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Abstract--This research develops an approach for applying Genetic Algorithms (GA) to scheduling 
problems. We generate a GA based heuristic for continuous flow shop problems with total flow time as 
the criterion. The effects of several crucial factors of GA on the performance of the heuristic for the 
problem are explored in detail. The computational experience of heuristic provides several observations 
of the application of GA, and strongly supports that the applications of GA are problem specific. The 
computational experience also shows that GA can be good techniques for scheduling problems. Copyright 
© 1996 Elsevier Science Ltd 

1. INTRODUCTION 

The flow shop problem is a scheduling problem which considers m different machines and n 
jobs; each of the jobs consists of m operations, and each of the operations requires a different 
machine and all the jobs are processed in the same processing order. Since Johnson's work [1] on 
the n-job two-machine flow shop problem, flow shop problems have been extensively treated in 
the literature. Many algorithms have been proposed to solve the problems, and in most of these 
problems, it is assumed that infinite intermediate storage exists which can hold all the partially 
processed jobs when the jobs cannot be further processed (because the subsequent machines are 
busy) [2]. However, this assumption is not practical in some cases. For instance, in rolling of steel 
the process has to be continuous and the intermediate storage cannot exist. Reddi and 
Ramamoorthy [2] denoted this special flow shop problem as FSNIS (Flow Shop with No 
Intermediate Storage). 

The NP-hardness of the problem has been studied by Sahni and Cho [3]. Wismer [4], and Reddi 
and Ramamoorthy [2] modeled the problem with makespan as the criterion as the well-known 
traveling salesman problem (TSP), and solved the problem by using TSP techniques. Owing to the 
fact that no wait is allowed for jobs for the FSNIS problem, Wisner showed that the minimum 
difference between the start time of two consecutive jobs is independent of the sequence of the other 
jobs. For instance, for a n-job, 3-machine problem, M~, M2, and M3 are the machines. Figure 1 
displays the Gantt chart for the first two jobs, job x and job y, of a sequence of the n jobs when 
"wait" is allowed, while, for the same sequence, Fig. 2 displays the Gantt chart for the two jobs 
when "no wait" is allowed. In Fig. 2, dxy is the minimum difference between the start time of the 
two jobs. We can see that as long as job x and job y are placed consecutively in a sequence, the 
value of dx~ will never change regardless of their positions in the sequence since "no wait" is allowed 
for the jobs. The d value of any two consecutive jobs can be obtained by using the same procedure 
as Figs 1 and 2. With this property of the FSNIS problem, the makespan, M, of a sequence {i(1), 
i(2) . . . . .  fin)} can be described as follows 

M = C~.Id~,~+t)) + R~n), 

where R~n~ is the total processing time of the last job of the sequence. 
In order to model the FSNIS problem as a (TSP), Wismer defined two dummy variables, job 
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job x 

job y 

M1 I M2 I M3 

I M1 • ~ - ]  M3 I 

Fig. 1. Processing of job x and job y with "wait" allowed. 

0 and job n + 1, and defined the following d values concerning the two jobs so that a sequence 
can always start from job 0, end at job n + 1, and return to job 0: 

doj = 0, j =  1, 2 . . . . .  n; 

d.+lj = ~,0 = oo, j = 1, 2 . . . . .  n; 

d.+ 1,0 = O, do,.+1 = oo ,  and d . , n +  l = R~.~. 

With these definitions, the objective function of the FSNIS problem with makespan as the criterion 
can be written as follows 

Min{M = j =ZodJo3ao + 0}. 

