
E L S E V I E R European Joumal of Operational Research 100 (1997) 122-133

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

Critical path in an activity network with time constraints

Y e n - L i a n g C h e n a, D a n R i n k s b, . , K w e i T a n g b

a Department of Information Management, National Central University, Chung-Li, Taiwan 320, Taiwan
b Department oflnformation Systems and Decision Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

Received 12 October 1995; accepted 22 April 1996

Abstract

An acyclic graph with nonnegative weights and with a unique source and destination is called an activity network. A
project comprised of a set of activities and precedence relationships can be represented by an activity network and the
mathematical analysis of the network can provide useful information for managing the project. In a traditional activity
network, it is assumed that an activity can begin any time after all of its preceding activities have been completed. This
assumption does not adequately describe many practical situations, in which some kinds of time constraint are usually
associated with an activity. In this paper, we investigate two types of time constraint commonly encountered in project
management. The first is the time-window constraint, which assumes that an activity can begin its execution only in a
specified time interval. The second is the time-schedule constraint, which requires that an activity begin only at one of
pre-specified beginning times. An efficient, linear time algorithm for finding the longest path (critical path) and for
analyzing the flow time of each arc is developed for activity networks with these time constraints. © 1997 Elsevier Science
B.V.

Keywords: Activity network; Critical path; Longest path; Float time; PERT; Time-window; Time-schedule

1. Introduct ion

An activity network is an acyclic graph with
nonnegative weights and with a unique source and
destination. Here, an arc can be viewed as an activity
and the precedence relationships between all of the
activities are represented by the topology of the
network. An arc leaving from a certain node cannot
begin until all of the arcs going into this node have
been finished. In this kind of activity network vis-h-

vis a project, an important problem is to find the
longest path, because all of the arcs in this path

* Corresponding author.

denote the most critical activities of the project: if
the activities on the critical path are delayed, then the
entire project will be delayed. With this information,
the decision maker can monitor these critical activi-
ties more closely and take corrective action, if neces-
sary, to control the planned schedule. Another prob-
lem of interest in an activity network is to analyze
the flow time of each noncritical arc to find out how
much float (slack) the arc has. Arcs with longer float
time are more adjustable or flexible because, if
necessary, we can delay an arc with slack and trans-
fer resources from this activity to support activities
on critical arcs. For details and surveys, see [1].

In one way or another, analysis of an activity
network is concerned with scheduling (timing) is-
sues. A considerable body of research in PERT

0377-2217/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S0377-221 7(96)001 40-3

Y.-L. Chen et al. /European Journal o f Operational Research 100 (1997) 122-133 123

a n d / o r CPM focuses on various time factor aspects.
For instance, some of the research is concerned with
estimating activity time more accurately [3,7,9], while
another area of research deals with the stochastic
nature of activity time. Basically, the stochastic ac-
tivity time stream of research assumes that the activ-
ity durations are nonnegative random variables, and
then use statistical or stochastic techniques to find
the critical path and critical activities [1,10,11,15,17].
However, there is some controversy about which
path is the most critical in a stochastic activity
network [16,17]. Suffice to say, it is not easy to
correctly estimate the completion time of a project
whenever activity times are stochastic [2,8,10,12,13].

Although many aspects of the time factor have
been studied, an obvious and important time factor
has been largely ignored. In the traditional model, it
is assumed that an arc can begin at any time after all
of its preceding arcs are finished. Although this is a
reasonable requirement, it does not adequately de-
scribe many practical situations. In reality, an activ-
ity is seldom ready for execution at any time; some
kinds of time constraint are usually attached to it.

In this paper, we consider two improvements over
the traditional activity network by including two
types of time constraint. The first is the time-window
constraint [6,14], which assumes that an activity can
only be started within a specified time interval. In
other words, a t ime-window defines the earliest time
and the latest time that an activity can begin its
execution after all of its predecessors are completed.
The second is the time-schedule constraint [4], which
assumes that an activity can begin only at one of an
ordered schedule of the beginning times. Practical
situations of the second kind include, for example,
product shipping through scheduled flights, ocean
liners, trains, buses or their combinations from one
place to another. With a time-schedule constraint, an
activity can begin only after all of its predecessors
are complete and at one of the beginning times in
the time schedule.

These two types of constraints are commonly seen
in projects. Failure to include time constraints may
result in misleading information to the decision
maker. For instance, suppose we found the time
associated with the longest path is 100 time units
when all the time constraints are ignored. We may be
fortunate that this is the correct solution because all

the time constraints are not binding. It is possible,
however, the actual time of this path is much longer
than 100 time units, because: 1) some critical arcs
are subject to t ime-windows and the beginning times
for them are prior to the time windows; a n d / o r 2)
some critical arcs are subject to time-schedules and
the beginning times are earlier than the next sched-
uled times. As a result, this path may not be the
critical path because some other paths may have
shorter times when time constraints are considered.
The solution may even be infeasible, because some
critical arcs are subject to t ime-windows and the
beginning times fall outside the time windows. Fur-
thermore, even if the solution remains unaffected
when the time constraints are included, the flow time
associated with each arc may be seriously mislead-
ing. Thus, it is important to include time constraints
into activity network analysis.

