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Abstract

Selection of the mean (target value) for a container-"lling process is an important decision to a producer especially
when material cost is a signi"cant portion of production cost. Because the process mean determines the process
conforming rate, it a!ects other production decisions, including, in particular, production setup and raw material
procurement policies. It is evident that these decisions should be made jointly in order to control the production,
inventory and raw material costs. In this paper, we incorporate the issues associated with production setup and raw
material procurement into the classical process mean problem. The product of interest is assumed to have a lower
speci"cation limit, and the items that do not conform to the speci"cation limit are scrapped with no salvage value. The
production cost of an item is a linear function of the amount of the raw material used in producing the item.
A two-echelon model is formulated for a single-product production process, and an e$cient algorithm is developed for
"nding the optimal solution. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Selection of the process mean (target value) for
a container-"lling process is a classical problem in
quality control. This problem can be illustrated by
the single-level canning process, in which con-
tainers (cans) are "lled with a valuable material,
and a lower speci"cation limit is set on the amount
of the material in a can. A "lled can is classi"ed as
conforming if its amount of material is larger than
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or equal to the lower limit. Otherwise, the can is
classi"ed as a nonconforming item. The "lled cans
are weighed, and the nonconforming (under"lled)
cans may be sold at reduced prices, reworked, or
scrapped. Usually, the producer can control the
mean "lling amount (process mean), but not the
variation among cans because of the inherent varia-
bility in the "lling process. Consequently, a portion
of the cans produced by the process may be non-
conforming although the process mean is set higher
than the lower speci"cation limit. The issue of de-
termining the process mean is especially important
to, but not limited to, the food, drug, and cosmetic
industries, which are governed by laws and regula-
tions on net content labeling, which requires that
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the declaration of net contents accurately express
the quantity of contents of the package or container
[1]. Studies conducted by federal agencies showed
that a common practice used by many producers is
to set a high process mean in order to ensure
conformance of speci"cation [2]. As pointed out by
Kloos and Clark [1], this strategy is unnecessarily
conservative and results in a high production cost.

It is evident that a rational choice of the process
mean should be based on a balance between pro-
duction cost and economical consequences asso-
ciated with conforming items and nonconforming
items. Many studies have addressed this issue
under di!erent cost/pro"t structures and produc-
tion environments. Springer's [3] model is,
perhaps, the "rst one that addressed this issue
although his model assumptions are quite di!erent
from those used by others. He considered a produc-
tion situation where upper and lower speci"cation
limits are both present and the performance vari-
able follows a gamma distribution. The per-item
cost associated with the nonconforming items
above the upper speci"cation limit (over"lled items)
may be di!erent from those below the lower speci-
"cation limit (under"lled items). However, these
costs are assumed to be constants (independent of
the performance variable). The optimal process
mean is obtained to minimize the total costs asso-
ciated with nonconforming items. A nomograph
was developed by Nelson [4] for "nding solutions
to Springer's model.

Hunter and Kartha [5] considered a product
with a lower speci"cation limit, and discussed the
situation where nonconforming (under"lled) items
can be sold at a (constant) reduced price and a pen-
alty (give-away cost) is incurred by the conforming
items with excess quality (the di!erence of the per-
formance variable and the lower limit). A procedure
for calculating the optimal process mean is derived.
Bisgaard et al. [6] modi"ed Hunter and Kartha's
model by assuming that the selling price of the
nonconforming items is a linear function of the
performance variable and that of the conforming
item is constant. Golhar [7] assumed that only the
regular market ("xed selling price) is available for
the conforming items and that the under"lled items
are reprocessed. Schmidt and Pfeifer [8] considered
the situation where the process capacity is "xed.

Arti"cial limits have been proposed to screen out
some over"lled items for re-processing in order to
reduce the material cost. Bettes [9] studied a situ-
ation with a given lower speci"cation limit and an
arbitrary upper limit. Under"lled and over"lled
items are reprocessed at a "xed cost. Optimal pro-
cess mean and the upper speci"cation limit are
determined simultaneously. Golhar and Pollock
[10] extended Golhar's [7] model to include an
arti"cial upper limit so that nonconforming items
as well as the items larger than the upper limit are
re-processed. Golhar and Pollock [11] also studied
the cost savings yielded from a reduction in the
process variance.

The models that have been discussed so far
assume implicitly or explicitly that a screening
(100% inspection) procedure is used to measure the
performance variable in order to determine the
selling prices and/or the corrective actions. Tang
and Lo [12] discussed a situation in which a surro-
gate variable is used as the screening variable.
Carlsson [13] discussed a situation in which
the lots produced by a production process are
subjected to lot-by-lot acceptance sampling by
variables. Boucher and Jafari [14] studied the same
problem except that an attributes sampling plan is
used to decide whether a lot is accepted. Melloy
[15] considered the packaged goods that are sub-
ject to regulatory auditing (compliance tests)
schemes.

The process mean issue is especially important to
the producer when material-related costs are a sig-
ni"cant portion of production cost. Because the
process mean determines the process conforming
and yield rates, it a!ects other important produc-
tion decisions, in particular, the production setup
policy. These production decisions directly a!ect
the raw material requirement and, thus, its procure-
ment policy. Consequently, process mean, produc-
tion and raw material procurement policies should
be jointly determined. In this paper, we incorporate
the issues associated with production setup and
raw material procurement into the classical process
mean problem for a single-product production pro-
cess. It is assumed that the product of interest
requires one major raw material, which is pur-
chased from outside vendors. The production cost
of an item is a linear function of the amount of the
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raw material used in producing the item. The prod-
uct has a lower speci"cation limit, and the items
that do not conform to the speci"cation limit are
scrapped with no salvage value. A two-echelon
model is formulated for jointly determining the
process mean, production setup and raw material
ordering policies.

