′ and will repeat the
same procedure until � cannot be further improved. If the
makespan of � is smaller than that of the global best solution,
it will update the global best solution with �.

3 Computational experiments

The well-known Taillard’s test problems for PFSP-makespan
(Taillard 1993) are used to evaluate the performance of the
RDPSO. The test problems are composed of 12 different
problem sets with different numbers of jobs (n) and different
numbers of machines (m) and ten test instances are generated
in each of the 12 problem sets, so there are a total of 120
test problems. Twelve instances, selecting the first instance
from each of the 12 problem sets (denoted as Test1), are
used to investigate the effects of the three major parameters
of RDPSO: the F-Strategy, the w value, and the filter-size.
Then, the RDPSO with the best combination of the three
parameters are applied to solve twenty-eight problems, which
are chosen from the 12 problem sets [NPSO (Lian et al. 2008),
ATPPSO (Zhang et al. 2010a) and CDPSO (Zhang et al.
2010a)], denoted as Test2, and to solve all the test problems
except the problems with 500 jobs [PSOvns (Tasgetiren et al.
2007) and H-CPSO (Jarboui et al. 2008)], denoted as Test3,
in order to compare its performance with existing promising
PSO algorithms. In addition, DDERLS (Pan et al. 2008b), the
most effective heuristic for PFSP-makespan up to now, is
used to further evaluate the performance of RDPSO.

As mentioned in Tables 1 and 2, 12 levels of F-Strategy
and six levels of w are considered in the first and the second
phases of the swarm learning strategy respectively. The filter-
size has two levels and is set to 0 and 7, where 0 refers to
that which no filter function is applied. Therefore, there are
a total of 144 different combinations of the three major para-
meters. The remaining parameters of RDPSO are described
as follows: the population size is set to be 60; the block size
for the random-block crossover is set to be (3/20) × n and
the termination criterion is set to be 1000 generations. All
these parameters are determined by trial-and-error.

The RDPSO with each of the 144 combinations is then
applied to solve the 12 instances in Test1 for three tri-
als. The average relative performance (ARP) is used to
measure the performance of the RDPSO with a combi-
nation for each instance. The formula of ARP is as fol-
lows: AR P = ∑R

i=1 (
solutioni −Bestsol

Bestsol
× 100)/R; given an

instance, solutionui is the makespan obtained by trial i of
the RDPSO with a combination for the instance, and Bestsol

is the best makespan that all the research has found for the
instance provided by Zobolas et al. (2009).

Table 3 ANOVA table for testing the significance of the major para-
meters of RDPSO

Source Type III sum
of squares

df Mean
square

F Sig.

Corrected
model

1,195.533(a) 28 42.698 770.531 0.000

Intercept 1,070.424 1 1,070.424 19,317.134 0.000

F-Strategy 2.35 11 0.214 3.855 0.000

w value 50.661 5 10.132 182.847 0.000

Filter-size 6.579 1 6.579 118.722 0.000

Instance 1,135.944 11 103.268 1,863.592 0.000

Error 94.147 1,699 0.055

Total 2,360.104 1,728

Corrected
total

1,289.68 1, 727

a R Squared = 0.927(Adjusted R Squared = 0.926)

Table 4 Result of the RDPSO with filter-size = 0 and filter-size = 7

Filter-size Mean Std. error 95 % confidence interval

Lower bound Upper bound

0 0.849 0.008 0.833 0.864

7 0.725 0.008 0.710 0.741

Table 5 Result of the Duncan test for the F-Strategy

Method N Subset

1 2 3

F-Strategy 4 144 0.7171

F-Strategy 2 144 0.7491 0.7491

F-Strategy 5 144 0.7522 0.7522

F-Strategy 6 144 0.7617 0.7617

F-Strategy 8 144 0.7818

F-Strategy 9 144 0.7950

F-Strategy 10 144 0.7960

F-Strategy 7 144 0.8036

F-Strategy 11 144 0.8047

F-Strategy 12 144 0.8067

F-Strategy 3 144 0.8091

F-Strategy 1 144 0.8677

Table 6 Result of the Duncan test for the w value

w N Subset

1 2 3

0.6 288 0.6717

0.8 288 0.6932

1.0 288 0.6965

0.4 288 0.6988

0.2 288 0.8042

0.0 288 1.1579
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Table 7 Paired-t test for single-phase strategy and two-phase strategy