The remainder of the paper is organized as fol-
lows. In Section 2, we formally define the problem
and present solution methods for activity networks
with time constraints. In Section 3 we discuss the
concept of flow time in detail under the time con-
straints. Conclusions are presented in Section 4.

2. The problem and the solution method

Let N = (V, A, t, s, d) be an activity network,
where G = (V, A) is a'-directed acyclic graph with-
out multiple arcs, t(u, v) >_ 0 denotes the processing
time of arc (u, v), s is the starting node and d is the
destination node. A project, represented by the corre-
sponding network, is completed when every arc,
which denotes an activity in the project, is finished.
Arcs (activities) are classified into three different
categories, i.e., normal arcs, time-schedule arcs and
time-window arcs. A normal activity can begin its
work at any time after all of its preceding activities
are finished. A time-schedule arc (u, v) is subject to
the same constraint as a normal arc but with the
additional constraint that it is associated with an
ordered list of scheduled beginning times,

T S (u , v) = (t s , (u , v) , t s 2 (u , v) t s . (u , v)) ,

such that the arc can begin only at one of the
scheduled times. A time-window arc (u, v) is the

1 2 4 Y.-L. Chen et al. // European Journal o f Operational Research 100 (1997) 122-133

same as a normal arc but with the additional con-
straint that a time interval,

I(u, v) = (begin(u, v), end(u, v)),

is associated with it such that the activity must begin
in this time interval,

In a traditional activity network consisting of only
normal arcs, the longest path of a project and float
times for activities are useful information for project
management. A longest path in network N consti-
tutes the most critical activities of the project, i.e.
those activities which if delayed will cause the entire
project to be delayed. The length (duration) of this
critical path is the minimum time required for finish-
ing the project. An arc's float time f (u, v) is the
difference between the arc's latest beginning time
and the arc's earliest beginning time. This informa-
tion tells us how long arc (u, v) can be delayed from
its earliest beginning time without increasing the
project's duration.

However, if the underlying network consists of
normal arcs, time-window arcs and time-schedule
arcs, then the above properties no longer hold. Un-
like a traditional activity network, the latest begin-
ning times of the arcs on the longest path may be
greater than their corresponding earliest beginning
times. Thus, an arc on the critical path may have a
positive float time, a characteristic normally associ-
ated with the arcs not on the critical path in the
traditional activity network. In addition, the interpre-
tation of flow time is different when time constraints
are present. An arc in the traditional model is associ-
ated with a single, nonnegative float time value,
while an arc in our model is associated with two
types of nonnegative time components. The first is
the arc's float time and the second is the arc's forced
waiting time. Since the waiting time is ' forced' as a
result of the time constraint, the concept of waiting
time is entirely different from that of the float time.
Waiting time implies cost because we are forced to
wait while doing nothing. On the other hand, float
time implies a possible benefit because how long an
activity can be delayed when the next activity begins
is our own discretion. Consequently, the more float
time an arc has, the more flexibility we have in
scheduling the activity; conversely, more forced
waiting time indicates the activity is less flexible.

Fig. 1 shows an activity network with 8 nodes and

B D

~.~.. ,o~__

,./ A ./" (7,~)

5
C E

F

2 . . " 3

/..s 6 5

0t,13) G

. ~ Time-window ares

..................... ~ Time-schedule ares

Normal arcs

Fig. 1. An example of a scheduling network with three types of
a r c s .

13 arcs. Activity times are shown as the number on
the arc, and the number inside each node is the
node's topological order. Arc (A, B) is a time-sched-
ule arc with TS(A, B) = (3, 6); arc (B, D) is a time-
schedule arc with T S (B , D) = (6,10, 12); arc (E,G)
is a time-schedule arc with TS(E,G) = (11,16); arc
(E, F) is a time-schedule arc with TS(E, F) = (12, 15);
and arc (B, E) is a time-window arc with I(B, E) =
(7, 8). Topological order is an order of the nodes in
an acyclic graph and this order can be easily con-
structed in time O([AI + IVl) by using the algorithms
in [5], where [AI and IV[are the numbers of arcs and
nodes in the network, respectively. If node u has a
smaller topological order than node v, all activities
or arcs emanating from node v cannot be predeces-
sors to activities or arcs emanating from node u.
Therefore, if we execute all the activities according
to their related topological order, then it is ensured
that all precedence relationships have been satisfied.

Our algorithm for solving networks with time
constraints is similar to the two-phase (forward pass,
backward pass) procedure used in the traditional
activity networks consisting of only normal arcs. The
first phase (forward pass) is to find the earliest
beginning time of every node and the longest path
from s to d. The second phase (backward pass) is to
find the latest beginning time of every node and
analyze every a rcs float time and waiting time. In
the first phase, we examine every node v in the
network according to their topological order in as-

Y.-L. Chen et al . / European Journal of Operational Research 100 (1997) 122-133 125

cending sequence. For each node v in node set V, a
label early(v) is assigned, which denotes the earliest
beginning time to leave node v. For each arc (u, v)
in A, a label reaching(u,v) is assigned, which
denotes the earliest time to reach node v if we go

into node v by arc (u, v). Our algorithm differs from
the traditional procedure in the method that early(o)
is calculated for time-schedule and time-window arcs.
In Appendix A, we prove a theorem which validates
the following algorithm for finding early(v).