Apart from the research with makespan as the criterion, Van Deman and Baker [5], Bonny and 
Gundry [6], Panwalker and Woollam [7], and Rajendran and Chaudhuri [8] solved the problem 
with total flow time as the criterion. Based on the Wismer's idea, Van Deman and Baker [5] 
generated the objective function for the problem with total flow time as the criterion as follows: 

job x 

job y 

M1 M2 M3 

Fig. 2. Processing of job x and job y with "no wait" allowed. 
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They then developed a branch and bound algorithm for the problem. Their experimental results 
suggested that the FSNIS problem with mean flow time as the criterion can be solved as fast as 
the traditional flow shop problem with makespan as the criterion. Bonny and Gundry [6] proposed 
a slope matching algorithm in which geometrical relationships between the cumulative process 
times were utilized to derive start and end slopes for each job in order to use these slopes to find 
a job sequence. Panwalker and Woollam [7] considered a special case of the FSNIS problem which 
they denoted as OFSNW (Ordered Flow Shop problem with No Waiting) and they proved that 
SPT ordering of jobs minimizes mean flow times for all OFSNW problems. Rajendran and 
Chaudhuri [8] developed a job insertion heuristic for the problem. They compared the performance 
of their heuristic with that of the other existing heuristics, and showed that their heuristic dominates 
all the existing heuristics. 

The objective of this research is to develop a Genetic Algorithms (GA) based heuristic for the 
FSNIS problem with total flow time as the criterion. We propose an approach for analysing the 
crucial factors for the application of GA to the candidate problem. The proposed approach can 
be extended to several of the related flow shop problems. The remainder of the paper is organized 
as follows. Section 2 presents an introduction to GA and Section 3 describes the methodology of 
the application of GA to the FSNIS problem. Finally, in Section 4 the analysis of the performance 
of the GA based heuristic is provided followed by the Conclusion in Section 5. 

2. GENETIC ALGORITHMS 

GA are probabilistic search techniques, which mimic the process of evolution. The fundamental 
principles of genetics lead to the development of GA. In order to apply GA to a problem, generally 
the solution space of the problem is represented by a population of structures where each structure 
is a possible solution to the problem. Then, a certain number of structures are chosen to form the 
initial generation. The structures of the next generation are generated by applying simple genetic 
operators to the parent structures selected from the existing generation. According to the idea that 
"good parents produce better offspring", a structure with higher fitness value in the current 
generation will have higher probability of being selected as a parent (similar to the concept of 
survival). When we repeat this process, we can observe a continuous improvement in the structures' 
performance from one generation to the next. 

After being introduced by Holland in the 1970s, GA have been applied to a wide variety of 
problems. Some of the typical application areas of GA are as follows: the travelling salesman 
problem (TSP) (Grefenstette et al. [9]), the scheduling Problem (Davis [10], Cleveland and 
Smith [11], Biegal and Davern [12], Chen et al. [13], and Vempati et al. [14]), the VLSI circuit 
layout design problem (Fourman [15], Cohoon [16]), the computer-aided gas pipeline operation 
problem (Goldberg [17, 18]), the communication network control problem (Cox et al. [19]), the 
robot control problem (Davidor [20]), and the real time control problem in manufacturing 
systems (Grefenstette [21] and Bowden [22]). In most of the applications of GA, the results 
provided an insight to the robustness of GA in terms of its applicability and quality of the 
solutions. 

The following brief outline of GA illustrates the functioning of GA, where the notation S( t )  is 
the population in the/th generation; si(t) is the l ~h member in S(t);f(si(t)) is the fitness value of s~(t), 
and TOTFIT (t) is the sum of f (s i ( t ) )  for all si(t) and S(t).  

Step 1 
Generate the initial population, S(t) ,  where t = 0. Determine the size of the population, POPSIZ, 

and the number of generations, GENER. 
Step 2 

Calculate the fitness value of each member, f(si(t)),  for population, S(t). 
Step 3 

Calculate the selection probability for each s~(t), where the selection probability is defined as 
P(st(t)) = f ( s , ( t ) ) /TOTFIT .  
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Step 4 
Select a pair of members (parents) that will be used for reproduction via the selection probability. 