Paired differences t df Sig.
(2-tailed)

Mean Std.
deviation

Std. error
mean

95 % confidence interval
of the difference

Lower Upper

Pair 1 Single-phase
strategy–
two-phase
strategy

0.0683 0.0994 0.0287 0.0051 0.1315 2.380 11 0.036

The analysis of variance (ANOVA) is applied to analyze
the ARPs produced by the RDPSO with all the 144 combi-
nations for the instances in Test1. Table 3 presents the results
of the ANOVA table (generated by using SPSS). The results
show that all the three major parameters, the F-Strategy, the w

value, and the filter-size, significantly affect the performance
of RDPSO. Since the filter-size considers only two levels,
0 and 7, the results of ANOVA have shown that the perfor-

Table 8 ARPs of RDPSO, CDPSO, ATPPSO, and NPSO

Problem Size Optimal CDPSO ATPPSO NPSO RDPSO

ta001 20×5 1,278 0.59 0.00 1.33 0.00

ta011 20×10 1,582 0.29 0.03 1.43 0.00

ta015 20×10 1,419 0.31 0.23 0.64 0.07

ta021 20×20 2,297 0.45 0.30 1.21 0.00

ta025 20×20 2,291 0.17 0.28 0.92 0.17

ta031 50×5 2,724 0.15 0.01 0.20 0.00

ta035 50×5 2,863 0.03 0.02 0.03 0.00

ta040 50×5 2,782 0.00 0.01 0.04 0.00

ta041 50×10 2,991 2.44 2.47 3.59 1.48

ta045 50×10 2,976 2.09 2.22 3.45 1.16

ta051 50×20 3,771–3,847 2.50 2.32 3.75 1.28

ta055 50×20 3,553–3,610 2.74 2.83 4.53 1.12

ta061 100×5 5,493 0.00 0.00 0.01 0.00

ta065 100×5 5,250 0.08 0.07 0.12 0.02

ta071 100×10 5,770 0.69 0.71 1.26 0.19

ta075 100×10 5,467 1.31 1.41 2.03 0.62

ta081 100×20 6,106–6,202 3.43 – – 1.73

ta085 100×20 6,262–6,314 3.19 3.27 5.37 1.57

ta090 100×20 6,404–6,434 2.56 2.65 4.49 1.53

ta091 200×10 10,862 0.65 0.53 1.07 0.17

ta095 200×10 10,524 0.39 0.36 1.33 0.12

ta100 200×10 10,675 0.69 0.65 1.14 0.21

ta101 200×20 11,152–11,181 3.25 3.29 4.21 1.54

ta105 200×20 11,259 2.40 2.80 4.12 0.98

ta110 200×20 11,284–11,288 3.25 3.71 4.82 1.42

ta111 500×20 26,040–26,059 2.51 2.78 3.68 0.71

ta115 500×20 26,334 2.27 1.97 2.98 0.46

ta120 500×20 26,457 1.81 2.11 3.11 0.60

average 1.44 1.37 2.25 0.61

– This data are not generated by ATPPSO and NPSO

mance of the RDPSO using these two levels is significantly
different. Table 4 presents the average ARPs produced by the
RDPSO with filter-size = 0 and filter size = 7; the results
show that the RDPSO using filter strategy (filter size = 7)
significantly dominates the RDPSO without using filter strat-
egy (filter size = 0). The Duncan’s multiple range test is then
applied to determine if the performance of any two levels
of the F-Strategy and the w value is significantly different.
Tables 5 and 6 present the results of the Duncan’s test for
the F-Strategy and the w value respectively. Note that the
levels of the F-Strategy and the w value in Tables 5 and
6 are sequenced in ascending order in terms of their mean
ARPs, and the levels in the same subset represent that the per-
formance of the RDPSO with the levels is not significantly
different.