The concept of formulating the production and
inventory structure of the "nished product and the
raw material is closely related to the single-product,
two-echelon inventory model. The focus of the
existing literature on this topic is di!erent, how-
ever: the product under consideration requires sev-
eral raw materials and the decision to be made is
how to optimally group the raw materials in the
procurement process. Goyal [16] "rst proposed an
integrated model that incorporates the inventory
problems of the raw materials and the product for
a single-product manufacturing system. It was
pointed out in the paper that the production run
size of the product has to be known before the
procurement policy of a raw material can be deter-
mined. A search procedure for determining the
length of production run was proposed. Based on
Goyal's model, Kim and Chandra [17] and Baner-
jee et al. [18] proposed heuristic procedures to "nd
the strategy for grouping the raw materials. Kim
and Chandra considered the situation in which
one order of raw materials can cover the need of
one or multiple production runs. Banerjee et al.
assumed that one order of raw materials can cover
the need of at most one production run, and
multiple orders can be made within one production
run. Hong and Hayya [19] modi"ed Goyal's model
regarding planning horizon and the demand for
raw material, and developed an exact solution
procedure for simultaneously "nding the optimal
production}inventory policy and grouping the raw
materials.

The organization of the paper is as follows. The
assumptions and model formulation are given in
the next section. Then, in Section 3, analytical
properties of the optimal solution are derived and
a solution algorithm is proposed. A numerical
example and a sensitivity analysis on the e!ects of
model parameters on the optimal solution and the
bene"t of using the proposed model are presented,
in Sections 4 and 5, respectively. The last section is

a brief summary of the results given in this paper
and possible future extensions.

2. Model formulation

Consider a product with a constant demand rate
of D items per unit time. A production process with
a production rate of r items per unit time is used to
satisfy the demand. Let X denote the performance
variable of interest. As discussed in the last section,
X is a measure of the raw material used in the
production, such as weight and volume. Assume
X is a `larger-is-bettera variable so that only
a lower speci"cation limit is speci"ed. An example
of X is the volume (or weight) of a certain wine in
a bottle. Let ¸ denote the lower speci"cation limit
of X, so that an item is conforming if its X value is
larger than or equal to ¸. Assume that the produc-
tion process is stable and X follows a normal distri-
bution with an adjustable mean k and a constant
variance p2. Note that this distribution assumption
is valid in many production environments when the
process under study is in control. However, this
assumption may not be appropriate for every pro-
cess. Nevertheless, the model formulated based on
the normality assumption can be modi"ed easily
for other distributions.

For given k, the conforming rate of the produc-
tion process is

p"P
=

L

f (x) dx"1!UA
¸!k

p B,
where f (x) is the probability density function of
X and U( ) ) is the standard normal distribution
function.

Assume that nonconforming items are scrapped
with no salvage value. Note that the model de-
veloped in this paper can be easily modi"ed for the
situation where the salvage value is not zero. Con-
sequently, for given k, the yield rate of the produc-
tion process is j"rp. It is assumed that all the
demand will be satis"ed in such a way that the
expected total number of conforming items prod-
uced is equal to the total demand and no backlog is
allowed. Note that j has to be greater than or equal
to D to ensure that the production capacity is large
enough to meet the demand.
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Fig. 1. (a) Inventory level of "nished product; (b) demand rate
of raw material.

The expected amount of the raw material re-
quired to produce one conforming item is k/p. Let
c denote the unit cost of the raw material; thus, cx is
the material cost required for producing an item of
the "nished product. We further assume that the
direct cost of producing an item is a linear function
of the item's material cost:

g(x)"b#acx,

where b is the "xed production cost, and a is a con-
stant larger than or equal to 1. This cost function
implies that the production cost consists of a "xed
cost and a variable cost which is proportional to
the raw material used in production. Note that
a!1 is the relative value (cost) added on the raw
material during the production process. It can be
veri"ed that, for given k, the expected cost of yield-
ing a conforming item is (b#ack)/p. Let h be the
cost of holding each unit of the raw material for
a unit time. In other words, the cost of holding
a monetary unit of raw material is h

1
"h/c per unit

time. Assume that the costs of holding a monetary
unit of raw material and "nished product are the
same. Then, the cost of holding a conforming item
for a unit time is

H"

h

pAak#
b

cB.
Let q be the production run size, which is the

number of items (including both conforming and
nonconforming items) produced in a production
run. The inventory level as a function of time is
described in part (a) of Fig. 1. Assume that a pro-
duction run begins at time 0. Until q items are
produced, the "nished product inventory increases
at a rate of j!D items per unit time. At time q/r,
the production run is complete, and, then, the in-
ventory decreases at a rate of D items per unit time
until time qp/D when the inventory level reaches
0 and the second production run starts. Let S be the
production setup cost. Since the total number of
setups required per unit time is D/qp, the total setup
cost is SD/qp. It can be veri"ed that the average
inventory level for the "nished product is
(q/2r) (j!D). As a result, the total holding cost for
"nished products is H(q/2r) (j!D) per unit time.
Furthermore, because the expected cost of yielding

a conforming item is (b#ack)/p, the per-unit-time
direct production cost is D(b#ack)/p.

We de"ne the cost associated with the "nished
product as the sum of the production cost, the
process setup cost and the inventory holding cost:

FPC(k, q)"
D(b#cak)

p
#

DS

pq
#H

q

2r
(j!D).