Algor i thm for the first phase
Step 1. Examine every node v in ascending sequence of topological orders.
Step 1.1. Let early(v)= O.
Step 1.2. For each arc (u, v) going into node v,

if (u, v) is normal, then reaching(u, v) = early(u) + t(u, v)
if (u, v) is time-schedule, then

find the smallest scheduled time, say tsk(u, v), of arc (u, v) >_ early(u)
if no such a tsk(u, v) exists, then the problem is infeasible
let reaching(u, v) = ts~(u, v) + t(u, v).

if (u, v) is time-window, then
if early(u) < begin(u, v),

then let reaching(u, v) = begin(u, v) + t(u, v)
else if begin(u, v) < early(u) ~ end(u, v),

then let reaching(u, v) = early(u) + t(u, v)
else if early(u) > end(u, v), then the problem is infeasible

if reaching(u, v) > early(v), then let early(v) = reaching(u, v) and P(v) = u
Step 2. By reversing from P(d) until P(s), the longest path is found.

Example 1. Using the above algorithm to solve the
activity network in Fig. 1, the applying sequence is
A, C, B, E, D, F, G, H and the final result is shown in
Fig. 2. When we examine node E, we have early(A)
= O, early(C) = 4, early(B) = 5, and early(E) = O.
There are two arcs, (B,E) and (C,E), going into
node E. The first arc, (B, E), is time-window and has

and early(D) is set to 11. The second arc, (C,D), is
normal, its value is

reaching(C, D) = early(C) + t(C, D) = 4 + 6 = 10,

and early(D) is still kept in 11. The last arc, (E, D),
is normal, its value is

begin(B, E) = 7 > early(B) = 5; reaching(E, D) = early(E) + t(E, D) = 9 + 4 = 13,

hence,

reaching(B, E) = begin(B, E) + t(B, E) = 7 + 0.5 =
7.5,

and early(E)= 7.5. The second arc, (C,E), is a
normal arc and has

early(C) + t (C,E) = 4 + 5 = 9;

hence, early(E) is updated to 9. Next, we examine
node D, which has three arcs going into it. The first
arc, (B, D), is time-schedule, its value is

reaching(B,D) = tsj(B,D) + t(B,D) = 6 + 5 = 11,

and early(D) is changed to 13. Since the other arcs
are handled in the same way, we omit the details.

Let Tf be the duration of the longest path (e.g.,
Tf = early(d)). We now discuss the second phase of
the algorithm. In the backward pass, we examine
every node v in this network according to their
topological orders in descending sequence. For each
node v in node set V, a label latest(v) is assigned,
which denotes the latest beginning time we can leave
node v and still complete all remaining activities in
time Tf. After nodes vlv I, Vlv I_ 1,. - •, vi+ ~ all have
been examined, we examine node v i, where the
subscript denotes the topological order value of the
node.

126 Y.-L. Chen et al. /European Journal of Operational Research 100 (1997) 122-133

(5,6) (13,14) (18,18)
.

A ../ ", /

C (9,10) (15,16)

ea .~i~i;f ; ~ Time-schedul

~, Normal arcs
latest(E)

Fig. 2. The first phase for finding the earliest leaving time of each
node and the critical path of the network.

The value of latest(v i) can be defined as

min{temp(v i , u)[(v i, u) ~ A},

where temp(vi, u) is the latest time arc (vi, u) must
begin in order to complete all remaining activities in
time Ty. Calculations for the backward pass for the
three types of arcs are explained as follows.

Case 1: Arc (v i, u) is normal. Let

temp(vi, u) = latest(u) - t(vi, u) ,

and let the float time be

f (v i, u) = latest(u) - t(Oi, U) -- early(vi) ,

where both definitions are the same as in the conven-
tional activity network.

Case 2: Arc (vi, u) is time-schedule. Let

temp'~(v i, u) = latest(u) - t(Ui, U),

which is the latest time arc (v i, u) must begin, if arc
(re, U) is a normal arc. Because arc (vi, u) is a
time-schedule arc, tempS'(v i, u) is typically different
from temp(v i, u). Let tsk(v i, u) be the largest (latest)
scheduled beginning time of arc (v i, u) <
temp~(vi, u). Then, the latest time to begin arc (vi, u)
is tsk(vl, u), because beginning at times such as
tSk(Vi, u), tSk_l(vi, U) tSl(V i, U), we will arrive at
node u sooner than latest(u); but beginning at times
such as tsk+l(vi, u),tsk+2(vi, u) we will arrive
at node u later than latest(u). Hence, we have
temp(v i, u) = tsk(v i, u). We prove (Appendix B,

Lemma 1) that it is impossible for tSl(Vi, u) >
tempS~(v i, u). As a result, we can find a value of k
(k > 1) which meets the condition.

