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Abstract 

This paper presents a new simulated annealing approach to the solution of an integer linear programming formulation of 
the one-dimensional cutting stock problem. Design and implementation issues are discussed - including a thorough 
statistical analysis of the effects of various parameters on the efficiency and accuracy of solutions. The performance of the 
new algorithm is compared to that obtained using an existing simulated annealing based methodology, and results presented 
herein indicate that the new approach consistently generates more efficient solutions with respect to objective value and 
execution time. 
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1. Introduction and background 

Simulated annealing is a computational process 
which attempts to solve hard combinatorial optimiza- 
tion problems through controlled randomization. The 
procedure was popularized by Kirkpatrick et al. [13], 
and is based on work by Metropolis et al. [15] (the 
so-called Metropolis algorithm) in statistical mechan- 
ics. Simulated annealing emulates the physical pro- 
cess of annealing (hence the name of the heuristic) 
which attempts to force a system to its lowest energy 
state through controlled cooling. In general, the an- 
nealing process involves the following steps: 
1. The temperature of the system is raised to a 

sufficient level. 
2. The temperature of the system is maintained at 

this level for a prescribed amount of time. 

* Corresponding author. 

3. The system is allowed to cool under controlled 
conditions until the desired energy state is at- 
mined. 
The initial temperature (Step 1), the time the 

system remains at this temperature (Step 2), and the 
rate at which the system is cooled (Step 3) are 
referred to as the annealing schedule. I f  the system 
is allowed to cool too fast, it may " f reeze"  at an 
undesirable, high energy state. With respect to opti- 
mization problems, the state of the system corre- 
sponds to the value of the objective function. Simi- 
larly, the freezing of a system at an undesirable 
energy state corresponds to an optimization problem 
which is " f rozen"  at a local optimum. Given this, in 
simulated annealing the problem starts at some sub- 
optimal solution, and a series of moves (changes of 
values of decision variables) are made according to a 
user-defined annealing schedule until either the opti- 
mal solution is attained or the problem becomes 
frozen at a local optimum from which it cannot 
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improve. To avoid freezing at a local optimum, the 
algorithm moves slowly (with respect to the objec- 
tive value) through the solution space. This con- 
trolled improvement of the objective value is accom- 
plished by accepting non-improving moves (i.e., 
those which yield an objective value greater than or 
equal to the last accepted objective value) with a 
certain probability (based on the resulting change in 
the objective value and the current temperature) 
which decreases as the algorithm progresses. (The 
algorithm's transitions can be modeled as a collec- 
tion of finite-length Markov chains corresponding to 
each temperature level of the system. Hence, through 
selection of an appropriate probability distribution 
and through control of its parameters, the algorithm's 
rate of convergence is controlled. See Van Laarhoven 
and Aarts [17] for a detailed mathematical descrip- 
tion.) 

The general procedure for implementing a simu- 
lated annealing algorithm follows: 

Step 1. Select an initial temperature, t, and an 
initial solution, x 0. Let f0 = f ( x 0 )  denote the corre- 
sponding objective value. Set i = 0 and go to Step 2. 

Step 2. Set i = i + 1. Randomly generate a new 
solution, x i, and evaluate f / =  (xi). 

Step 3. If f~ < f~_ ~, then go to Step 5. Otherwise, 
accept f~ as the new solution with probability 

elf i- f , -~l/ t  

Step 4. If f, was rejected as the new solution in 
Step 3, set f~ =f~_ i. Go to Step 5. 

Step 5. If satisfied with the current objective 
value, f/, stop. Otherwise, adjust the temperature, t, 
according to the annealing schedule and go to Step 2. 

Many researchers have reported encouraging re- 
suits from the application of simulated annealing to 
the solution of computationally complex problems. A 
review of these applications can be found, for exam- 
ple, in Eglese [3]. Finally, although simulated anneal- 
ing is typically considered a heuristic procedure, 
sufficient conditions for asymptotic convergence of 
simulated annealing to the global optimum solution 
have been established (Lundy and Mees [ 14], Hajeck 
[9]). 

The trim problem or one-dimensional cutting- 
stock problem arises in a variety of industries which 

cut rolls of raw materials to rolls of various smaller 
sizes according to customer demand. 

A cutting machine consists of a set of knives 
which can be adjusted to many combinations of 
different locations or sizes of cuts. All knives cut 
through the raw material roll simultaneously result- 
ing in smaller final rolls of different sizes per single 
cut. A combination of different locations of knives is 
termed a cutting pattern or a set-up. 

The trim problem is complicated when there are 
multiple stocks of different sizes of raw materials 
and various cutting machines with different cutting 
efficiencies - each handling different raw material 
sizes. Also, a set-up cost is incurred whenever there 
is a change from one cutting pattern to another. This 
set-up cost is attributed to labor costs and loss of 
production time associated with the process of set- 
ring up knives, adjustment of the knives to various 
locations, and fine tuning to precise locations. 

The objective of the trim problem is to determine 
the set of cutting patterns and assignment of said 
patterns to machines such that the sum of the trim 
loss costs and set-up costs are minimized. This ob- 
jective is subject to imposed constraints such as 
fulfilling customer orders, not exceeding stocking 
limits of final rolls, balancing the load between 
machines, etc. 

The trim problem can be modeled and solved as 
an ILP; however, the formulation typically becomes 
intractable when the following occur: 
1. There are a substantial number of different raw 

material sizes. This is not unrealistic and is some- 
times desirable since it could increase the choices 
of cutting patterns with lower trim loss. 