The results in Table 5 show several valuable find-
ings. First, F-Strategy 4 produces the best mean ARP;
it significantly dominates its corresponding fixed strategy,
F-Strategy 3, which produces the second worst mean ARP.
Also, F-Strategy 2 produces the second best mean APR;
it significantly dominates its corresponding fixed strategy,
F-Strategy 1, which produces the worst mean ARP. Note that
the (pg, pp) values of F-Strategy 3 and F-Strategy 1 are (0.3,
0.63), (0.1, 0.81) respectively. This result confirms our con-
jecture that the RDPSO using fixed F-Strategy with high pp

value may not be able to converge to good solution regions.
On the contrary, the RDPSO using variable F-Strategy with
higher pp value in the first 500 iterations and higher pg value
in the second 500 iterations of the search may take advantages
of exploration in the first 500 iterations and exploitation in
the second 500 iterations and converge to promising solution
regions. Second, the RDPSO using F-Strategy 2 significantly
dominates the RDPSOs using F-Strategy 8 and F-Strategy 10.
The (pg, pp) values of F-Strategy 8 and F-Strategy 10 are
(0.7, 0.27), (0.9, 0.09) respectively. These finding illustrate
that although F-Strategy 2, F-Strategy 8, and F-Strategy 10
are all variable strategies, the RDPSO, using larger pp value
in the first 500 iterations, may have better exploration capa-
bility and lead the search to better solution regions. Third,
the RDPSOs using F-Strategy 11 and F-Strategy 12 produce
poor mean ARP; the (pg, pp) value of F-Strategy 11 is (0.1,
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Table 9 Paired-t test for RDPSO, CDPSO, ATPPSO, and NPSO

Paired differences t df Sig.
(2-tailed)

Mean Std.
deviation

Std. error
mean

95 % confidence interval
of the difference

Lower Upper

Pair 1 CDPSO-RDPSO 0.8333 0.6687 0.1287 0.5688 1.0979 6.476 26 0.000

Pair 2 ATPPSO-RDPSO 0.8312 0.7527 0.1476 0.5271 1.1352 5.631 25 0.000

Pair 3 NPSO-RDPSO 1.6965 1.2087 0.2371 1.2083 2.1848 7.156 25 0.000

Table 10 Average ARPs of PSOvns, H-CPSO, DDERLS and RDPSO

Problem set PSOvns H-CPSO DDERLS RDPSO

20×5 0.03 0.00 0.04 0.00

20×10 0.02 0.01 0.01 0.01

20×20 0.05 0.02 0.02 0.01

50×5 0.00 0.00 0.00 0.00

50×10 0.57 0.49 0.45 0.49

50×20 1.36 0.96 0.66 0.83

100×5 0.00 0.02 0.00 0.00

100×10 0.18 0.26 0.15 0.15

100×20 1.45 1.28 0.98 1.24

200×10 0.18 0.40 0.07 0.12

200×20 1.35 1.55 0.99 1.38

Overall average ARP 0.47 0.45 0.31 0.39

0.09) and itsph is 0.81. This result concludes that the RDPSO
using both low pg and pp values will not converge to good
solution regions.

The results in Table 6 show that w values, 0.6, 0.8, 1.0,
and 0.4, belong to the first subset. This result illustrates that
the RDPSO should use at least a w value of 0.4 in the sec-
ond phase of the learning strategy. The mean ARP show that
the RDPSO using w = 0.6 dominates the RDPSO using
w = 0.2 and w = 0.0 by 16 % ((0.8042–0.6717)/0.8042))
and 42 % ((1.1579–0.6717)/1.1579)) respectively. The pre-
vious analyses conclude that the best parameter set for
the RDPSO is F-Strategy = F-Strategy 4, w = 0.6 and
filter-size = 7.