Now, we discuss the float time f (v i, u) and wait-
ing time on a time-schedule arc (v/, u). There are
two types of waiting time: pre-waiting time
prew(v i, u) and post-waiting time postw(vi, u). Pre-
waiting time is the time that we are forced to wait
before beginning the activity of arc (v i, u) and post-
waiting time is the time that we are forced to wait
after finishing the activity of arc (v i, u). The post-
waiting time is defined as

postw(vi, u) = latest(u) - tsk(vi, u) - t(v i, u) .

(1)
In the above equation, the latest beginning time of
arc (v i, u) is at time tsk(vi, u) and we will finish the
work of arc (v i, u) at time tSk(Vi, U) + t(vi, U). So,

we will be latest(u) - tsk(vl, u) - t(v i, u) time units
sooner than the required latest beginning time of
node u.

Next, we will define the pre-waiting time. Let
tsr(v ~, u) be the smallest scheduled beginning time
of (v i, u) >_ early(vi). Then the earliest possible time
to begin arc (vg, u) is tsr(vi, u). This means that even
if we are ready to begin work at time early(vi), we
must wait tsr(vi, u) - early(v i) time units before we
can proceed to do the work of arc (v i, u). Hence, we
have

prew(vi, u) = tsr(vi, u) - early(ui) . (2)

The float time f (vi , u) of arc (v i, u) can be de-
fined as

f (v i, u) = [latest(u) - early(re) - t(vi, u)]

- prew(Oi, U) -- postw (Ui, U) , (3)

where the first term, [l a t e s t (u) - e a r l y (v i) -
t(vi, u)], is the traditional definition of float time and
prew(v i, u) and postw(vi, u) are the pre- and post-
waiting times as defined by Eq. (2) and Eq. (1).

Case 3: Are (vi, u) is time-window. Because arc
(v i, u) is time-window, temp~(vi, u) may be differ-
ent from temp(vi, u). If

begin(vi, u) < temp&(vi, u) ~ end(vi, u) ,

then the latest time to begin arc (v i, u) is the same as
temp~(v i, u), i.e.,

temp(Ui, R) = temp~(vl, u) .

Y.-L. Chen et al. /European Journal of Operational Research 100 (1997) 122-133 127

If

temp&(v i, u) > end(v i, u) ,

then the latest time to begin arc (v~, u) is end (v i, u),
i.e.,

t emp(v i , u) = end(v i, u) .

We prove (Appendix B, Lemma 2) that it is
impossible for begin(v i, u) > tempa(v i, u).

Now, we analyze the float time f(v~, u) and wait-
ing time associated with arc (v i, u). The following is
the definition of post-waiting time:

postw(u)

= max{O, l a t e s t (u) - t (v i, u) - end(Vi, U)}.
(4)

In the above equation, the latest time arc (v i, u) must
begin its work is at time

min{ la tes t (u) - t (v i , u) , end(v i, u)}.

If l a t e s t (u) - t (v i , u) is the smaller, then we will
arrive node u at time la tes t (u) and there is no
post-waiting time. On the other hand, if end(v~, u) is
the smaller, then we will finish the work of arc

(Vi, U) at time end(v i, U) + t(Vi, U) and this is
la tes t (u) - t (v i, u) - end(v i, u) time units sooner
than the latest beginning time of node u.

Next, we define the pre-waiting time. If

begin(vi, u) > ear l y (u i) ,

then the earliest possible time to begin arc (v i, u) is
beg in(v i, u). This means that even if we are ready to
begin the activity (v i, u) at early(v i) , we have to
wait begin(vi , u) - e a r l y (v i) time units before we
can begin the activity. On the other hand, if

begin(v i , u) < e a r l y (v i) <_ end(v i , u) ,

then it is not necessary to wait and we can begin the
activity at time early(v~). Finally, it is impossible for
ear ly (v i) > end(v i, u), because it implies an infeasi-
ble solution. Hence, we have

p r e w (vi, u) = max{O, begin(v i, u) - e a r l y (v i) }.

(5)
Similarly, the float time f(v~, u) of arc (v~, u) can be
defined as

f (v i, u) = [l a t e s t (u) - e a r l y (v i) - t(v i, u)]

- p r e w (Vi, U) -- pos tw (v i, u) . (6)

The algorithm for the second phase is given be-
low.

Algorithm for the second phase
Step 1. Let l a t e s t (d) = ear ly(d) .
Step 2. Examine every node v in descending sequence of topological orders.
Step 2.1. For each arc (v, u) leaving from node v,

if (v, u) is normal, then temp(v, u) = la tes t (u) - t(v, u)
if (v, u) is time-schedule, then

let temp~(v, u) = lates t (u) - t(v, u)
let ts~(v, u) be the largest scheduled time of (v , u) < t e m p ~ (v , u)
let t emp(v , u) = tsk(v, u)
le" tSr(V, U) be the smallest scheduled time of (v , u) > ear ly(v) .

if (v, u) is time-window, then
let t emp~(v , u) = lates t (u) - t (v , u)
if begin(v , u) < temp~(v, u) < end(v , u), then temp(v, u) = temp~(v, u)
if temp~(v, u) > end(v , u), then temp(v. u) = end(v , u)