2. There are many different final roll sizes in cus- 
tomer orders. This situation is especially likely to 
happen when final roll size is allowed to vary by 
regular increments (say 1 inch or 0.5 inch). 
The first known formulation of a cutting-stock 

problem (CSP) was provided by the Russian 
economist Kantorovich (see Haessler and Sweeney 
[8]). Eisemann formulated a practical, multistock, 
multi-machine, one-dimensional CSP and solved it 
using a linear programming (LP) approach (see Dy- 
ckhoff [2]). A major advance in CSP solution meth- 
ods was from Gilmore and Gomory [5,6]. They 
employed a delayed pattern generation technique and 
LP approach to effectively deal with cutting pattern 
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generation and solution of the CSP. Subsequently, 
there has been a great deal of research in this area. 
Various formulations of the CSP considering differ- 
ent criteria and solution techniques have been devel- 
oped. 

Most of the techniques used in solving the one-di- 
mensional CSP or trim problem have applied LP- 
based algorithms (see for example Daniels and 
Ghandforoush [1], Dyckhoff [2], Wascher [18], 
Gilmore and Gomory [5] and [6]). This may be due 
to the NP-hard complexity of the one-dimensional 
CSP when variations in final roll size become sub- 
stantially large. For instance, as pointed out in Dyck- 
hoff [2], with a standard raw roll of 200" and de- 
mands of 40 different final rolls ranging from 20" to 
80", the number of cutting patterns or variables in 
the mathematical formulation can easily exceed mil- 
lions. Although millions of cutting patterns seem 
unrealistically large, cutting patterns in the range of 
thousands can be quite realistic in many industrial 
applications. Such large problem sizes cannot be 
solved by existing integer programming algorithms 
when optimal solutions are desired within reasonable 
computation time. This may explain why the LP 
approach has remained a widely accepted technique. 

In the LP approach, integral solutions are ob- 
tained by rounding the values of the decision vari- 
ables in the optimal solution to the relaxed LP. 
However, this rounding may lead to suboptimal and 
even infeasible solutions. When rounding leads to 
infeasible solutions, additional manipulation of the 
final solution is required to achieve feasibility. Many 
different heuristic approaches have been developed 
to overcome these difficulties. Some generate pat- 
terns sequentially to overcome explosion of problem 
size, and others employ a systematic procedure for 
rounding of LP solutions. Haessler and Sweeney [8] 
summarized methods such as sequential heuristic 
procedures (SHP) and Hybrid solution procedures. 
The primary advantage of the SHP approach is its 
ability to control factors other than trim loss and 
eliminate rounding problems by working with only 
integer values. The main disadvantages are that it 
may lead to suboptimal solutions with higher trim 
loss, and its success depends on intuitive and intelli- 
gent choices in early pattern generation. Another 
approach is the Hybrid Solution Procedure which is 
the integration of SHP and LP. This method is 

somewhat superior to SHP in that it can provide 
either pure SI-IP or LP solutions. Additionally, it can 
generate solutions which are partially SHP and par- 
tially LP and therefore likely to be more desirable 
than either one alone. 

Goulimis [7] proposed a new three-phase algo- 
rithm in which the first phase is pattern generation 
by either dynamic programming or tree search meth- 
ods. The second phase is LP-relaxation, and the third 
phase provides a method of combined cutting planes 
and branch-and-bound technique for identification of 
optimal, integral solutions. This heuristic avoids the 
problems associated with LP-rounding but has the 
disadvantage of being restricted to solution of prob- 
lems of relatively small size due to the IP algorithm 
in the final phase. 

Stadtler [16] developed a first-fit-decreasing (FFD) 
heuristic supplemented by a one-pass branching up 
procedure to identify integral solutions through LP 
rounding. 

It is important to point out that many of the 
heuristics developed to date still cannot avoid the 
need for LP-rounding to achieve integral solutions. It 
is our opinion that elimination of the LP-rounding 
process is desirable. Furthermore, if the model in- 
cludes Boolean, fixed-charge decision variables re- 
flecting the selection or omission of a given cutting 
pattern (see the model presented later herein), re- 
laxed LP solutions will typically not reflect the 
effects of the fixed-charge on the optimal solution. 
The desire to overcome the drawbacks of LP-round- 
ing, the inclusion of fixed-charge criteria in our 
model, and the desire to handle large problem sizes 
has motivated us to explore the application of a 
simulated annealing based heuristic to find a near- 
optimal solution for our ILP model of a one-dimen- 
sional CSP. 

2. Model formulation 

The following formulation is adapted from Daniels 
and Ghandforoush [1] with the inclusion of stocking 
limits on different final roll sizes and the inclusion of 
fixed-charge (set-up cosO criteria. A particular cut 
can result in different final roll sizes or final rolls 
with the same size. 

The formulation assumes that customer orders are 
not handled individually. That is, the model is based 
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on a list which summarizes all customer require- 
ments for a specific production period (see Daniels 
and Ghandforoush [1]). 

2.1. Define 

Xj: Number of lots to be made with set-up number j. 
Aij: i th size of the final roll in the jth set-up. 
C/  Trim loss cost per cut associated with the jth 

set-up. 
Bi: Total order quantity for i th size of final roll. 
Sj: Machine time/cut. 
Qi: Stocking limit of the i th size of final roll. 
Y/ Indicator variable (1 if set-up j used; otherwise, 

0). 
F /  Cost for jth set-up. 
T: Maximum difference in total production time. 
D: Difference of total production time between ma- 

chines. 
M" A large, integral constant. 