For given process mean k and production run
size q, the requirement for raw material as a func-
tion of time is illustrated in part (b) of Fig. 1: the
requirement is a constant rate rk during produc-
tion, and is zero when the production process is
idle. We assume instantaneous delivery leadtime
and constant order quantity for the raw material
procurement. Let Q denote the raw material order
quantity. To determine the setup and holding costs
of the raw material, we consider the following two
ordering policies:

Case A: Each order quantity of the raw material
satis"es the requirement of one or multiple produc-
tion runs; that is, Q"nqk, where n is an integer
larger than or equal to 1.

Case B: Multiple orders are made in a produc-
tion run; that is, Q"qk/m, where m is an integer
larger than or equal to 1.

In case A, since the raw material requirement
is Dk/p per unit time, the raw material should
be ordered Dk/(Qp) times in a unit time. Let K
denote the setup cost per order of the raw material.
Then, the total setup cost associated with the raw
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Fig. 2. (a) Inventory level of raw material (case A); (b) Inven-
tory level of raw material (case B).

material is KDk/(pQ) per unit time. Since Q"nqk,
the total setup cost can also be expressed as
KD/(npq). The inventory level as a function of time
for the raw material is described in part (a) of Fig. 2,
from which we can "nd that the average raw mater-
ial inventory level is

(n!1)

2
kq#

kqD

2rp
.

Consequently, the total material setup and holding
cost per unit time is

MC
A
(k, q, n)"

KD

npq
#hC

n!1

2
kq#

kqD

2rp D.
The total expected cost per unit time for case A is

the sum of FPC(k, q) and MC
A
(k, q, n):

TC
A
(k, q, n)"HA

q

2rB(j!D)#
DS

pq
#

D(cak#b)

p

#

KD

npq
#h

(n!1)

2
kq#h

kqD

2rp
. (1)

In case B, because m orders are made in one pro-
duction run, the setup cost per unit time is KmD/pq,
and the average raw material inventory level is

qkD/2rpm. The inventory level as a function of time
is shown in part (b) of Fig. 2. As a result, the total
setup and holding costs per unit time for the raw
materials procurement is

MC
B
(k, q, m)"

KDm

pq
#h

qkD

2rpm
,

and the total cost per unit time is the sum of
FPC(k, q) and MC

B
(k, q, m):

TC
B
(k, q, m)"HA

q

2rB(j!D)#
DS

pq
#

D(cak#b)

p

#

KDm

pq
#h

qkD

2rpm
. (2)

It is easy to verify that expressions (1) and (2) are
equivalent when n"m"1. In the next section, we
propose a procedure to "nd the optimal process
mean, production run size and the raw material
ordering policy, which minimize the total cost.

3. Optimal solution

In this section, we "rst derive several important
analytical properties for the optimal solution,
based on which, we propose an e$cient solution
algorithm.

3.1. Analytical properties

We "rst discuss case A. Using (1), the optimal
q for given k and n can be found by solving
LTC

A
(k, q, n)/Lq"0, leading to the following

result:

Result 1. For given k and n, the optimal value for
production run size is given by

q
n
"S

2rD(S#(K/n))

Hp(j!D)#hk(j(n!1)#D)
. (3)

Furthermore, it can be verixed that, for given k and
q, TC

A
(k, q, n) is a convex function of n. As a result, if

there is an integer n0 such that

TC
A
(k, q, n0!1)*TC

A
(k, q, n0)

(TC
A
(k, q, n0#1), (4)
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then n0 is the optimal n value for given k and q. Using
straightforward algebraic manipulation, (4) can be
translated into the following explicit condition for n0:

1
2
(J1#4a!1)(n0)1

2
(J1#4a#1), (5)

where

a"2DK/hkpq2'0.

Substituting the production run size q
n
given by (3)

into (5), we obtain the following result:

Result 2. For given k, the optimal n value, denoted by
nH, satisxes the following condition:

n
L
(nH)

1

2GS1#4
K

kjSGC(a!1)k#
b

cD(j!D)#kjH#1H,
where

n
L
"

1

2GS1#4
K

kjSGC(a!1)k#
b

cD(j!D)!kjH!1H,
(6)

or n
L
"0 if n

L
given by (6) is not a real number.

We can obtain similar results for case B. First,
the optimal q for given k and m can be found by
solving LTC

B
(k, q, m)/Lq"0. The result is stated as

follows.

Result 3. For given k and m, the optimal value for
production run size is given by

q
m
"S

2rD(S#Km)

Hp(j!D)#hk(D/m)
. (7)

Let m0 be the optimal m value for given k and q. Then,

1
2
(J1#4a@!1)(m0)1

2
(J1#4a@#1), (8)

where

a@"hkq2/2rK.

Substituting q
m

given by (7) into (8), the following
result is obtained.

Result 4. The optimal m value for given k, denoted by
mH, satisxes the following condition:

m
L
(mH)

1

2GS1#
4kD(S#K)

K(ak#b/c)(j!D)
#1H,

where

m
L
"

1

2GS1#
4kD(S!K)

K(ak#b/c)(j!D)
!1H, (9)

or m
L
"0 if m

L
given by expression (9) is not a real

number.

From (5) and (8), we "nd that n"m"1 if and
only if

a(2 and a@(2,

which is equivalent to the following condition:

kq2/4r(K/h(kpq2/D. (10)

Based on (10), we obtain the following result.

Result 5. For given k and q,

(1) Case A should be used if K/h is higher than
kpq2/D;

(2) Case B should be used if K/h is less than kq2/4r.

It is also worthwhile to note that the raw material
order quantity is directly dependent on the produc-
tion run size, but does not have an explicit relation-
ship with the value-added factor a.