Step 5 
Apply genetic operators (crossover, mutation, inversion) to the parents. Replace the parents with 

the resulting offspring to form a new population, S(t + 1), for generation t + 1. If the size of the 
new population is equal to the POPSIZE, then go to step 6, else go to step 4. 
Step 6 

If current generation, t + 1, is equal to GENER, then stop, else go to step 2. 

3. METHODOLOGY 

According to the outline of the GA approach, an application of GA should consider the 
following elements: (1) Representation of Structure, (2) Initial Population, (3) Population Size, (4) 
Selection Probability, (5) Genetic Operators, and (6) Termination. 

Each of the above elements affects the performance of GA and it is necessary to effectively 
estimate these fundamental elements of GA. The methodology adopted in this paper presents 
the procedure for determining these elements of GA for the application to the FSNIS problem. 
The procedure can be divided into two parts: (i) implementation of GA to the problem, and 
(ii) optimization of control parameters of GA. The first part is concerned with the determination 
of the representation of structure, the generation of initial population, the approach for 
determining the selection probability, the genetic operators, and the termination criteria. The 
second part is concerned with optimizing the control parameters of GA which will affect the 
performance of the implementation of GA. The control parameters include the population size, 
the rates of genetic operators, the generation gap, etc. 

3.1. Implementation of GA 

The representation of the structure affects the application of the genetic operators. A common 
representation of the structure for permutation scheduling problems (such as single machine 
problems and flow shop problems) is simply the sequence of jobs in the problems. For instance, 
for an 8-job flow shop problem, a structure can be represented as any sequence of the eight jobs 
such as 1 2 3 4 5 6 7 8. Several efficient genetic operators have been developed for scheduling 
problems with this structure representation (Cleveland and Smith [11]). Therefore, we use the same 
method to represent the structure of the FSNIS problem. The initial population can be generated 
in several ways. Most applications of GA generate the initial population randomly. According to 
the fundamental concept of GA, the significance of initial population should consist of a diverse 
set of solutions. It is believed that the more diverse population initiates more effective search. It 
is also believed that improving the average fitness value of the initial population will reduce the 
computation time. So in generating the initial population with different procedures, our attempt 
is to effectively improve the average fitness value of the population, and not to significantly affect 
the diversity of the population. In our proposed procedure, half of the members in the initial 
population is generated randomly, and the other half is generated using some well known heuristics. 
The heuristics include two heuristics to the general flow shop problem: the CDS method, and the 
Danninbring's method, and the best existing heuristic for the continuous flow shop problem: the 
Rajendran and Chaudhuri's [8] Job Insertion Based (JIB) method. To generate the members in the 
initial population using these heuristics, the first member is generated using Rajendran and 
Chaudhuri's method. The following m - 1 members are generated by the CDS method (m is the 
number of machines considered in the problem), and an additional member is generated by the 
Danninbring method. If the number of the members generated is less than one-half of the 
population size, a member is randomly selected and two randomly selected positions of the member 
are swapped to generate a new member for the initial population. This procedure will be repeated 
until the number of the members generated equals one-half of the population size. In order to 
estimate the effect of the proposed generating procedure for the initial population, a second method 
which randomly generates all the members of the initial population is also considered. A 
comparison between the two approaches will be discussed later in the section of computational 
experience. 
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Selection probability is another important factor to consider in implementing GA. According 
to the general definition, the selection probability of a member should project the performance 
measure of the member in the population. So in the present problem, the fitness value and the 
selection probability of a member with lower total flow time should be high. The following 
procedure is one of the common procedures available for estimating the fitness value and selection 
probability of each member in a population. 

(1) Calculate the total flow time for each member in the population. 
(2) Find Fmax, which is the maximum total flow time in the population. 
(3) Calculate the fitness value of each member, which is equal to the difference between the Fmax 

and the total flow time of each member. 
(4) Calculate the selection probability of each member based on its fitness value. This is equal to 

the member's fitness value divided by the sum of each member's fitness value in the population. 