Given this, the model is expressed: 

rain Ec xj + EFj  
) ) 

subject to 

E A i j X j >  B, V i, (1) 
J 

E A i j X j < B i + O i  V i ,  (2) 
J 

IOl < T V pairs of machines, (3) 

X j - M Y j < O  Vj(where  M : ~  1), (4) 

Xj > 0 and integral Vj (5) 

r ~  {0,1} V j, (6) 

where 

o=s, Ex -s:,Exj, 
J f 

( j and f denote two distinct machines). 

In the above formulation, the objective is to mini- 
mize the total cost which is the sum of the total trim 
loss costs and the total set-up costs. The set-up costs 
are machine dependent. For example, machines with 
different ages will have different set-up costs. Effi- 
ciency of machines and required set-up times also 
contribute to the difference in set-up costs. The trim 

loss costs can be obtained from a loss function which 
varies for different industrial applications. Usually 
the loss function is based on the per roll inch price, 
realizable price, or recyclability of the material. Re- 
cycling material typically results in a lower grade of 
such material and a discounted price must therefore 
be reflected in the loss function. 

The first set of constraints (1) ensure the fulfil- 
ment of customer orders; whereas, the second set (2) 
imposes the stocking limit for each final roll size. If 
the planned production period is based on the actual 
customer orders rather than forecasted demands, the 
first set of constraints is difficult to formulate. The 
second constraints may require adjustment when the 
solution to the model results in an unsatisfactorily 
high cost. Relaxation of the fight-hand side can often 
yield lower-cost solutions. However, this results in 
an undesirable increase in the final roll stock. Typi- 
cally, a balance should be achieved between the two. 

The third set of constraints (3) ensures a balanced 
load between machines. These constraints can ensure 
utilization of machines, indirectly eliminate the pos- 
sibility of undesirable increases in lead time, and 
avoid the use of only a limited number of material 
sizes. 

The fourth set of constraints (4) impose a fixed- 
charge indicator, ~., associated with the cutting-pat- 
tern variable, Xj. Specifically, 

if j0 
otherwise. 

The above formulation can accommodate many 
variations associated with different industrial appli- 
cations. The following are a few examples: 
(1) If management does not want to have any stock 

of final rolls, constraints (2) can be eliminated, 
and the right-hand side of (1) becomes a strict 
equality. One possible consequence of this is a 
reduction in solution space and a larger, optimal 
objective value. 

(2) When dealing with high-value material, con- 
straints (3) can be relaxed with the assumption 
of identical machines simultaneously running 
identical set-ups. This procedure will shorten the 
lead time. Also, if the value of the material is 
sufficiently high, the trim loss costs will become 
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dominant in the objective function thereby mak- 
ing the set-up costs negligible. In this case, a 
new formulation without the set-up criteria may 
be more applicable. 

In this paper, we limit our study to the application 
of the simulated annealing heuristic to the original 
formulation. 

3. The cutting stock algorithm 

The complete algorithm for the cutting stock 
model presented herein consists of three phases: (i) 
The generation of cutting patterns, (ii) the generation 
of an initial feasible solution to the ILP, and (iii) the 
application of simulated annealing to the solution of 
the ILP model. A detailed description of these steps 
follows. 

Step 1: Pattern Generation 
We are using an enumerative search technique to 

identify all possible patterns (the Xjs in the model). 
Although many previous works have suggested that 
cutting patterns with high loss can be ignored, this 
may lead to suboptimization; moreover, the rela- 
tively few cutting patterns with low trim loss may 
not satisfy all constraints. Therefore, given the exis- 
tence of an efficient heuristic capable of facilitating 
large problem instances, the omission of high trim 
loss cutting patterns is unnecessary. 

Step 2: Generate Initial Feasible Solution (IFS) 
The purpose of generating an IFS is to provide a 

starting solution in the simulated annealing process 
of Step 3. Although an IFS is not mandatory, experi- 
ments using the algorithms described in the follow- 
ing text clearly demonstrated that without an IFS the 
convergence of the simulated annealing algorithm is 
not guaranteed, and the result is generally poor as 
compared to one employing an IFS. 

The IFS for our algorithm was provided by the 
first incumbent solution of a branch-and-bound pro- 
cedure. For this step, the set-up variables, Yj, and 
their associated constraints in (4) of the mathemati- 
cal model - neither of which affects the feasibility of 
the IFS - were dropped from the model to expedite 
identification of the first incumbent solution. (Note 
that branch-and-bound procedures typically provide 

rapid convergence to the first incumbent solution. A 
result supported by our experimentation.) 