3.2. Solution algorithm

The analytical results presented in the last sec-
tion provide the basis for developing an e$cient
solution procedure to "nd the optimal production
run size and the raw material ordering policy for
a given process mean. Speci"cally, if case A is
considered, for given k, the optimal value for n has
to satisfy the condition given by Result 2. Then, for
the given k and n, the optimal production run size is
obtained by using Result 1. If case B is considered,
the optimal values for m and q are found by using
Results 4 and 3, respectively. Then, the optimal
solutions associated with two cases are compared,
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and the one with the smaller cost is selected. The
procedure is summarized as follows.

Step 1: Find integer sets N"Mn: n satis"es the
condition given in Result 2N and M"Mm: m satis-
"es the condition given in Result 4N.

Step 2: Obtain the production run size, q
n
, for all

n3N, using Result 1, and q
m

for all m3M, using
Result 3.

Step 3: Compute total costs: TC
A
(k, q

n
, n) for

n3N, and TC
B
(k, q

m
, m) for m3M, using expres-

sions (1) and (2), respectively. Then, "nd the optimal
value for q and the optimal material ordering pol-
icy (i.e., the optimal value for n or m), which give the
minimum total cost.

As a result, the total cost becomes a function of
single variable k. Therefore, a one-dimensional,
direct-search procedure, such as the Fibonacci
search method and the golden-section search
method, can be used to search for the optimal
process mean kH. In this paper, the range for the
search is [¸, ¸#zp], where z is a predetermined
real number. In most applications, z"4 is large
enough to include the possible optimal solution.
The reason ¸ is used as the lower bound is that,
when k equals ¸, the process conforming rate is
50%, which is very low in most realistic applica-
tions. Note that the Fibonacci search method pro-
vides the optimal solution if the objective function
is unimodal, which was found to be true in all the
examples that we tested. In general, multiple-start-
ing points can always be used in the search proced-
ure to ensure that the global minimum is found.

4. An example

In this section, an example is used to illustrate
the solution procedure given in the last section.
This example will also be used in the sensitivity
analysis in the next section.

Consider a product that requires at least 1.6 mg
of main content in each item. The item that is less
than 1.6 mg is considered nonconforming and is
scrapped without salvage value. Because of the
variation in the production process, the content of
an item produced by the process follows a normal
distribution with an adjustable process mean and
a constant standard deviation of 0.7 mg. Assume

that the product demand rate and the production
rate are 5000 items and 7500 items per unit time,
respectively. The setup cost per production run is
$500, the "xed production cost is $0.05 per item,
and a is 2. The raw material is purchased from
a vendor. Suppose the material cost is $0.1/mg, and
the setup cost per order is $130. Furthermore, the
cost for holding $1 of inventory ("nished product
or raw material) is $0.08 per unit time.

A FORTRAN program has been written to im-
plement the solution procedure given in the last
section. The method used for searching for the
optimal process mean is the golden-section search
method. The program was run on a Pentium II
personal computer. The running time for solving
this problem was just several seconds, suggesting
that the proposed algorithm is computationally
e$cient. The optimal process mean kH was found
to be 2.2335 mg.

To demonstrate the three steps for "nding the
optimal material ordering policy for a given pro-
cess mean, we give the process used to "nd the
optimal material ordering policy associated with
the optimal process mean as follows:

Step 1: For kH"2.2335, using Results 2 and
4, the optimal n and m are found to satisfy
0(nH(1.254 and 1(mH)3.646. Therefore,
N"M1N and M"M1, 2, 3N.

Step 2: Using Result 1, q
n
"18 762 for n"1;

using result 3, q
m
"25 229 and q

m
"29 900 for

m"2, 3, respectively.
Step 3: Using expressions (1) and (2),

TC
A
(kH, q

n
, 1)"3449.64; TC

B
(kH, q

m
, 2)"3407.38,

and TC
B
(kH, q

m
, 3)"3402.99.

From Step 3, we found that total cost is the
minimum when m"3. Consequently, the optimal
process mean is 2.2335 mg, resulting in a process
conforming rate of 81.73%. The optimal produc-
tion run size q

m
"29 900, and the order for the raw

material should be placed three times within each
production run. The order quantity for the raw
material is 22 261 mg.

5. Sensitivity analysis

In this section, a sensitivity analysis is per-
formed to study the e!ects of the following model
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parameters on the optimal solution: (1) the product
demand rate D, (2) the production rate r, (3) the
process standard deviation p, (4) the value-added
factor a, (5) the production setup cost S, (6) the
material ordering setup cost K, (7) the unit material
cost c, and (8) the holding cost h

1
. The sensitivity

analysis is based on the example given in the last
section.

In the model formulation, the cost components
are evaluated in terms of unit time. It is also pos-
sible to formulate the model based on per-item
costs. Because the demand rate is constant, the
results of these two formulation methods are
the same. However, in the sensitivity analysis, the
demand rate is changed to observe its e!ects
on the optimal solution. For comparing these
results, per-item costs may be more appropriate.
Consequently, three per-item costs are used to
report the results in this section. The "rst one is the
per-item "nished product related cost given by

PFPC"FPC(k, q)/D.

The second per-item cost is the total cost of mater-
ial setup and handling costs given by

PMC"MC
A
(k, q, n)/D or MC

B
(k, q, n)/D,

depending on which policy, A or B, is used for
purchasing the raw material. Similarly, the per-item
total cost is given by

PTC"TC
A
(k, q, n)/D or TC

B
(k, q, n)/D.

In addition to studying the e!ects of the model
parameters on the optimal solution, we also study
the bene"t of using the proposed model by compar-
ing its performance with that of a hierarchical
model, where the process mean is determined "rst
and the production run size and material order
quantity are determined accordingly. Note that the
obvious drawback of the hierarchical model is that
the demand rate is not considered in determining
the process mean, and consequently, it may result
in infeasible solutions if the production yield rate is
smaller than the demand rate.