The selection probability of each member is then used as a criterion for the selection parents for 
the reproduction of offspring. Members with large selection probabilities are selected for 
reproduction more often than members with low selection probabilities. The process for selecting 
parents is implementing via the common roulette wheel selection procedure outlined by 
Goldberg [23]. 

There are three well known basic genetic operators found in the GA literature: (i) crossover, (ii) 
mutation, and (iii) inversion. Among these three, crossover and mutation are the most commonly 
used operators. As mentioned earlier, the application of crossover operators varies accordingly 
based on the representation of the structure. When we represent the structure using the sequence 
of jobs in the problem, some of the popular crossover operators are Goldberg's Partially Mapped 
(PMX) operator, edge recombination operator, subtour-swap operator, subtour chunk operator, 
subtour replace operator and weighted chunking operator. Among these operators, we have used 
Goldberg's PMX operator which is one of the better performers among the above operators 
(Cleveland and Smith [11]). 

The following 8-job example is generated to illustrate the procedure of the PMX operator [13]. 
Let structures A and B be the parent structures chosen for crossover. The elements in the structures 
are jobs. 

A = 2 8  6 4  5 7 l 3, 
B = 8  7 2  1 3 4 6  5. 

In applying the PMX operator to A and B, we first randomly choose a common interval from 
A and B. In this example, an interval from positions three to five is randomly chosen. Then 
the mappings of the elements in the two selected intervals are determined. In this example, 
the mappings between the selected intervals are 6 to 2, 4 to 1, and 5 to 3. Next, we swap the 
two intervals in A and B. The following structures show the temporary results after the swap. 
Obviously, both of them are not feasible because some jobs occur more than once in the sequence. 

A = 2  812 1 317 l 3, 
I I 

B = 8  7]6 4 514 6 5. 

Therefore, we have to exchange the mapping elements which are determined in the previous step 
and do not locate in the selected intervals in A and B so that the new structures can be feasible. 
In this example, the 2, 1, and 3 in the positions l, 7, and 8 of structure A are replaced by 6, 4, 
and 5, respectively. And the 4, 6, and 5 in the positions 6, 7, and 8 of structure B are replaced 
by 1, 2, and 3, respectively. The new structures generated are shown as follows. 

A ' =  6 812 1 317 4 5, 
I I 

B ' =  8 716 4 511 2 3. 

The mutation operation used in this research is an operation which randomly picks two positions 
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in a structure and swaps the jobs in these two positions to generate a new structure. For instance, 
when applying the mutation operation to the following structure, 

C = 3  1 4 2  5 7 6  8, 

we randomly pick two positions of the structure (positions 2 and 6) and swap the jobs in these 
two positions (jobs 1 and 7) to generate a new structure, 

C ' = 3  7 4 2  5 1 68 .  

It is difficult to develop the termination criteria in the operation of GA. There are two conflicting 
factors to be considered for developing a termination criteria: the degree of the GA search and 
the CPU time required for the search. If we terminate the GA search after few generations (the 
CPU time is short, but the degree of search is poor), there is scope for an error of terminating 
the search in a premature stage. However, if we let the search terminate through natural 
convergence (the CPU time is long, but the degree of search is better), then the CPU time required 
for the search may be unreasonable. So it is necessary to develop a logical criteria of termination 
to obtain advantages of both short CPU time and better search. Based on the above two factors, 
we have used two termination criteria: (i) if the number of structures in the population with the 
lowest total flow time (fittest members) are more than 60% of the population (which means the 
search is moreover converged), terminate the search. (ii) if the number of generations exceeds 60, 
then terminate the search. The number of generations in the second case is selected as 60 on the 
basis of several experiments as it is observed that for most problem sizes, the GA based heuristic 
converged within 60 generations. 