Step 3: Simulated Annealing 
The heuristic employed in this research is a slight 

variation of the basic simulated annealing algorithm 
presented in the previous section. Initially, we exper- 
imented with a procedure which has been reported in 
the literature (see Isken and Hancock [11]) to provide 
good results for certain ILPs (hereafter, The Existing 
Method). Briefly, that procedure increments a ran- 
domly selected decision variable by one, decrements 
another (distinc0 randomly selected decision vari- 
able by one, assigns an appropriate penalty cost for 
violation of feasibility, evaluates the energy function, 
and accepts or rejects the incumbent solution as 
outlined in Step 3 of the general simulated annealing 
procedure. However, we found this procedure re- 
sulted in convergence (or freezing) at a suboptimal 
state. Based on experimentation with the two meth- 
ods mentioned, we conjectured that the unit in- 
crease/decrease of a pair of decision variables was 
insufficient to ensure movement from a local opti- 
mum. Since upper and lower bounds on all decision 
variables for the ILP formulation are known, we 
decided to try setting a pair of randomly selected 
decision variables to a value uniformly distributed 
between their respective lower and upper bounds. 
The constraints were then evaluated for the trial 
solution. If the trial solution was feasible, the energy 
function was evaluated; however, rather than reject- 
ing the trial solution if the constraints were violated, 
we determined the range of feasible values for one of 
the decision variables (the other was reset to its 
initial value) and set its value randomly from a 
uniform distribution over the established feasible 
range. The energy function was then evaluated with 
this trial solution. This procedure performed well and 
was accepted as the final form of the algorithm. 
(Note: A computational comparison of the two meth- 
ods is provided in Section 5.) 

The steps of our final implementation of the 
simulated annealing heuristic are outlined below. 
The algorithm was implemented in the C program- 
ming language using Turbo C Version 2.0 on an 
IBM-compatible 486DX2 66 MHz personal com- 
puter. In the algorithm, X i = ( X i l , X i 2  . . . . .  gin ) de- 
notes the vector of decision variables, LB and UB 
denote the lower and upper bounds on all decision 
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variables, respectively, and U(a,  b) denotes a variate 
from a discrete, uniform distribution over the range 
[a, b]. 

3.1. S imulated annealing ILP  algori thm (SAILP)  

Step 1. Let  n denote the number of non fixed- 
charge decision variables. Select an initial tempera- 
ture, t = TINIT, and an initial feasible solution (as 
previously described), x 0. Let f0 = f ( x 0 )  denote the 
corresponding objective value. Set i = 0, NSIZE = n, 
ITER = NSIZE(SIZEFACTOR), n = ITER, and go 
to Step 2. 

Step 2. Set i = i + 1. Randomly select two deci- 
sion variables, xi j  and xik,  and set x i j  ~ U(LB, UB) 
and xik ~ U(LB, UB). If  the resulting decision vec- 
tor, x i, is feasible, evaluate f~ = f ( x )  and go to Step 
3. Otherwise, set x~k = x;_ l.k and evaluate the con- 
straints for determination of a feasible lower bound, 
say XLB, and a feasible upper bound, say XUB, on 
decision variable xo.. Set x o. ~ U(XLB, XUB), eval- 
uate f / = f ( x l ) ,  and go to Step 3. 

Step 3. If  f~ <f~_ 1, then set FAILCOUNT = 0 
and go to Step 5. Otherwise, accept f~ as the new 
solution with probability 

elL-f,_ ~1 / t 

and go to Step 4. 
Step 4. If f/ was rejected as the new solution in 

Step 3, then set REJECTED = REJECTED + 1, f~ = 
f i - ~ ,  and x i = x i_ l- If  f/ was accepted in Step 3, 
then set ACCEPTED = ACCEPTED + 1. Go to Step 
5. 

Step 5. If  satisfied with the current objective 
value, f/, stop. Otherwise, set n = n -  1. If n > 0, 
then go to Step 2. Otherwise, set t = t .  TFAC. If 
t < TSTOP, then stop. Else if 

( ACCEPTED ) 

ACCEPTED + REJECTED < MINACCEPT, 

set FAILCOUNT -- FAILCOUNT + I. If  FAIL- 
COUNT = FREEZEMAX, then stop; otherwise, set 
n = ITER, REJECTED = 0, and go to Step 2. 

It should be noted that the constraints in the 
original ILP formulation associated with the fixed- 
charge variables need not be directly evaluated. That 
is, each fixed-charge variable is set prior to evalua- 

tion of the objective function. It is clear that at most 
two fixed charge variables will be evaluated per 
iteration of the algorithm - resulting in a significant 
decrease in computational burden. The execution 
time of the algorithm is further decreased by partial 
evaluation of the objective function at each iteration. 
That is, we need only consider the effect (with 
respect to the objective function) of those decision 
variables which were altered in the trial solution. 

4 .  P a r a m e t e r  s e l e c t i o n  

In this section, the experiments conducted to de- 
termine the " idea l "  parameters for the annealing 
algorithm are described. The procedures followed 
were first presented by Johnson et al. [12] and have 
been applied by Hart and Chen [10]. Due to the 
number of parameters and their inherent interactions, 
a complete enumeration and analysis is not possible; 
however, the methodology presented herein facili- 
tates a sufficient investigation of the effects of vari- 
ous parameters on the algorithm's performance. 

Referring to the SAILP algorithm, the annealing 
parameters of interest are (i) TINIT - the initial 
starting temperature of the algorithm, (ii) SIZEFAC- 
TOR - the number of trial solutions per temperature 
level, (iii) TFAC - the rate at which the algorithm's 
temperature is decreased, (iv) MINACCEPT - 
threshold corresponding to the minimum number of 
allowable accepted moves at a given temperature 
level, and (v) TSTOP - the algorithm's termination 
temperature. An additional parameter of interest is 
INITPROB which is a dependent variable represent- 
ing the probability of accepting a trial solution dur- 
ing the first temperature level. In SAILP, INITPROB 
is expressed as the proportion of nonimproving moves 
accepted by the algorithm during the first tempera- 
ture level and is clearly dependent upon TINIT and 
SIZEFACTOR. 