We adopt the method suggested by Golhar and
Pollock [10] in our comparisons. We "rst consider
an ideal situation where the process has zero vari-
ation; i.e., p"0. Under this ideal situation, every

item is "lled with exactly ¸ units in every "lling
attempt. The cost associated with the ideal situ-
ation represents the minimum cost of the system
that cannot be reduced further by the producer's
decision. Let PTC

1
and PTC

2
denote the optimal

costs associated with the ideal situation and the
hierarchical model, respectively.

We de"ne the percent bene"t of the integrated
model over the hierarchical model as

e"
PTC

2
!PTC

PTC!PTC
1

]100.

Note that in the example, the optimal process mean
for the hierarchical model is 2.3314, and its cost,
PTC

2
, is 0.6821. The unit cost associated with the

ideal situation is 0.4356, resulting in e"0.49. Al-
though the bene"t of the integrated model in the
example is very moderate, signi"cant e values are
found in the sensitivity analysis that follows.

5.1. Ewect of demand rate

To study the e!ects of the demand rate, we ob-
tained optimal solutions for selected values of D
ranging from 1500 to 7000 per unit time with an
increment of 500. The results are summarized in
Table 1.

As the demand rate increases, one would expect
that the process mean should be set higher in order
to meet the demand. The results show, however,
that the process mean actually decreases until the
demand rate reaches 5500 per unit time. The main
reason for this result is that when the demand rate
is low, the production rate (capacity) is too high. To
avoid costs incurred because of frequent produc-
tion setups and excess "nished product inventory,
the process mean is set lower to reduce the process
yield rate. When the demand rate is closer to the
production rate (D is larger than 5500), we observe
more reasonable results in which the production
run size, the process mean, and the process yield
rate increase as the demand rate increases. Further-
more, when the demand rate is close to the produc-
tion rate, the production run size becomes very
sensitive to the demand rate. In particular, signi"-
cant changes in the production run size are ob-
served when the demand rate is larger than 5000.

310 J. Roan et al. / Int. J. Production Economics 63 (2000) 303}317



Table 1
E!ect of demand rate

D kH p j q
m

mH Q PFPC PMC PTC e

1500 2.3163 0.8469 6352 7902 1 18 303 0.7634 0.0310 0.7943 0.015
2000 2.3133 0.8459 6344 9372 1 21 680 0.7349 0.0301 0.7650 0.023
2500 2.3104 0.8449 6337 10 778 1 24 900 0.7144 0.0300 0.7444 0.031
3000 2.3079 0.8441 6331 12 161 1 28 066 0.6984 0.0304 0.7288 0.041
3500 2.2855 0.8363 6272 16 620 2 18 991 0.6849 0.0308 0.7157 0.144
4000 2.2782 0.8337 6253 18 906 2 21 535 0.6727 0.0303 0.7029 0.193
4500 2.2696 0.8306 6230 21 539 2 24 442 0.6614 0.0302 0.6916 0.257
5000 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
5500 2.0361 0.7334 5500 2 494 440 228 22 276 0.6240 0.0324 0.6564 6.385
6000 2.1892 0.8000 6000 2 458 143 233 23 095 0.6103 0.0308 0.6411 7.759
6500 2.3776 0.8667 6500 2 925 849 289 24 070 0.6068 0.0296 0.6364 *!

7000 2.6508 0.9333 7000 4 564 231 476 25 417 0.6218 0.0291 0.6509 *!

! * denotes that the solution given by the hierarchical model is not feasible because the production yield rate is smaller than the
demand rate.

This is because the inventory accumulation rate
(j!D) during production is so low that a process
setup is economical only after a long period of
production. For example, when the demand rate is
5500, the process yield rate is 5500.2, resulting an
average inventory accumulation rate of 0.2 item per
unit time. Consequently, the production run size
becomes very large, resulting in a continuous pro-
duction situation with very few stops (setups). The
results also indicate that the bene"t of the integ-
rated model is larger as j is closer to D. Note that
when the demand rate is 6500 and 7000, the solu-
tion given by the hierarchical model is not feasible,
because the production yield rate is smaller than
the demand rate. Furthermore, by comparing m
and Q, when ordering frequency m keeps the same,
material order quantity Q increases when demand
rate increases. The material-related costs resulting
from the ordering policy do not show a clear pat-
tern, however.

Another important observation is that per-item
total cost is not a decreasing function of demand
rate. It "rst decreases, then starts to increase when
the demand is larger than 6500. The increase in the
total cost suggests that the production capacity is
not large enough to e!ectively satisfy the demand
rate. These results suggest that a carefully designed
production capacity is very important to control-
ling production cost. In most manufacturing sys-

tems, the same facility is used to produce several
di!erent products. The result implies that pooling
too many products for production in a single, fast
machine may not be a good production design,
since regardless of the change over cost from one
product to the another, the inventory cost for each
product may also arise.

5.2. Ewect of production rate

Table 2 gives the results for selected values of r.
As was argued in the last section, a larger produc-
tion rate does not necessarily lead to the most
economical situation. The per-item total cost has
its lowest value when the production rate is 6000.
Although the general pattern of the process mean
in response to the change in r is not found, the
process mean increases as r increases when the
material ordering frequency is at the same level.
Furthermore, the production yield rate increases as
r increases, which is generally caused by a decreas-
ing production run size in order to reduce the cost
of holding "nished product inventory.