3.2. Optimization of control parameters of GA 

Even though GA based approaches proved to be robust and efficient, another important factor 
to be considered in making GA search efficient is the tuning of parameter values. According to 
Grefenstette [24], the parameters considered in GA include population size (N), crossover rate (C), 
mutation rate (M), generation gap (G), scaling window (IV), and selection strategy (S). In his 
research, Grefenstette denoted a GA with some specific parameter values as GA (N, C, M, 
G, W,S). 

Population size is the number of structures in a population. Crossover rate is the probability 
that the crossover operator applies to the chosen parents, and mutation rate is the probability that 
the mutation operator applies to the chosen parents. Generation gap is the percentage of the 
population to be replaced during each generation. Scaling window is the number of generations 
during which the value o f f '  is updated, wheref '  is used as a base for calculating the fitness value 
of each structure. For a minimizing problem, the value o f f '  is defined as the maximum objective 
value of the structures evaluated so far, and the fitness of a structure is defined as the difference 
between f '  and the objective value of the structure. The value of W is defined to be from 0 to 7. 
A detailed explanation of each of the values can be found in [24]. Selection strategy is the approach 
in selecting structures for the next generation. Grefenstette defined two selection strategies, E and 
P. If S = E, then the best performing structure will always survive intact into the next generation. 
If S = P, then a pure selection strategy is employed. 

It should be noted that tuning the parameter values of GA is a complex process and can 
affect the efficiency of the algorithms. In most applications of GA, these parameter values are 
tuned based on some trial examples (hand optimization technique). The concept of optimal 
design of parameter values was studied by DeJong [25] when he analysed the basic behavior of 
GA on typical environments. DeJong's approach is considered as a hand optimization technique 
in which he experimented with several combinations of parameter values on a test bed of five 
functions. The set of the optimal parameter values generated by DeJong is GA (50, 0.6, 0.001, 
1.0, 7, E). 

After DeJong, only a few researchers focused on optimal design of parameter values of GA. 
Grefenstette's [24] research is the most important one. He developed a metalevel GA to optimize 
the parameter values of the actual GA, where the actual GA is the GA used to solve the problems 
considered with the parameter values assigned from the metalevel GA. In his approach, the 
structure in the metalevel GA is represented as the combination of the possible values of the six 
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parameters. The possible values of the six parameters are as follows: population size ranges from 
10 to 160 in increments of 10, crossover rate ranges from 0.25 to 1.00 in increments of 0.05, 
mutation rate is allowed to be one of the eight values increasing exponentially from 0.0 to 1.0, 
generation gap is ranged from 0.30 to 1.0 in increments of 0.1, scaling window ranges from 0 to 
7 in increments of 1, and selection strategy can only be S or P. DeJong's parameter values are 
adopted in the metalevel GA. Therefore, 50 structures are randomly generated for the initial 
population of the metalevel GA, and each structure, which contains six parameter values, is then 
passed down to the actual GA for solving the same test functions that DeJong considered. The 
fitness value of each structure is defined as a function of its performance on the test functions. The 
procedure of metalevel GA was implemented based on DeJong's parameter values, and terminated 
in the twentieth generation. The set of the optimal parameter values generated by the metalevel 
GA is GA (30, 0.95, 0.01, 1.0, 1, E). Grefenstette also compared the parameter values with 
DeJong's parameter values. The comparison was made on a test function that is not used in the 
test bed of the five standard functions, and the results showed that his parameter values are slightly 
more effective than DeJong's parameter values. 