The test problem employed in the design of the 
algorithm's parameter set and in the computational 
comparison of SAILP with the existing SA-based 
technique was a cutting stock problem consisting of 
four machines and customer orders of four final roll 
sizes. The data for this problem can be found in the 
Appendix. The test problem was modeled using the 
ILP formulation presented herein, and its optimal 
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solution was obtained using the LINDO optimization 
package. We chose a "smal l"  cutting stock problem 
to ensure that the optimal solution would be avail- 
able to evaluate the performance (with respect to 
objective value) of the SAII.P algorithm. Since our 
primary purpose in this research was to compare the 
efficiency of SAILP with the existing SA-based ILP 
methodology, we felt that size of the problem solved 
was not a primary issue. 

Where applicable, a statistical analysis of the 
experimental results has been performed. Analysis of 
Variance (ANOVA) is the most common technique 
for determining if a given factor will significantly 
affect the outcome of an experiment, interactions 
between factors, and opt imal  conditions. A basic 
assumption of ANOVA is that the variances of all 
the treatment combinations are equal; however, ac- 
cording to the results of our experiments, this as- 
sumption is not satisfied. Therefore, ANOVA cannot 
be employed in the statistical analysis. Instead, the 
t-test has been employed to test the null hypothesis 
that the output of two treatment combinations are 
equal (i.e., / z~ -  ft 2 = 0) since it can be employed 
when the variances of the output of the treatment 
combinations are equal and when they are unequal 
(For unequal variances, the test is referred to as the 
Smith-Satterthwaite test). Specifically, for equal 
variances the statistic is defined: 

t ~  

l) f + ( . 2 -  

V nl + n2 

with n I + ?12 --  2 degrees of freedom. 

For unequal variances: 

Xl --  X2 
f = with 

! - t - - -  
n 2 

/,, 
10'---- 

( $ f / " l )  2 (S22 /n2)  2 
+ 

n I + 1  n 2 + l  

degrees of freedom. 

To determine which test will be used in the 
analysis, an F-test for determining if the variances of 
the treatment combinations are equal (i.e., cr 2 = o'22) 
must be performed: 

ma {sf,s } 
F =  

with n I - 1 and n 2 - 1 degrees of freedom. 

(For all F-tests, the alternative hypothesis is that the 
variance of the treatment combination associated with 
the numerator in the expression above is greater than 
that associated with the denominator, and all tests 
were performed first at the 0.01 level of significance: 
F0.01(39,39) = 2.12. If the null hypothesis could not 
be rejected at this level of significance, then the test 
was performed at the 0.05 level of significance: 
F0.05(39,39) = 1.70. An examination of the data pre- 
sented in the following discussions indicates that the 
null hypothesis was rejected at the 0.01 level of 
significance for many of the treatment combinations 
supporting the necessity to rely on the t-tests rather 
than ANOVA for data analysis.) 

The first experiment conducted established a rela- 
tionship between TINIT and the acceptance probabil- 
ity, INITPROB. For this experiment, the parameters 
S IZEFACTOR,  TFAC,  MIN A CCEP T,  and 
FREEZEMAX were set at 8, 0.95, 0.02, and 5, 
respectively. Forty replications for various values of 
TINIT were conducted, and the values of INITPROB 
were calculated and averaged over the 40 replica- 
tions. The results are depicted in Table 1. 

The second experiment conducted examined the 
effect of INITPROB on the efficiency (with respect 
to objective value and execution time) of the algo- 
rithm. For this experiment, 40 replications of the 
algorithm were conducted using the TINIT values of 
Table 1 and the aforementioned values for SIZE- 
FACTOR, TFAC, MINACCEPT, and FREEZE- 
MAX with TSTOP = 0.001. The results of these 
experiments appear in Table 2. The t-test row con- 

Table 1 
Relationship between initial mmpcratum (TINIT) and the accep- 
tance probability (INITPROB) 

TINIT 7500 2900 1500 700 
INITPROB 0.9 0.8 0.7 0.6 
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Table 2 
Effects of starting temperature (TINIT) and the acceptance probability (INITPROB) using SAILP 

529 

TINIT/INITPROB 

7500/0.9 2900/0.8 1500/0.7 700/0.6 

CPU time (sec) 266.89 254.75 247.32 
Mean objective value 24176.25 23472.88 25723.13 
Standard deviation 6584.10 4648.89 5541.77 
t-test F = 2.01 - F = 1.42 

t' = 0.55 - t = 1.96 
,~ = 0.05 - a = 0.05 
v= 72 - - 

240.79 
32032.25 

1279.03 
F =  13.21 
t' = 11.23 
a = 0.005 
v=44 

tains information related to the test of  the null hy- 
pothesis that the mean objective value of  the 
(TINIT, I N I T P R O B ) =  (2900,0.8) pair  was equal to 
that of  the other (TINIT, INITPROB) pairs. The value 
of  the test statistic is reported along with the level of  
significance, a ,  employed in the test. When the 
value, v, is reported, the F-test  indicated a signifi- 
cant difference in the variances and hence the 
Smith-Sat ter thwal te  test was applied. Otherwise,  the 
t-test was applied. 