Step 2.2. Let la tes t (v) = min{ temp(v, u) l(v, u) ~A}
Step 3. Examine every node v in descending sequence of topological orders again.
Step 3.1. For each arc (v, u) leaving from node v,

if (v, u) is normal, then
prew(v, u) = O,
pos tw(v, u) = O,
f l oa t (v , u) = l a t e s t (u) - t(v, u) - ear ly (v) ,

128 Y.-L. Chen et a l . / European Journal of Operational Research 100 (1997) 122-133

if (v, u) is time-schedule, then
prew(v, u) = tsr(v, u) - early(o) ,
pos tw(v, u) = latest(u) - tsk(v, u) - t(v, u),
and
f loa t (v , u) = l a t e s t (u) - t(v, u) - e a r l y (v) - pr ew(v, u) - pos tw(v, u).

if (v, u) is time-window, then
prew(v, u) = max{ begin(v , u) - early(v) , 0},
pos tw(v, u) = max{O, latest(u) - t(v, u) - end(v, u)},
and
f loa t (v , u) = latest(u) - t(v, u) - ear ly (v) - p rew(v, u) - pos tw(v, u).

We show in Appendix B, Lemma 3 that the time
complexity of the algorithm is O(IA[+ IVI).

Example 2. If the above algorithm is used to solve
the activity network in Fig. 2, then the applying
sequence is H, G, F, D, E, B, C, A. The latest begin-
ning time information is also indicated in Fig. 2 and
all of the other final results are summarized in Table
1.

The results of this example show the following
difference of the solution from that obtained from
the traditional activity network:
1. The earliest leaving times of the nodes on the

critical path may be different from their latest
leaving times.

2. The arcs on the critical path may have positive
float times. For example, arcs (A, C) and (C,E)

have positive float times, although both are on the
longest path.

3. The earliest time leaving node A is 0 and the
latest time leaving node A is 1, which indicates
that the actual time required for this network is 20
time units rather than 21 time units. In other
words, the project will be finished at the same
time, regardless of whether it begins at time 0 or
time 1. This time difference may be called the
float time of the system.

4. Arcs may have pre-waiting time and post-waiting
time.

5. The possible float time of an arc may be a set of
discrete values, not a continuous range. For ex-
ample, arc (E, G) has latest(G) = 16, early(E)
= 9 and ts (E,G)= (11, 13). Therefore, arc (E,G)
has a pre-waiting time of 2 time units, a post-

Table 1
The second phase for computing the pre-waiting time, post-waiting time and float time of each arc

Node Seq. Arc latest(u) early(v) t(v, u) prew postw float

H 1 (F,H) *a 21 18 3 0
H 2 (G,H) 21 15 5 1
G 3 (D,G) 16 13 2 1
G 4 (E,G) 16 9 1 2 2 2
F 5 (D,F) 18 13 4 1
F 6 (E,F)* 18 9 6 3 0 0
D 7 (B,D) 14 5 5 1 3 0
D 8 (C,D) 14 4 6 4
D 9 (E,D) 14 9 4 1
E 10 (B,E) 10 5 0.5 2 1.5 1
E II (C,E)* 10 4 5 1
B 12 (A,B) 6 0 2 3 1 0
C 13 (A,C)* 5 0 4 I
A 14

a The arc marked ' * ' is in the longest path.

Y.-L. Chen et al . / European Journal of Operational Research tO0 (1997) 122-133 129

waiting time of 2 time units, and a float time of 2
time units. The flow time is either 0 or 2, rather
than any value in the range from 0 to 2. In other
words, we may either begin this activity at time
11 or 13, but it is not allowed, for example, to
begin at time 12.

3. Further discussion of waiting time

An important finding of this paper is the interpre-
tation of flow time when time constraints are consid-
ered in an activity network. In this section we pro-
vide a more detailed analysis and discussion for flow
time as it is decomposed into pre-waiting time and
post-waiting time.

To begin, we assume that the arc (v, u) is time-
schedule. From previous definitions (1), (2), and (3),
we obtain

postw(v, u) = latest(u) - tsk(v, u) - t(v, u) ,

prew(v, u) = tsr(v, u) - ear ly (v) ,

f loat(v, u) = latest(u) - t(v, u) - ear ly(v)

- prew(v, u) - postw(v, u) .

Recall tsk(v, u) is the largest scheduled time of arc
(v, u) < latest(u) - t(v, u) and ts~(v, u) is the small-
est scheduled time of arc (v, u)>_ early(v).

The above relationships are illustrated in Fig. 3a
and contrasted with the traditional flow time. In
addition, both pre-waiting time and post-waiting time
can be further decomposed into a flexible part and a
fixed part (see Fig. 3b and Fig. 3c). First consider
the pre-waiting time. Suppose

latest(v) < ts,(v, u) .