When the production rate is between 6000 and
7000, the production yield rate is just slightly larger
than the demand rate. As a result, the inventory
accumulation rate (j!D) is very small, and, thus,
the production run size is very sensitive to a change
in the production rate. Similar to the situation in
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Table 2
E!ect of production rate

r kH p j q
m

mH Q PFPC PMC PTC e

6000 2.7720 0.8333 5000 8 679 269 938 21 070 0.6067 0.0337 0.6404 6.286
6500 2.1155 0.7693 5000 1 978 327 198 21 137 0.6157 0.0338 0.6495 8.762
7000 1.9662 0.7143 5000 2 860 602 268 21 307 0.6294 0.0341 0.6635 5.620
7500 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
8000 2.2682 0.8301 6641 23 354 2 26 485 0.6558 0.0294 0.6851 0.268
8500 2.2752 0.8326 7077 22 341 2 25 414 0.6599 0.0283 0.6883 0.215
9000 2.2810 0.8347 7512 21 545 2 24 572 0.6634 0.0275 0.6910 0.177
9500 2.2853 0.8362 7944 20 910 2 23 893 0.6664 0.0269 0.6933 0.148

10 000 2.2888 0.8374 8374 20 387 2 23 331 0.6690 0.0264 0.6954 0.126

Table 3
E!ect of process variation

p kH p j q
m

mH Q PFPC PMC PTC e

0.1 1.8015 0.9780 7335 22 491 2 20 258 0.4657 0.0229 0.4886 0.086
0.2 1.9379 0.9544 7158 22 330 2 21 636 0.5055 0.0243 0.5298 0.111
0.3 2.0435 0.9303 6978 22 415 2 22 903 0.5403 0.0256 0.5659 0.140
0.4 2.1264 0.9059 6794 22 686 2 24 119 0.5718 0.0269 0.5986 0.176
0.5 2.1899 0.8810 6607 23 130 2 25 326 0.6004 0.0281 0.6285 0.219
0.6 2.2171 0.8481 6361 28 310 3 20 921 0.6265 0.0294 0.6559 0.339
0.7 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6808 0.602
0.8 1.9446 0.6667 5000 4 186 924 374 21 769 0.6587 0.0348 0.6936 4.470
0.9 1.9877 0.6667 5000 2 790 148 252 22 007 0.6718 0.0352 0.7071 6.974
1.0 2.0308 0.6667 5000 2 278 747 208 22 248 0.6849 0.0356 0.7205 8.465

the last section, using the integrated model is espe-
cially bene"cial when the production run size is
very close to the demand rate.

When the production rate is greater than 7000,
the process mean and the yield rate increase as r
increases. The reason for this is a decreasing
production run size will reduce the cost of holding
"nished product inventory. When r is less than
7000, since the demand has to be satis"ed, the
production yield rate is limited to a certain level, as
is the process mean. The process mean, therefore,
does not follow the pattern (decrease) in response to
the decrease of r.

When the material ordering frequency is the
same, the material order quantity is a!ected by
an increasing process mean but a smaller produc-
tion run size. The result shows that when the mater-
ial ordering frequency is the same, the material

order quantity decreases as the production rate
increases.

5.3. Ewect of process variation

It is well known that the performance of a
process can be improved by reducing its inherent
variation [20,21]. For a given process mean,
a small process standard deviation implies a higher
process yield rate. On the other hand, to maintain
the same yield rate, the process mean can be set
lower when p is smaller. In this situation, the
material requirement is reduced and thus the
material ordering policy may be also a!ected. To
study the e!ect of the process standard deviation
on the optimal solution, the optimal solutions for
some selected values of p ranging from 0.1 to 1.0 are
reported in Table 3.
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Table 4
E!ect of value-added factor

a kH p j q
m

mH Q PFPC PMC PTC e

1 1.9016 0.6667 5000 2 365 925 209 21 526 0.3609 0.0344 0.3953 1.225
2 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
3 2.2336 0.8173 6130 22 789 2 25 450 0.9321 0.0306 0.9627 0.364
4 2.2229 0.8132 6099 21 182 2 23 542 1.2126 0.0305 1.2431 0.348
5 2.2185 0.8115 6087 19 818 2 21 982 1.4924 0.0306 1.5230 0.327
6 2.2155 0.8104 6078 18 686 2 20 699 1.7716 0.0308 1.8024 0.302
7 2.2147 0.8101 6076 17 698 2 19 597 2.0505 0.0310 2.0815 0.281
8 2.2142 0.8099 6074 16 849 2 18 653 2.3290 0.0313 2.3603 0.202
9 2.2297 0.8158 6119 13 150 1 29 319 2.6072 0.0313 2.6385 0.145

10 2.2285 0.8154 6115 12 711 1 28 327 2.8849 0.0311 2.9160 0.139

As expected, the per-item total cost increases as
p increases. When p increases, the process mean
increases until p is equal to 0.7. Then, the value of
the process mean is set so that the production yield
rate is very close to the demand rate when p is
larger than 0.7. The process conforming rate follows
a similar pattern. The decrease in the conforming
rate is mainly because of process variation and ex-
cess capacity. The conforming rate becomes very
stable, however, when the process yield rate is close
to the demand rate. The production run size is
relatively stable when p is small, and becomes very
sensitive to p when the production yield rate is close
to the demand rate. The material ordering policy is
relatively less sensitive to p. It shows, however, that
material order quantity increases when p increases
as long as order frequency remains the same. As
a result, it is also found that production-related costs
are more sensitive to p than material-related costs
are. The bene"t of the integrated model is higher
when p is larger and becomes signi"cant when the
production rate and the demand rate are close.