Based upon the results of  the statistical analysis, 
we can conclude that the mean object ive value ob- 
tained using the (TINIT, I N I T P R O B ) = ( 2 9 0 0 , 0 . 8 )  
pair is significantly less than that obtained with the 
(1500,0.7) pair at a 0.05 level o f  significance and 
that obtained with the (700, 0.6) pair  at a 0.0005 
level of  significance. Although there is no statisti- 
cally significant difference at the 0.05 level of  signif- 
icance between the (2900, 0.8) and (7500, 0.9) pairs, 
the lower variance and execution t imes of  the 
(2900, 0.8) pair favor it for inclusion in the standard 
parameter  set. 

The effects of  TFAC and S I Z E F A C T O R  were 
analyzed by conducting 40 replications of  the algo- 
rithm using the (TFAC, S IZEFACTOR)  pairs de- 
picted in Table 3 (all other parameters were fixed at 
their aforementioned values). 

The values of  TFAC were chosen such that each 
increase in value represents the square root of  the 
previous value which should yield a doubling of  the 
number of  temperature levels at which the objective 
function is evaluated. Similarly,  each increase in 
S IZEFACTOR results in a doubling of  the number 
of  trial solutions per temperature level. As noted by 
Johnson et al. [12], fixing one parameter  and increas- 

ing the other to its next value should yield an 
approximate doubling of  the a lgor i thm's  execution 
time. The results of  Table 3 support this observation. 

From the table, increasing S IZEFACTOR to its 
next value while fixing TFAC yields an average 
9.9% decrease in the objective value; whereas, in- 
creasing TFAC to its next value while fixing SIZE- 

Table 3 
Effects of TFAC and SIZEFACTOR on average CPU time, 
objective value, and standard deviation using SALIP 

SIZEFACTOR 

CPU time (secs) 
Objective value 
Standard deviation 

TFAC 

0.9025 0.9500 0.9747 

1 16.09 32.09 65.64 
40493.50 34471.38 29955.25 

5814.46 3 8 8 3 . 9 7  5147.09 

2 32.18 64.09 125.86 
33019.00 28856.00 24659.00 
4616.23 4 5 5 4 . 4 4  4870.75 

4 65.71 125.73 260.33 
27949.25 25401.25 22425.00 
4887.03 5 0 4 9 . 5 3  4162.22 

8 128.55 254.75 511.29 
24595.13 23472.88 22099.25 
4568.84 4 6 4 8 . 8 9  4262.22 

16 257.15 513.23 1025.55 
22346.88 20248. ! 3 20323.25 
3433.53 778.06 773.73 

32 513.15 1016.88 2019.67 
20686.38 20100.25 20274.63 

1122.42 458.46 124.10 
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Table  4 

Sta t i s t ica l  ana lys i s  o f  i m p r o v e m e n t  in  o b j e c t i v e  v a l u e  fo r  va r i ous  ( T F A C ,  S I Z E F A C T O R )  t rea tments  

32 16 

0 .9747 0 .9500  0 .9025  0 .9747  0 . 9 5 0 0  0 .9025 

32 0 .9747  

0 .9500  

0 .9025  

16 0 .9747  

0 . 9 5 0 0  

t '  = 2.23 

at = 0 .05  

1,= 45 

t '  = 2.31 

a = 0.05 

1,  = 4 0  

t '  = 3.06 

ot = 0 .005 

1 ,=  53 

t '  = 0 .39  

a = 0.05 

1 , = 4 2  

t '  = 1.56 

a = 0 .05  

1,= 65 

t ' =  2.11 

a =  0 .05  

v =  71 

t '0 .21  t '  = 3.81 

a = 0.05 a = 0 .0005 

1 , = 4 2  1 , = 4 0  

t '  = 1 . 0 4  t '  = 4.10 

a = 0.05 a = 0 .0005 

1,  = 6 5  1,  = 41 

t '  = 2.03 t '  = 2.91 

a = 0.05 a = 0 .005 

1 , =  7 1  1 , =  48 

t = 0.43 g = 3.64 

a = 0 .05  a = 0 .0005 

t '  = 3.77 

- a = 0 .0005 

v = 4 4  

FACTOR yields an average 8.1% decrease in objec- 
tive value. These results indicate that the efficiency 
(with respect to objective value) of the algorithm is 
improved by increasing the algorithm's run time by 
either increasing the number of trials per temperature 
level or by increasing the number of temperature 
levels. This conclusion was verified by performing 
t-tests between TFAC columns and SIZEFACTOR 
row pairs for SIZEFACTOR values of 16 and 32 in 
Table 3. The results are tabulated in Table 4. From 
the table, 11 of the  15 treatment combinations (73%) 
indicate a statistically significant difference between 
average objective values. 

Given these results, it was decided that the stan- 
dard settings for TFAC and SIZEFACTOR should 
represent a reasonable tradeoff of efficiency for im- 
provement in execution time. From Table 3, the best 
objective value was obtained when TFAC = 0.95 
and SIZEFACTOR = 32; however, TFAC = 0.95 and 
SIZEFACTOR= 16 provides an average objective 
value only 0.73% higher which, based upon the 
t-test in Table 4, is statistically insignificant at the 
0.05 level of significance. The t-tests of Table 4 also 
indicate that SIZEFACTOR values greater than 32 
need not be considered since there is no statistically 

Table  5 

Sta t i s t ica l  ana lys i s  o f  ave r age  ob j ec t i ve  va lue  for  ( T F A C ,  SIZE-  