Note that the learning strategy of RDPSO is a two-phase
strategy, and the learning strategy of most of the DPSO algo-
rithms, using the learning sequence of Eq. (1), is a single-
phase strategy. Pan et al. considered two levels (0.2, 0.8) for
each of w, c1 and c2 of Eq. (1) to determine an appropriate
parameter set for their DPSO. In order to investigate the effect
of the two-phase strategy, we replace the two-phase strategy
in RDPSO with the single-phase strategy and execute the
modified RDPSO with each of the eight combinations used
by Pan et al. to solve the 12 instances in Test1 for three trials.
The results show that the best parameter set for the modified
RDPSO is w = 0.8, c1 = 0.2 and c2 = 0.8. The paired-t
test is then applied to test the significance of the difference
between the performance of RDPSO using the single-phase
strategy (w = 0.8, c1 = 0.2 and c2 = 0.8) and RDPSO using
the two-phase strategy (F-Strategy = F-Strategy 4, w = 0.6).
Table 7 presents the results of the paired-t test and demon-
strates that RDPSO using the two-phase strategy significantly
outperforms RDPSO using the single-phase strategy.

The RDPSO with the best parameter set is then applied to
solve the test problems in Test2. Ten trials are implemented
for each heuristic for each test problem. Note that all the
algorithms use 1000 iterations as the termination criterion.
Table 8 presents the ARPs generated by NPSO, CDPSO,
ATPPSO and RDPSO. The notation used in the first column
of the table denotes the problem number of the twenty-eight
problems in the 120 test problems (Taillard 1990), which are
denoted from ta001 to ta120. The results show that RDPSO
outperforms NPSO, CDPSO, and ATPPSO in all the test
problems. The average ARP show that RDPSO dominates

Table 11 Paired-t test for PSOvns, H-CPSO, DDERLS and RDPSO

Paired differences t df Sig.
(2-tailed)

Mean Std.
deviation

Std. error
mean

95 % confidence interval
of the difference

Lower Upper

Pair 1 PSOvns-RDPSO 0.08644 0.15985 0.04820 −0.2095 0.19383 1.793 10 0.103

Pair 2 H-CPSO-RDPSO 0.06825 0.09270 0.02795 0.00598 0.13053 2.442 10 0.035

Pair 3 DDERLS−RDPSO −0.07818 0.13681 0.04125 −0.1701 0.01373 −1.8954 10 0.09
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CDPSO by 58 % ((1.44–0.61)/1.44), dominates ATPPSO
by 55 % ((1.37–0.61)/1.37), and dominates NPSO by 73 %
((2.25–0.61)/2.25). Furthermore, the paired-t test is applied
to test the significance of the difference between the perfor-
mance of RDPSO and the performance of each of CDPSO,
ATPPSO and NPSO for the test problems. Table 9 presents
the results of the paired-t test and shows that RDPSO signif-
icantly dominates CDPSO, ATPPSO and NPSO.

In addition, the RDPSO with the best parameter set is
applied to solve the test problems in Test3, and its perfor-
mance is compared to the computational results produced by
two promising PSO algorithms (PSOvns and H-CPSO) and
the most effective algorithm for PFSP-makespan, DDERLS.
PSOvns solved the problems using a PC with an Intel Pen-
tium IV at 2.6 GHz, and it solved each problem ten times to
calculate the ARP. The termination criterion was determined