Then the flexible part is the time interval (early(v),
latest(v)) and the fixed part is the interval

(l a t e s t (v) , tSr(V, U)). W e call the in terval
(early(v), latest(v)) flexible because the duration of
the waiting time in this time period is at the discre-
tion of the project manager. All activities emanating
from node v are ready for execution at the earliest at
time early(v) because of precedence relationships,
while they must begin no later than at time latest(v)
in order to finish the project on schedule. We call the
interval (latest(v), ts~(v, u)) fixed because this wait-
ing time period is unavoidable. Although arc (v, u) is

ready for execution on or before time latest(v), we
still must wait until time tsr(v, u) because it is the
earliest scheduled beginning time for this activity.

Similarly, the post-waiting time can be decom-
posed into a flexible part and a fixed part. Suppose

early(u) > tsk(v, u) + t(v, u) .

Then, the fixed part is the time interval (tsk(v, u) +
t(v, u), early(u)), and the flexible part is the time
interval (early(u), latest(u)). The interval (tsk(v, u)
+ t(v, u), early(u)) is fixed because we have to wait
until time early(u) to begin the activities emanating
from node u, although the activity of arc (v, u) is
finished at time tsk(v, u) + t(v, u).]'he interval
(early(u), latest(u)) is called flexible because we
have flexibility to begin the activities leaving from
node u at any point in the interval [early(v),
latest(v)] without delaying the completion of the
project.

Consider the time-schedule arc (E, G) in Fig. 2.
We have ear ly (E)=9, latest(E)= 10, t (E , G) = 1,
t s r (E , G) = 11, t s k (E , G) = 1 3 , early(G)= 15, and
latest(G) = 16. Calculations of pre-waiting and
post-waiting times and their decomposition into flex-
ible and fixed parts are shown as follows:

The traditional flow time is

latest(G) - early(E) - t(E, G) = 16 - 9 - 1 = 6.

The pre-waiting time is

ts r(E,G) - early(E) = 11 - 9 = 2.

The post-waiting time is

l a t e s t (G) - t s k (E , G) - t (E , G) = 1 6 - 1 3 - 1 = 2.

The float time is

latest(G) - t(E, G) - early(E) - prew(E, G) -
postw(E, G) = 2.

The fixed pre-waiting time is

tsr(E, G) - latest(E)= 11 - 10 = 1.

The flexible pre-waiting time is

latest(E) - early(E) -= 10 - 9 = 1.

The fixed post-waiting time is

early(G) - t s k (E , G) - t (E,G) - 15 - 13 - 1 = 1.

1 3 0 Y.-L. C h e n et al. / E u r o p e a n J o u r n a l o f Opera t iona l R e s e a r c h 100 (1997) 1 2 2 - 1 3 3

pre-waiting
time

zll ,

[(a)

flow time post-waiting
in this paper time

lit m it ii ii

T r ad i t i ona l f l o w t i m e ,,

I I I I
ts,(v,u) tsj(v,u) latest(u)-t(~.u) latest(~) early(v)

pre-waiting t i m e

flexible pre-waitin 8 t i m e fixed pre-waiting time

i , , i w,

early(v) latest(v) ts,(v.u)

post-waiting time

fuxed post-waiting time flexible post-waiting time

it i l,

tsdv, u) + t(v, ~) ear,(u) latest(u)

Fig. 3. (a) Different defmitions of float time for normal arcs and
time-schedule arcs; (b) decomposition of the pre-waiting time into
two components; (c) decomposition of the post-waiting time into
two components.

The flexible post-waiting time is

l a t e s t (G) - e a r l y (G) = 1 6 - 15 = 1.

Next, we consider the case where (v , u) is a
t ime-window arc. Using Eqs. (4), (5), (6),

postw(v, u)

= max{0, l a t e s t (u) - t (v , u) - end(v, u)} ,

p r e w (v, u) = max{ begin(v, u) - e a r l y (v) , 0},

and

f l oa t (u, u) = la t e s t (u) -- t (v , u) -- e a r l y (v)

-- p r e w (v, u) -- pos t w(v, u) .

The above relationships are illustrated in Fig. 4a
and compared with the traditional flow time. Fig. 4b
shows the decomposit ion of the pre-waiting time into
its flexible and fixed parts. Suppose

l a t e s t (v) < begin(v , u) .

Then, the f lexible part is the time interval
(ear l y (v) , la tes t (v)) and the fixed part is the interval
(la tes t (v) , beg in(v , u)). Although arc (v, u) is ready
for execution no later than la tes t (v) , we have to wait
until time begin(v , u) because of the t ime-window
constraint. Fig. 4c shows the decomposit ion of the
post-waiting time into its flexible and fixed parts. If

e a r l y (u) > end(v , u) + t(v , u) ,

then the f ixed part is the time interval (end(v , u) +
t (v , u), ear ly (u)) and the flexible part is the time
interval (early(u), latest(u)). Although the activity
of arc (v, u) can be finished at time end(v , u) +
t (v , u), we still have to wait until time ear ly(u) to
begin the activities emanating from node u. This
waiting time is fixed. The interpretation of the flexi-
ble part of the flow time is similar to that for
t ime-schedule arcs.