F A C T O R )  = ( 0 . 9 5 , 1 6 )  pa i r  ve r sus  ave rage  ob jec t ive  va lue  ob- 

ta ined  fo r  t r ea tments  w i th  l o w e r  C P U  t imes  

T F A C  

S I Z E F A C T O R  0 .9025  0 .9500  0 .9747 

1 t '  = 21.83 g = 22.71 t '  = 11.79 

a = 0 .0005  a = 0 .0005 a = 0 .0005 

1,  = 4 1  1, = 4 3  v = 41 

2 t '  = 17.25 g = I 1.75 t '  = 5.66 

a = 0 .0005  a = 0 .0005 a = 0 .0005 

1,  = 4 2  1,  = 4 2  1,  = 42 

4 t' = 9 .84  t' = 6.38 t '  = 3.25 

ct = 0 .0005  ot = 0 .0005 ct = 0 .005 

1 ,  = 4 2  1,  = 4 1  v = 42 

8 t '  = 5.93 t '  = 4.33 t '  = 2 .70  

~t = 0 .0005  ot = 0 .0005 ot = 0 .005 

1 , = 4 2  1 , = 4 2  1 , = 4 2  

16 t '  = 3.77 

a = 0 .0005  - 

1 , = 4 4  

32 t '  = 2.3 

ot = 0.05 - 

1,  = 48  
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Table  6 

S tandard  parameters  chosen  for  the S A I L P  a lgor i thm based  upon  

statistical analys is  

T1NIT T F A C  S I Z E F A C T O R  M I N A C C E P T  T S T O P  

2900  0 .9500  16 0.02 0.001 

significant difference between the average objective 
values obtained for SIZEFACTOR = 16 and SIZE- 
FACTOR = 32 treatments with a given TFAC. 
Therefore, since the average execution time of the 
TFAC = 0.95 and SIZEFACTOR = 16 pair is half 
that of the TFAC = 0.95 and SIZEFACTOR = 32 
pair with no statistically significant difference in 
average objective value, the TFAC = 0.95 and SIZE- 
FACTOR= 16 pair was selected as standard set- 
tings. Table 5 illustrates that the average objective 
value obtained with (TFAC, SIZEFACTOR)= 
(0.95, 16) pair dominates the average objective value 
obtained with all other pairs with lower execution 
times. Hence, a reasonable tradeoff is accomplished 
with the (0.95, 16) pair. 

The final experiment required determination of 
the stopping criteria, TSTOP and MINACCEPT. Re- 
ferring to SAILP, the algorithm is terminated when 
either (i) the temperature falls below TSTOP or (ii) 
the number of accepted moves falls below MINAC- 
CEPT for FREEZEMAX consecutive temperature 
levels. The effect of TSTOP was analyzed by per- 
forming 40 replications for various values of TSTOP 
on the range [0.000001,0.1]. The results indicated 
that little or no improvement in objective value was 
obtained by decreasing TSTOP below 0.0001. Al- 
though increasing TSTOP above 0.0001 yielded 
shorter execution times, the average objective values 

were deemed unacceptably high with respect to those 
obtained with TSTOP = 0.0001. In all experiments, 
the value of MINACCEPT was shown to have no 
effect on the algorithm (This observation held for 
various values of FREEZEMAX). That is, the algo- 
rithm always terminated when the temperature fell 
below TSTOP. 

Based on the aforementioned experiments, the 
parameter values shown in Table 6 were selected as 
the standard settings. 

5. Computational comparison 

In this section, a computational comparison be- 
tween SAILP and the existing SA-based technique 
for ILP problems is presented. The analysis was 

conduc ted  on the same problem employed in the 
selection of SAILP's standard parameter settings. 

To facilitate comparison between SAILP and the 
Existing Method required determination of an "opti- 
mal" TINIT value for the Existing Method and 
exploration of its performance for various 
(TFAC, SIZEFACTOR) pairs using this TINIT pa- 
rameter; hence, the experiments reported for SAILP 
in Tables 2 and 3 were repeated for the Existing 
Method. The results of these experiments appear in 
Tables 7 and 8, respectively. 

Based upon the results of the statistical analysis 
reported in Table 7, we can conclude that the mean 
objective value obtained using the (TINIT, IN- 
ITPROB) = (2050, 0.8) pair is significantly less than 
that obtained with the (5000,0.9) and (1050,0.7) 
pairs at a 0.05 level of significance and that obtained 
with the (200, 0.6) pair at a 0.0005 level of signifi- 

Table  7 

Effects  o f  s tar t ing tempera ture  (TINIT) and the accep tance  probabi l i ty  ( INITPROB)  us ing  the exis t ing me thod  

T I N I T / I N I T P R O B  

5 0 0 0 / 0 . 9  2 0 5 0 / 0 . 8  i 0 5 0 / 0 . 7  2 0 0 / 0 . 6  

CPU t ime (sec)  

Mean  object ive value 

Standard  deviat ion 

t-test 

254 .59  246.39  241 .56  212.12  

39070.38  37267 .00  38795 .25  42120.88  

4656 .64  3686.63  4190 .94  6489 .18  

F =  1.60 - F =  1.29 F =  3.10 

t = 1.92 - t = 1.73 t '  = 4.11 

ol = 0.05 - ot = 0.05 a = 0 .0005 
- - - v = 4 4  
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Table 8 

E f f e c t s  of  TFAC and SI7:F~FACTOR on average CPU time, 

objective value, and standard deviation using the existing method 

C PU t ime (secs) 