In this paper, we have applied the GA based heuristic with DeJong's and Grefenstette's optimal 
parameter values to the FSNIS problem, respectively. It was observed that both sets of the 
parameter values did not perform well for the FSNIS problem. So we have modified Grefenstette's 
metalevel GA, called modified metalevel GA, for tuning the parameter values of the GA based 
heuristic. However, unlike Grefenstette, we kept W = 1.0, G = 1, and S = E in this approach, and 
considered the other three elements to represent the structure in the population of the metalevel 
GA: (1) population size, (2) crossover rate, and (3) mutation rate. The population size is defined 
in a range from 40 to 160 in increments of 1; the crossover rate is defined in a range from 0.5 to 
1 in increments of 0.025, and the mutation rate is defined in a range from 0.005 to 0.05 in increments 
of 0.001. Grefenstette's parameter values are used in this modified metalevel GA. The initial 
population of the modified metalevel GA is generated randomly, and each structure in the 
population is then passed down to the actual GA for solving a set of problems, where the set of 
problems includes 10 different larger size FSNIS problems (see the section of computational 
experience). The fitness value of the structure of the modified metalevel GA is defined as a function 
of the solutions provided in the actual GA. The parameter values obtained using this approach 
are that population size is equal to 95, crossover rate is equal to 0.725, and mutation rate is equal 
to 0.009. The performance of this set of parameter values is discussed in the following section. 

4. COMPUTATIONAL EXPERIENCE 

In order to examine the effectiveness of the GA based heuristic, four comparisons were made 
over a wide range of jobs and machines. For each of these comparisons, 200 problems were 
generated for 20 different combinations of jobs ranging from 10 to 25 with the number of machines 
ranging from 5 to 25. The processing times were randomly sampled from a uniform 
distribution ranging from 1 to 99. The results of the four comparisons are presented in the following 
four tables. 

Table 1 presents a comparison between the two approaches for generating the initial population 
of the GA based heuristic. One approach is to fill the initial population with heuristic solutions 
combined with random solutions, and the other approach is to generate the initial solution 
completely with random solutions (the conventional way). These two approaches are denoted by 
HRIP and RIP respectively. In HRIP, the heuristics that we used to generate the initial population 
are some well known heuristics to the general flow shop problem, such as the CDS method and 
Danninbring along with the Job Insertion Based (JIB) [8] heuristic developed by Rajendran and 
Chaudhury which has been proven to be the best existing heuristic algorithm to solve the problem 
under consideration. In Table l, the first column is a couple of the number of jobs 'n', and the 
number of machines 'm'. The third and fourth columns illustrate the number of times that the best 
solution was obtained using the corresponding approach. The results in the fifth column show the 
relative performance of the two approaches which was computed by averageH~/averagexip. The 
results in Table 1 indicate that the HRIP yields better solutions than the RIP. The number of times 
in which the HRIP gives better results than the RIP is 188 out of 200, and the superiority increases 
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Table 1. Analysis of the effect of initial population on the performance of GA 

n x m No. prob. HRIP better RIP better Ave (HRIP/RIP) 

10 x 5 10 8 2 0.9860 
10 x 10 10 8 2 0.9920 
10 x 15 10 9 1 0.9920 
10 x 20 10 6 4 0.9930 
10 x 25 10 10 0 0.9900 
15 x 5 l0 9 l 0.9700 
15 x l0 10 9 1 0.9450 
15 x 15 10 l0 0 0.9670 
15 x 20 10 l0 0 0.9740 
15 x 25 l0 9 1 0.9540 
20 x 5 l0 l0 0 0.9330 
20 x 10 10 10 0 0.9400 
20 x 15 10 10 0 0.9400 
20 x 20 l0 l0 0 0.9540 
20 x 25 10 10 0 0.9220 
25 x 5 l0 l0 0 0.9050 
25 x l0 l0 10 0 0.9030 
25 x 15 l0 10 0 0.9130 
25 x 20 10 10 0 0.9070 
25 x 25 10 10 0 0.9015 
Total 200 188 12 - -  

rapidly when the problem size increases. These results also illustrate a very important point: the 
initial population significantly affects the performance of the GA based heuristic, and furthermore, 
the inclusion of some specific knowledge of the problem under consideration, which are the 
heuristics for the problem in this research, in the initial population may improve the performance 
of GA. 