Table 12 Solutions generated
by the RDPSO without local
search and PSOENT

Problem PSOENT RDPSO Problem PSOENT RDPSO Problem PSOENT RDPSO

20×5 1278 1278 50×10 3092 3051 100×20 6430 6414

20×5 1359 1359 50×10 2942 2915 100×20 6489 6383

20×5 1081 1081 50×10 2926 2889 100×20 6526 6437

20×5 1293 1293 50×10 3083 3071 100×20 6440 6407

20×5 1235 1235 50×10 3049 3024 100×20 6612 6509

20×5 1195 1195 50×10 3056 3036 100×20 6633 6551

20×5 1239 1239 50×10 3144 3133 100×20 6605 6476

20×5 1206 1206 50×10 3072 3049 100×20 6724 6640

20×5 1230 1230 50×10 2952 2923 100×20 6576 6462

20×5 1108 1108 50×10 3143 3131 100×20 6699 6593

20×10 1582 1582 50×20 4004 3950 200×10 10953 10872

20×10 1659 1659 50×20 3838 3761 200×10 10610 10556

20×10 1500 1496 50×20 3788 3741 200x10 11040 10950

20×10 1377 1377 50×20 3857 3806 200×10 10939 10893

20×10 1419 1419 50×20 3732 3688 200×10 10646 10537

20×10 1397 1397 50×20 3821 3758 200×10 10452 10378

20×10 1484 1484 50×20 3855 3763 200×10 10977 10882

20×10 1544 1543 50×20 3825 3788 200×10 10864 10777

20×10 1593 1593 50x20 3903 3831 200×10 10498 10450

20×10 1591 1598 50×20 3896 3830 200×10 10810 10727

20×20 2298 2297 100×5 5493 5493 200×20 11571 11535

20×20 2101 2100 100×5 5274 5268 200×20 11729 11596

20×20 2328 2326 100×5 5179 5175 200×20 11757 11676

20×20 2225 2223 100×5 5023 5014 200×20 11713 11665

20×20 2294 2294 100×5 5255 5250 200×20 11712 11548

20×20 2229 2228 100×5 5135 5135 200×20 11699 11546

20×20 2273 2273 100×5 5251 5246 200×20 11874 11702

20×20 2202 2200 100×5 5094 5094 200×20 11813 11675

20×20 2240 2237 100×5 5454 5448 200×20 11725 11554

20×20 2178 2178 100×5 5332 5322 200×20 11780 11683

50×5 2724 2724 100×10 5851 5790 500×20 26737 26656

50×5 2838 2836 100×10 5407 5377 500×20 27497 27153

50×5 2621 2621 100×10 5691 5679 500×20 27277 26923

50×5 2751 2751 100×10 5902 5849 500×20 27080 26894

50×5 2863 2863 100×10 5588 5514 500×20 26915 26768

50×5 2829 2829 100×10 5334 5308 500×20 27203 26965

50×5 2725 2725 100×10 5658 5602 500×20 27057 26799

50×5 2683 2683 100×10 5695 5664 500×20 27270 27066

50×5 2554 2555 100×10 5958 5907 500×20 26622 26488

50×5 2782 2782 100×10 5903 5857 500×20 27164 26923
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via the execution-time and was set at 10 min for problems
with 100 jobs or more and 5 min for the rest of the problems.
H-CPSO solved the problems using a PC with Intel Pentium
IV at 3.2 GHz, and it solved each problem five times and ter-
minated at an execution-time of 500 s for problems with 100
jobs or more and 250 s for the rest of the problems. RDPSO
solved the problems using a PC with Intel Pentium IV at 2.8
GHz and utilized the same computational conditions as H-
CPSO. DDERLS solved the problems using a PC with Intel
Pentium IV at 3.0 GHz, and it solved each problem five times
and terminated at an execution-time of ((n×m)/2,000)×30 s.
Note that n refers to the number of jobs and m refers to the
number of machines in an instance. Therefore, the execution
times of DDERLS are much less than those used for PSOvns,
H-CPSO and RDPSO. Table 10 presents the average ARPs
generated by PSOvns, H-CPSO, DDERLS and RDPSO for
the problems in each of the eleven problem sets. Table 11
presents the results of the paired-t test for PSOvns, H-CPSO,
DDERLS and RDPSO. The results show that RDPSO dom-
inates H-CPSO at the significance level of 0.035 and dom-
inates PSOvns at the significance level of 0.103. However,
DDERLS dominates RDPSO at the significance level of 0.09.