Consider the t ime-window arc (B, E) in Fig. 2.
We have ear ly (B) = 5, lates t (B) = 6, t(B, E) = 0.5,
begin(B, E) = 7, end(B, E) = 8, early(E) = 9 and
latest(E) = 10. The calculations of the pre-waiting
and post-waiting t imes and the decomposit ion of the
flexible and f ixed parts for this t ime-window arc are
shown as follows:

The traditional flow time is

latest(E) - ear ly(B) - t(B, E) = 10 - 5 - 0.5 = 4.5.

The pre-wait ing time is

begin(B, E) - ear ly (B) = 7 - 5 = 2.

The post-waiting time is

latest(E) - end(B, E) - t(B, E) = 10 - 8 - 0.5 =
1.5.

The float time is

latest(E) - t(B, E) - early(B) - p r e w (B , E) -
p o s t w (B , E) = 1.

The fixed pre-waiting time is

begin(B, E) - la tes t (B) = 7 - 6 = 1.

The flexible pre-waiting time is

latest(E) - early(E) = 6 - 5 = 1.

The fixed post-waiting time is

early(E) - end(B, E) - t(B, E) = 9 - 8 - 0.5 = 0.5.

Y.-L. Chen et al. / E u r o p e a n J o u r n a l o f Opera t iona l R e s e a r c h 100 (1997) 1 2 2 - 1 3 3 131

pre-waiting flow time
time in this paper

post-waiting
time

Traditional flow time

early(v) begtn(v,u) end(v,u) latest(u)-t(v,u) latest(u)

pre-waiting time

flexible pre-waiting time fixed pr¢-waiting time

I I
early(v) latest(v) begm(v,u)

post-waiting time

fixed post-waiting time flexible post-waiting time

4 i~ . p-

I,o, I I
end(v, u) + t(v, u) early(u) latest(u)

Fig. 4. (a) Different definitions of float time for normal arcs and
time-window arcs; (b) decomposition of the pre-waiting time into
two components; (c) decomposition of the post-waiting time into
two components.

The flexible post-waiting time is

latest(E) - early(E) = 10 - 9 = 1.

used for traditional activity networks. Both phases of
our algorithm can be run in time of O(IAI + IVI),
where IAI and IVI are the numbers of arcs and nodes
in the network, respectively. From the time complex-
ity point of view, algorithms which run in time
O(IAI+IVI) are called optimum time algorithms;
that is, we cannot find another algorithm which has a
better time complexity.

2. The effects of the time constraints on the
solution are identified. These effects, which are given
in Section 2, are mainly on the float times and
waiting times associated with the arcs on the critical
path. They provide important managerial insights to
managing a project with time constraint considera-
tion.

3. Four meaningful components in the waiting
time are identified. The waiting time associated with
an arc has been decomposed into pre-waiting time
and post-waiting time. The pre-waiting time is the
longest period we need to wait before beginning file
activity of the arc, and the post-waiting time is the
longest period we need to wait after finishing the
activity before beginning another activity. The pre-
waiting time and post-waiting time are further de-
composed into a fixed part and a flexible part. The
fixed part of a waiting time is unavoidable, whereas
the project manager has scheduling discretion within
the bounds of the flexible part. These four compo-
nents have different managerial implications to pro-
ject managers.

4. Summary

In this paper, we incorporate two types of time
constraints into the traditional activity network. The
first is the time-window constraint, which requires
that an activity be performed only in a specified time
interval. The second is the time-schedule constraint,
which requires that an activity can begin only at one
of specified times. Since these two types of time
constraints are often encountered in practice, the new
model is more practical than the traditional model.
The main results of this paper are summarized as
follows.

1. An efficient solution method is developed. The
solution method developed in this paper is a modifi-
cation of the forward pass, backward pass algorithm

Appendix A

Theorem 1. Let early(v) denote the earliest time
that all of the preceding activities on which node v
depends are fnished. Then the algorithm for the first
phase correctly finds early(v) for each node v in the
node set V.

Proof. We prove this theorem by induction. Let vj
be the first node examined in the algorithm. Obvi-
ously, v I = s and the theorem is true for node s since
node s does not follow any other nodes. Assume the
theorem is true for nodes v 1, r E , . . . , v~_ 1- Now we
consider node v i whose topological order value is i.
For node vi, the value of early(v) can be defined as

132 Y.-L. Chen et al. / European Journal of Operational Research 1 O0 (1997) 122 - 133

max{the time arc (u, Vi) reaches node v i I(u, v i) E A}.
If arc (u, v~) is normal, then the time of reaching uz
is early(u) + t(u, vi), because node u has a topologi-
cal order value smaller than vi and, by the induction
assumption, early(u) is already known. If arc (u,v i)
is time-schedule, then the reaching time is tsk(u, v i)
+ t(u, ui), where tsk(u, v i) is the smallest scheduled
time of arc (u, v i) > early(u), because, by the induc-
tion assumption, early(u) is already known and
tsk(u, v i) is the earliest time for arc (u, u i) to begin.
Finally, if arc (u, u i) is time-window, then there are
three possible cases.

Case 1. If early(u) < begin(u, v~), then arc (u, v i)
must wait until time begin(u, vi). Therefore, the
reaching time is begin(u, u i) + t(u, vi).