Table 2 presents the comparison between the GA based heuristic using the HRIP to generate 
the initial population and the Job Insertion Based (JIB) heuristic proposed by Rajendran and 
Chaudhury. This Table does not contain a column of the number of times that the best solution 
was obtained by the JIB heuristic because the solution from this heuristic is included in the initial 
population, and the solution is stored in every generation if it is the best solution in the generation. 
This means that the JIB heuristic would never give a solution better than the best solution obtained 
by the GA based heuristic. Column 5 of Table 2 shows the relative performance of the GA based 
heuristic to the JIB heuristic which was computed by averageGA/averageaB. 

According to the results in Table 2, the GA based heuristic yields better results than the JIB 
heuristic 168 times out of 200. This means that the GA based heuristic can usually improve the 
results obtained using the JIB heuristic. However, the ratios in the fifth column show that the 
improvement is not substantial and is reducing when the problem size is increased. This can be 
attributed to the fact that the JIB heuristic is a good heuristic to the FSNIS problem. 

Tables 1 and 2 also reveal that if RIP is used to generate the initial population for the GA based 

Table 2. Comparison of JIB with the GA heuristic 

n x m No. prob. GA better Even (=J IB)  Ave (GA/JIB) 

10 x 5 10 9 1 0.9512 
10 x 10 10 I0 0 0.9571 
10 x 15 10 10 0 0.9828 
10 x 20 10 10 0 0.9828 
10 x 25 10 9 1 0.9810 
15 x 5 10 10 0 0.9730 
15 x 10 10 10 0 0.9860 
15 x 15 10 9 1 0.9633 
15 x 20 10 7 3 0.9950 
15 x 25 10 8 2 0.9960 
20 x 5 10 9 1 0.9890 
20 x 10 10 9 1 0.9970 
20 x 15 10 7 3 0.9963 
20 x 20 I0 7 3 0.9943 
20 x 25 10 8 2 0.9923 
25 x 5 10 8 2 0.9935 
25 x 10 10 8 2 0.9935 
25 x 15 10 7 3 0.9921 
25 x 20 10 6 4 0.9963 
25 x 25 10 7 3 0.9970 
Total 200 168 32 - -  
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Table 3. Comparison of optimal parameter values (Grefenstette vs modified metalevel) 

Modified 
Grefenstette metalevel Ave 

n x m No. prob. better better (GA/Grefenstette) 

10 x 5 10 3 7 0.9755 
10 x 10 10 2 8 0.9855 
10 x 15 10 1 9 0.9885 
10 x 20 10 2 8 0.9868 
10 x 25 10 3 7 0.9920 
15 x 5 10 1 9 0.9700 
15 x 10 10 0 10 0.9630 
15 x 15 10 0 10 0.9300 
15 x 20 10 1 9 0.9650 
15 x 25 10 1 9 0.9830 
20 x 5 10 0 10 0.9310 
20 x 10 10 0 10 0.9380 
20 x 15 10 0 10 0.9420 
20 x 20 10 0 10 0.9460 
20 x 25 10 0 10 0.9470 
25 x 5 10 0 10 0.9040 
25 x 10 10 0 10 0.9080 
25 x 15 10 0 10 0.9180 
25 x 20 10 0 10 0.9160 
25 x 25 10 1 9 0.9130 
Total 100 15 185 - -  
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heuristic, the final solution of the heuristic will be worse than that obtained using the JIB heuristic. 
This confirms the importance of the initial population for the GA based heuristic. 

In Tables 3 and 4 the performance of GA using the parameter values obtained from the modified 
metalevel GA approach is compared with the performance of GA using Grefenstette's and 
DeJong's parameter values, respectively. These two comparisons strongly support the argument 
that the parameter values of GA are problem specific. Out of the 200 test problems, the GA using 
our parameter values produced 185 better results than the GA using Grefenstette's parameter 
values. Similarly, the GA using our parameter values produced 195 better results than the GA using 
DeJong's parameter values. The more significant point is that the relative performance of the GA 
using our parameter values can be up to 10 and 20% better than the GA using Grefenstctte's and 
DeJong's parameter values, respectively. This clearly indicates the domination of the parameter 
values obtained by the modified metalevel GA on both Grefenstette's and DeJong's parameter 
values. 