5.4. Ewect of value-added factor

A larger a implies a larger cost of producing an
item. The holding cost H also becomes larger.
Table 4 gives the results for selected values of a.
From the table, it is clear that when m remains the
same, the process mean decreases as a increases.
The main reason is that the cost of raw material is
reduced relatively in the model because of the in-
crease in the value of the "nished product, which, in

turn, increases the importance of reducing the hold-
ing of "nished products. A low process mean can
help to achieve this objective by reducing the per
unit production cost and cumulative speed of "n-
ished product. A lower process mean reduces the
production cost and thus the unit holding cost. At
the same time, the material ordering policy is very
stable.

In general, the bene"t of the integrated model
decreases as a increases. This is because the "nished
product related costs become more important than
the setup costs and material holding cost. As the
result, when a is larger, the optimal process mean is
closer to that given by the hierarchical model.
However, the bene"t of the integrated model is
moderate and stable as a changes.

5.5. Ewects of production setup cost

When the production setup cost increases, the
production run size is expected to increase in order
to reduce the number of production setups. This
result is observed in Table 5. As a result, the inven-
tory holding cost associated with the "nished prod-
uct decreases when the setup cost is less than or
equal to 600. When the setup cost is larger than
600, the process mean cannot be lowered because
the production yield rate is very close to the de-
mand rate. The production run size shifts to a very
high level and the process mean drops signi"cantly
to the lowest possible level, resulting in a very
low inventory level. It is also observed that the
process mean decreases as the production setup
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Table 5
E!ect of production setup cost

S kH p j q
m

mH Q PFPC PMC PCT e

100 2.3084 0.8442 6332 10 838 1 25 018 0.6264 0.0300 0.6564 0.036
200 2.2763 0.8330 6248 18 962 2 21 581 0.6345 0.0303 0.6648 0.204
300 2.2707 0.8310 6233 21 013 2 23 856 0.6406 0.0302 0.6708 0.252
400 2.2646 0.8288 6216 22 921 2 25 935 0.6459 0.0304 0.6763 0.298
500 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
600 1.9016 0.6667 5000 1 935 651 171 21 525 0.6464 0.0344 0.6808 2.243
700 1.9016 0.6667 5000 2 083 001 184 21 527 0.6464 0.0344 0.6809 3.915
800 1.9016 0.6667 5000 2 219 077 196 21 529 0.6465 0.0344 0.6810 5.564

Table 6
E!ect of raw material ordering setup cost

K kH p j q
m

mH Q PFPC PMC PTC e

30 1.9016 0.6667 5000 1 761 802 324 10 340 0.6463 0.0165 0.6628 1.438
80 1.9016 0.6667 5000 1 758 421 198 16 887 0.6463 0.0270 0.6733 0.845

130 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
180 2.2542 0.8250 6188 26 383 2 29 736 0.6503 0.0358 0.6801 0.393
230 2.2489 0.8230 6173 27 995 2 31 479 0.6502 0.0404 0.6906 0.440
280 2.2443 0.8213 6160 29 528 2 33 135 0.6502 0.0446 0.6948 0.485
330 2.2400 0.8197 6148 31 000 2 34 719 0.6503 0.0486 0.6988 0.531
380 2.2352 0.8179 6134 32 438 2 36 252 0.6504 0.0523 0.7027 0.577
430 2.2312 0.8164 6123 33 815 2 37 723 0.6506 0.0558 0.7064 0.429
480 2.2847 0.8360 6270 22 680 1 51 816 0.6514 0.0584 0.7098 0.152
530 2.2831 0.8354 6266 23 273 1 53 134 0.6512 0.0612 0.7124 0.159

cost increases until a further reduction will result in
unsatis"ed demand. A general pattern is found in
material order quantity: as long as the ordering
frequency (mH) remains the same, the material order
quantity increases when setup cost increases. If the
material order frequency increases because of the
increase in production run size, the material order-
ing quantity decreases. The bene"t of the integrated
model increases as the setup cost increases and
becomes signi"cantly large when the production
run size is very large.

5.6. Ewect of material ordering setup cost

In Table 6, we "nd that the material ordering
frequency decreases as the setup cost associated
with raw material ordering increases. On the other

hand, the material order quantity increases. The
production run size and the process mean have an
interesting relationship with the material ordering
frequency: under the same material ordering fre-
quency, the production run size increases, but the
process mean decreases as the setup cost increases.
For example, when mH is 1, the process mean de-
creases from 2.2847 to 2.2831, and the production
run size increases from 22 680 to 23 273. The in-
crease of q is due to the increase of material order-
ing quantity, which is in response to the increase
of material ordering setup cost. On the other hand,
in order to reduce the holding cost, which is raised
by a larger q, the process mean decreases. The
bene"t of the integrated model is moderate and not
sensitive to the changes in the material ordering
setup cost.
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Table 7
E!ect of material unit cost

c kH p j q
m

mH Q PFPC PMC PCT e

0.01 2.2335 0.8173 6130 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
0.02 2.2257 0.8143 6107 21 632 3 16 048 1.2126 0.0423 1.2558 0.331
0.03 2.2257 0.8143 6107 17 755 3 13 172 1.7716 0.0529 1.8245 0.228
0.04 2.2268 0.8147 6110 15 400 3 11 430 2.2880 0.0610 2.3898 0.174
0.05 2.2285 0.8154 6115 13 773 3 10 231 2.8847 0.0682 2.9529 0.141
0.06 2.2301 0.8160 6120 12 567 3 9342 3.4398 0.0747 3.5145 0.118
0.07 2.2317 0.8166 6124 11 626 3 8648 3.9943 0.0806 4.0749 0.101
0.08 2.2322 0.8168 6126 10 876 3 8092 4.5481 0.0862 4.6343 0.089
0.09 2.2333 0.8172 6129 10 248 3 7629 5.1016 0.0914 5.1929 0.078
0.10 2.2343 0.8176 6132 9716 3 7236 5.6546 0.0963 5.7509 0.070
0.11 2.2350 0.8178 6134 9261 3 6899 6.2074 0.1010 6.3084 0.064
0.12 2.2357 0.8181 6136 8863 3 6604 6.7599 0.1055 6.8653 0.058
0.13 2.2368 0.8185 6139 8508 3 6343 7.3121 0.1097 7.4219 0.056
0.14 2.2372 0.8187 6140 8197 3 6112 7.7641 0.1139 7.9780 0.051
0.15 2.2375 0.8188 6141 7918 3 5905 8.4160 0.1179 8.5338 0.047