Case 2. If begin(u, u i) < early(u) < end(u, ui),
then arc (u, v i) can begin right away. Therefore, the
reaching time is early(u) + t(u, vi).

Case 3. If early(u) > end(u, vi), then the problem
is infeasible.

In Step 1.2 of the algorithm, we examine each arc
(u, u~) going into node u,; use the variable
reaching(u, v~) to store the reaching time of arc
(u, v~); compare this time with the currently known
maximum value of early(v i) to see if the new value
is larger; and update the value of early(u i) if re-
quired. Therefore, early(v~) denotes the earliest time
that all of the activities preceding node v~. are fin-
ished. []

Appendix B

L e m m a 1. For time-schedule arc (u i, u), tsl(v i, u)
cannot be larger than temp~(v i, u) unless the prob-
lem is infeasible.

Proof. I f t s l (u i , u) > temp&(vi, u), then even if we
begin the activity of arc (vi, u) at time tsl(vi, u), we
cannot arrive at node u at time latest(u). Because
latest(u) >_ early(u) and tsl(vi, u) is the earliest pos-
sible time to begin arc (u i, u), the earliest time to
reach node u will be later than early(u). Based on
this contradiction, the lemma is proved. []

Lemma 2. For time-window arc (vi, u), begin(ui, u)
cannot be larger than temp~(v i, u) unless the prob-
lem is infeasible.

Proof. If begin(u i, u):> temp&(ui, u), then even if
we begin the work of arc (u i, u) at time begin(v i, u),
we cannot arrive at node u at time latest(u). Be-
cause latest(u) > early(u) and begin(v i, u) is the
earliest possible time to begin arc (u i, u), the earliest
time to reach node u will be later than early(u).
This contradiction suggests that the lemma is true.
[]

Lemma 3. Assume that the number of possible
scheduled beginning times for each arc is a constant.
Then, the time complexity o f the algorithm is O(IAI
+ I VI), where I AI and I VI are the numbers of arcs
and nodes in the network, respectively.

Proof. The procedure to find the topological order of
all nodes requires time O(IAI+IVI) . In the first
phase, we examine every node, and for each node we
examine its incident arcs. Therefore, every node and
every arc is examined just one time, and the time
complexity for the first phase is O(IAI + IVl). Simi-
larly, the second phase has the same time complex-
ity. Hence, the whole algorithm requires the time
o (I a l + IVI). []

References

[1] Adlakha, V.G., and Kulkami, V.G, (1989), "A classified
bibliography of research on stochastic PERT networks:
1966-1987", INFOR 27, 272-296.

[2] Anklesaria, K.P., and Drezner, Z. (1986), "A multivariate
approach to estimating the completion time for PERT net-
works", Journal of the Operational Research Soc&ty 37,
811-815.

[3] Chae, K.C., and Kim, S. (1990), "Estimating the mean and
variance of PERT activity time using likelihood-ratio of the
mode and the midpoint", liE Transactions 22, 198-203.

[4] Chen, Y.L., and Tang, K. (1994), "Shortest paths in time-
schedule networks", Working Paper, Department of Informa-
tion Systems and Decision Sciences, Louisiana State Univer-
sity.

[5] Cormen, T.H., Leiserson, C.E., and Rivest, R.L. (1992),
Introduction to Algorithms, MIT Press/McGraw-Hill, New
York, 485-488.

[6] Dumas, Y., Desrosiers, J., and Soumis, F. (1991), "The
pickup and delivery problem with time windows", European
Journal of Operational Research 54, 7-22.

[7] Hershaur, J.C., and Nabielsky, G. (1972), "Estimating activ-
ity times", Journal of Systems Management 23, 17-21.

[8] Kamburowski, J. (1985), "An upper bound on the expected

Y.-L. Chen et al. / European Journal of Operational Research 100 (1997) 122-133 133

completion time of PERT networks", European Journal of
Operational Research 21,206-212.

[9] Keefer, D.L., and Verdini, W.A. (1993), "Better estimation
of PERT activity time parameters", Management Science
39, 1086-1091.

[10] Magott, J., and Skudlarski, K. (1993), "Estimating the mean
completion time of PERT networks with exponentially dis-
tributed durations of activities' ', European Journal of Opera-
tional Research 71, 70-79.

[11] Nadas, A. (1979), "Probabilistic PERT", IBM Journal of
Research and Development 23, 339-347.

[12] Robillard, P., and Trahan, M. (1977), "The completion time
of PERT networks", Operations Research 25, 15-29.

[13] Sculli, D. (1983), "The completion time of PERT networks",
Journal of the Operational Research Society 34, 155-158.

[14] Solomon, M.M. (1987), "Algorithms for the vehicle routing
and scheduling problems with time window constraints",
Operations Research 35, 254-265.

[15] Soroush, H. (1993), "Risk taking in stochastic PERT net-
works", European Journal of Operational Research 67,
221-241.

[16] Soroush, H.M., (1994), "The most critical path in a PERT
network", Journal of the Operational Research Society 45,
287-300.

[17] Williams, T.M. (1992), "CriticaLity in stochastic networks",
Journal of the Operational Research Society 43, 353-357.