Table 13 Average ARPs of the RDPSO without local search and
PSOENT

Problem set PSOENT RDPSO

20 × 5 0.00 0

20 × 10 0.07 0.08

20 × 20 0.08 0.03

50 × 5 0.02 0.02

50 × 10 2.11 1.31

50 × 20 3.83 2.2

100 × 5 0.09 0

100 × 10 1.26 0.48

100 × 20 4.37 3

200 × 10 1.02 0.3

200 × 20 4.27 3.21

500 × 20 2.73 1.9

Overall average ARP 1.65 1.04

Finally, the performance of the RDPSO algorithm without
using the local search method, NEHT_LS, is compared with
the recently proposed PSO with expanding neighborhood
topology (PSOENT) of Marinakis and Marinaki (2013), the
best PSO without using local search methods. For equal com-
parison, the RDPSO without using local search and PSOENT
are applied to solve all the 120 test instances with the same
termination criterion of 1,000 iterations for ten trials, and
the best solution of the ten trials for each instance is pre-
sented in Table 12. Note that the solutions of PSOENT in
Table 12 are from Marinakis and Marinaki (2013); the better
solution between the two algorithms for each instance is pre-
sented with bold. The results demonstrate that the RDPSO
without using local search is superior to PSOENT in 87
instances (72.5 % of all the instances), tied with PSOENT
in 31 instances (25.8 % of all the instances), and inferior to
PSOENT in only 2 instances. The ARPs of the two algo-
rithms are then calculated for each instance, and the average
ARPs of the ten instances for each of the 12 problem sets
are presented in Table 13. The results show that the over-
all average ARP of the RDPSO without using local search
dominates PSOENT by 40 % ((1.654–1.04)/1.65). Table 14
presents the results of the paired-t test for the RDPSO with-
out using local search and PSOENT. The result shows that
RDPSO without using local search dominates PSOENT at
the significance level of 0.004.

4 Conclusions

This paper proposes a revised PSO algorithm (RDPSO) to
solve the PFSP-makespan. Computational experiments have
shown that the proposed swarm learning strategies and the
new filtered local search method significantly improve the
performance of RDPSO. Also, the performance of RDPSO
dominates all the existing PSO algorithms using local search.
Additionally, the performance of RDPSO without using local
search dominates PSOENT, the best PSO without using local
search. However, RDPSO is inferior to the performance of
DDERLS.

Some ideas can be further studied to improve the per-
formance of RDPSO. Since all the existing PSO algorithms

Table 14 Paired-t test for RDPSO and PSOENT

Paired differences t df Sig.
(2-tailed)

Mean Std.
deviation

Std. error
mean

95 % confidence interval
of the difference

Lower Upper

Pair 1 PSOENT-RDPSO 0.61 0.57671 0.16648 0.09294 1.12706 3.664 11 0.004
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used random initial population, RDPSO used random ini-
tial population in order to compare its performance with the
existing PSO algorithms. However, DDERLS used NEH to
construct its initial population and reported that the promis-
ing initial population significantly improved its performance.
Therefore, it is believed that the application of NEH to
RDPSO could help generate a promising initial popula-
tion and enhance the performance of RDPSO. Furthermore,
the constitution of the members in its initial population
can be studied. For example, the initial population can be
generated based on the schedule produced by NEH only
(DDERLS) or it can be generated based on the schedules
produced by NEH and other well known heuristics such
as CDS (Sipper and Bulfin 1997). It can also be consti-
tuted with part of the solutions generated by well known
heuristics and part of the solutions generated randomly. The
investigation into the effect of different modes of initial
population may lead to further improvements in RDPSO
performance.

Another area of research to be investigated for RDPSO
improvement is escape strategies. Although the new filter
function is able to keep the search of RDPSO from quick
convergence, RDPSO may still trap into local optima. There-
fore, research towards the development of escape strategies
for guiding the search to jump from a local optimum to
other solution regions is needed. The path relinking method
(Glover 1996), which has been reported to be effective for
PFSP-makespan (Nowicki and Smutnicki 2006), could be a
good trial for generating a new global best solution that may
help RDPSO escape from the local optima.

Lastly, investigations into optimized learning strategies
may benefit the performance of RDPSO. This study demon-
strates that a proper swarm learning strategy should be a vari-
able strategy that learns more from the personal best solution
in the first 500 iterations and then learns more from the global
best solution in the second 500 iterations. As mentioned ear-
lier, this idea takes advantage of exploring the solution space
in the first 500 iterations and exploiting the solution space in
the second 500 iterations. Although this approach is effective,
it can be optimized with methods that adjust learning para-
meters (w, c1, and c2) based on the conditions in each iter-
ation. The self-adaptive learning strategy (Wang et al. 2011;
Wang and Tang 2012), which adjusts learning parameters
in every iteration, has recently received attentions from the
researchers of PSO. Although the process of self-adaptive
learning strategy is complex, it is a definite future direction
for the research of RDPSO.
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