Object ive value 

Standard deviation 

TFAC 

SIZEFACTOR 0.9025 0.9500 0.9747 

1 15.97 30.14 62.16 

50113.00 51981.00 47996.00 

3759.37 3704.88 5298.62 

2 30.66 62.19 124.68 

50688.88 48015.75 43827.25 

4837.63 4868.96 4664.78 

4 61.17 123.48 248.59 

48251.00 40922.00 36972.00 

4461.49 5373.62 3468.56 

8 125.15 246.39 500.05 

42655.00 37267.00 34150.13 

4920.58 3686.63 3047.61 

16 250.79 496.02 990.65 

38421.38 34008.63 28706.38 

4097.65 2274.56 5732.19 

32 502.22 985.87 1945.72 

33891.25 28503.75 21866.75 

2661.34 5410.85 2083.15 

Table 9 

Statistical analysis of  average objective values obtained under 

identical (TFAC, S IZEFACTOR)  combinations for SAILP and the 

existing method 

TFAC 

SIZEFACTOR 0.9025 0.9500 0.9747 

1 t '  = 8 . 8 4  t - 20.63 t = 15.45 

a = 0.0005 a ffi 0.0005 a = 0.0005 

~, = 69 - - 

2 t = 16.71 t = 19.46 t = 17.98 

a = 0.0005 a = 0.0005 a ffi 0.0005 

4 t ffi 19.40 t = 13.31 t = 16.98 

a = 0.0005 a = 0.0005 a = 0.0005 

8 t = 17.01 t = 14.01 t = 14.55 

a = 0.0005 a ffi 0.0005 a ffi 0.0005 

16 t = 19.01 t' = 36.20 t' = 9.17 

a = 0.0005 a ffi 0.0005 a ffi 0.0005 

- v = 4 9  v = 4 1  

32 t' = 28.91 t' = 9.78 t' = 4.82 

a = 0.0005 a = 0.0005 a = 0.0005 
v = 5 4  v f f i 4 0  v = 4 0  

cance; therefore, TINIT = 2050 was employed in the 
generation of the (TFAC, SIZEFACTOR) analysis of 
Table 8. 

Given the "optimal" TINIT values for the SAILP 
algorithm (identified in the analysis of Table 2) and 
the Existing Method (identified in the analysis of 
Table 7), the first performance comparison between 
the two algorithms involved a statistical analysis of 
the average objective values for all (TFAC, SIZE- 
FACTOR) combinations in Tables 3 and 8. (i.e., the 
performance of the two algorithms with respect to 
average objective value was analyzed under identical 
conditions.) These results are reported in Table 9. 

From the table, the performance of SAILP domi- 
nates that of the Existing Method at the 0.0005 level 
of significance for all (TFAC,SIZEFACTOR) combi- 
nations. Finally, Table 10 compares the average 
objective values obtained for all TFAC values when 

the execution time of SAILP is approximately 1/8  th 
that of the Existing Method. 

From the table, the performance of SAILP (with 
respect to average objective value) dominates that of 
the Existing Method even when the execution time 
of SAILP is significantly less than that of the Exist- 
ing Method. 

Table 10 

Statistical analysis o f  average  object values obtained when the 

execution t ime of  SAILP is approximately I / 8  th that of  the 

existing method 

S1ZEFACTOR TFAC 

S A l L P / E x i s t i n g  method 0.9025 0.9500 0.9747 

1 / 8  t = l . 8  t ffi 3.53 g ffi 4.44 

= 0.05 ~ = 0.0005 a = 0.0005 

- - v = 65 

2 / 1 6  t = 5.54 t' = 6.40 t = 3.40 

a = 0.0005 a = 0.0005 a = 0.005 

- v = 5 9  - 
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6. Conclusions 

This paper has presented a new SA-based solution 
algorithm for ILP problems. Extensive analysis of 
the effects of various parameters on the accuracy and 
efficiency of solutions generated by the algorithm 
has been provided. A new ILP model of the cutting 
stock problem has been developed and employed to 
illustrate the superior performance of SAILP over an 
existing SA-based methodology. Specifically, a di- 
rect computational comparison and statistical analy- 
sis between SAILP and the existing simulated an- 
nealing method indicates that SAILP can provide 
superior solutions (with respect to objective value) in 
significantly less time, 

Further research should be conducted to analyze 
the performance of SAILP on larger cutting stock 
problems and to determine the applicability of SAILP 
to other ILP problems with non binary decision 
variables. 

Table AI 
Machine data 

Machine 

A B C D 

Machine roll size 100 80 70 140 
(inches) 
CuRing time 3 4 6 2 
(min /cu0 ,  Sj 
Set-up cost per pattern 1500 1200 1000 2200 
change (¢ / cu0 ,  Fj 

Table A2 
Customer orders 

Final roll sizes 45 36 31 14 
(inches), i =  1,2,3,4 
Number of rolls 800 300 70 200 
required, B i 
Stocking limit on 200 100 50 90 
final rolls, Qi 
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Table A3 
Trim loss costs 

Loss of material Realizable Net loss 
per roll price per per roll 

roll 

For loss t < 7" 30t 5 30t-5 
For loss t _< 8" 30t 5t 25t 

Appendix A. Test problem data 
Table A5 
Optimal solution found by integer programming optimum objec- 
tive value, F = 19425 

X 6 = 35 Y6 = 1 
X27 = 80 Y27 = 1 
X2s = 280 X2s = 1 
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