Table 8
E!ect of inventory holding cost

h
1

kH p j q
m

mH Q PFPC PMC PCT e

0.02 2.2863 0.8366 6274 56 995 3 43 436 0.6286 0.0151 0.6437 0.139
0.05 2.2573 0.8261 6196 36 985 3 27 828 0.6413 0.0240 0.6653 0.361
0.08 2.2335 0.8173 6129 29 900 3 22 260 0.6501 0.0305 0.6806 0.597
0.11 1.9016 0.6667 5000 1 505 975 156 18 357 0.6464 0.0404 0.6868 3.486
0.14 1.9016 0.6667 5000 1 326 554 155 16 274 0.6466 0.0456 0.6921 6.156
0.17 1.9016 0.6667 5000 1 211 406 156 14 766 0.6467 0.0502 0.6969 8.641
0.20 1.9016 0.6667 5000 1 109 875 155 13 616 0.6468 0.0545 0.7012 10.993
0.23 1.9016 0.6667 5000 1 034 964 155 12 697 0.6469 0.0584 0.7053 13.245
0.26 1.9016 0.6667 5000 973 425 155 11 942 0.6470 0.0621 0.7091 15.417
0.29 1.9016 0.6667 5000 927 503 156 11 306 0.6471 0.0656 0.7126 17.527
0.32 1.9016 0.6667 5000 877 433 155 10 764 0.6471 0.0689 0.7160 19.586
0.35 1.9016 0.6667 5000 844 268 156 10 291 0.6472 0.0720 0.7193 21.603

5.7. Ewect of unit material cost

An increase in c implies that the per-item produc-
tion cost and holding cost are larger. We observe
from Table 7 that, as c increases, the process mean
generally increases except c"0.01. However, we
"nd that the process mean is not sensitive to the
change in c. Because of a higher holding cost, the
production run size and the raw material order
quantity decrease as c increases. As expected, both
the material and total costs increase as c increases.
The bene"t of the integrated model is moderate and
not sensitive to the change in c.

5.8. Ewects of holding cost

As h
1

increases, the costs of holding "nished
items and raw materials are higher. This should
result in lower inventory levels for both "nished
items and raw material. In Table 8, we "nd that the
process mean and the material order quantity de-
crease as h

1
increases. We also "nd that when

h
1

reaches 0.11, the process mean stays at 1.9016,
and the production yield rate is almost identical to
the demand rate, resulting in near zero inventory
accumulation. Under this situation, the production
run size is very large. Although the material order
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quantity decreases as h
1

increases, the changes are
relatively small. As discussed, the bene"t of the
integrated model is very signi"cant under the situ-
ation. Furthermore, the production run size de-
creases as h

1
increases because the material order

quantity decreases. Comparing to other model
parameters, the optimal solution and the bene"t of
the integrated model are more sensitive to the hold-
ing cost.

5.9. Summary

In the sensitivity analysis, we found that the
optimal solution is generally not very sensitive to
the model parameters. However, under the situ-
ation in which it is economical to set the produc-
tion rate close to the demand rate, the optimal
solution becomes sensitive to the model para-
meters. In this situation, the production run size is
very large because the inventory accumulation rate
is very small. We also "nd that, under the same
situation, the bene"t of using the integrated model
is signi"cant. Furthermore, in the results presented
in this section, the raw material order policy is
always based on Case B. We "nd from our compu-
tation experience that Case B should be used when
S is larger than K, although it is di$cult to prove it
analytically. On the other hand, when K is signi"-
cantly larger than S and r is large, Case A may be
the optimal order policy.

6. Conclusion

In this paper, a two-echelon model is used to
incorporate the issues associated with production
run size and raw material procurement policy into
the classical process mean problem for a single-
product production process. The performance vari-
able of the product has a lower speci"cation limit,
and the items that do not conform to the speci"ca-
tion limit are scrapped with no salvage value. The
production cost of an item is a linear function of the
amount of raw material used in producing the item.
An e$cient solution procedure has been developed
for a joint determination of process mean, produc-
tion run size and material order quantity for min-
imizing the total cost incurred by production,

inventory holding and raw material procurement.
A sensitivity analysis reveals the e!ects of the model
parameters on the optimal solution and the bene"t
of using the proposed model.

The model structure presented in this paper pro-
vides a useful framework for future research on
several interesting issues related to this classical
problem in quality control. In particular, the fol-
lowing four extensions are possible. First, the
model can be easily modi"ed to consider the situ-
ation in which quantity discounts are available for
raw material purchasing. Second, one can consider
perishable raw material and "nished product. The
issue becomes very interesting and important when
the deterioration speeds of the raw material and the
"nished product are di!erent. The third extension
is to incorporate production process deterioration
into the model. The fourth extension is to consider
a multiple-level "lling process in which several raw
materials are added in di!erent stages. However,
this issue could be very complicated when the prod-
uct conformance is jointly determined by the
amounts of several raw materials. These issues have
been included in the authors' future research plans.
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