The GA based heuristic was implemented in FORTRAN 77, and run on a SUN 4/490 machine. 
Table 5 exhibits the average CPU times required to solve the problems in each of the selected 

Table 4. Comparison of optimal parameter values (DeJong vs modified metalevel) 

Modified 
DeJong metalevel Ave 

n x m No. prob. better better (GA/DeJong) 

10 x 5 10 0 10 0.9660 
10 x 10 10 0 10 0.9700 
l0 x 15 10 1 9 0.9760 
10 x 20 10 3 7 0.9870 
10 x 25 10 I 9 0.9840 
15 x 5 10 1 9 0.9450 
15 x 10 10 0 10 0.9540 
15 x 15 10 0 10 0.9000 
15 x 20 10 0 10 0.9520 
15 x 25 10 1 9 0.9570 
20 x 5 10 0 10 0.9200 
20 x 10 10 0 10 0.9020 
20 x 15 10 0 10 0.9100 
20 x 20 10 0 10 0.9315 
20 x 25 10 0 10 0.9264 
25 x 5 10 0 10 0.8120 
25 x 10 10 0 10 0.8600 
25 x 15 10 0 10 0.8950 
25 x 20 10 0 10 0.8880 
25 x 25 10 0 10 0.8910 
Total 200 7 193 - -  
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Table 5. Average CPU times (s) 

m 

n 5 10 15 20 25 

I0 0.64 0.74 0.92 1.03 1.22 
15 1.10 1.30 1.60 1.79 2.01 
20 1.77 2.19 2.52 2.83 3.24 
25 2.81 3.33 3.80 4.32 4.82 

problem sizes presented earlier in this section. It is clear that the CPU time required to solve the 
FSNIS problem using the GA based heuristic is very reasonable and practical. 

5. CONCLUSIONS 

In this paper, we developed a GA based heuristic for the FSNIS problem. The computational 
experience has shown that the GA based heuristic can usually improve the results obtained using 
the JIB heuristic for the candidate problem. The approach discussed in this paper can be easily 
extended to most of the other flow shop problems, or other types of scheduling problems. 

This research provided three important points for the application of GA. First, the parameter 
values of GA are problem specific. Different parameter values of GA may yield significant different 
results for the same problem. So we have to generate parameter values of GA for different 
problems, and we should not just adapt parameter values from some other research. We believe 
that the modified metalevel GA approach is a good choice. 

Second, some specific knowledge of the problem under consideration may improve the 
performance of GA. For instance, the initial population in this paper includes several solutions 
obtained from the three existing heuristic for the problem. However, the randomness of the 
members in the initial population should not be overlooked. Otherwise, GA will generally rapidly 
converge to some solution which may not be good. We tested this idea using another approach 
to generate the initial population. We filled the initial population by first generating several 
solutions using the three heuristics, then randomly choosing a solution from the existing member 
in the population and applying the mutate operator to the solution to generate a new member in 
the initial population. This procedure continues until the population size is reached. Using this 
initial population, GA always converges in no more than 20 generations, but the results are not 
as good as the approach used in our GA based heuristic. The reason for this phenomena may be 
that the members in the initial population are gathered in some specific area of the solution space 
of the problem. So GA cannot move out of the area, and can only converge to a good solution 
in this area. 

Third, completely randomly generating the initial population for GA may not be a good 
approach, specifically, for the larger size problem. So it is worth while studying different approaches 
for generating the initial population for GA. 

The application of GA to optimization problems has received a lot of attention in the past 
decade. However, there are still a lot of unknowns behind it, specifically, for the non-binary coding 
optimization problem such as the scheduling problem. In this research, we have observed the effects 
of several elements of GA on the application of GA to a flow shop problem. Even though the results 
are very encouraging, we believe that the results can still be improved. 
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