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Abstract 

An acyclic graph with nonnegative weights and with a unique source and destination is called an activity network. A 
project comprised of a set of activities and precedence relationships can be represented by an activity network and the 
mathematical analysis of the network can provide useful information for managing the project. In a traditional activity 
network, it is assumed that an activity can begin any time after all of its preceding activities have been completed. This 
assumption does not adequately describe many practical situations, in which some kinds of time constraint are usually 
associated with an activity. In this paper, we investigate two types of time constraint commonly encountered in project 
management. The first is the time-window constraint, which assumes that an activity can begin its execution only in a 
specified time interval. The second is the time-schedule constraint, which requires that an activity begin only at one of 
pre-specified beginning times. An efficient, linear time algorithm for finding the longest path (critical path) and for 
analyzing the flow time of each arc is developed for activity networks with these time constraints. © 1997 Elsevier Science 
B.V. 
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1. Introduct ion  

An activity network is an acyclic graph with 
nonnegative weights and with a unique source and 
destination. Here, an arc can be viewed as an activity 
and the precedence relationships between all of  the 
activities are represented by the topology of the 
network. An arc leaving from a certain node cannot 
begin until all of  the arcs going into this node have 
been finished. In this kind of  activity network vis-h- 

vis a project,  an important problem is to find the 
longest path, because all of  the arcs in this path 
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denote the most critical activities of  the project: if 
the activities on the critical path are delayed,  then the 
entire project will be delayed. With this information, 
the decision maker  can monitor these critical activi- 
ties more closely and take corrective action, if neces- 
sary, to control the planned schedule. Another prob- 
lem of  interest in an activity network is to analyze 
the flow time of  each noncritical arc to find out how 
much float (slack) the arc has. Arcs with longer float 
time are more adjustable or flexible because, if 
necessary, we can delay an arc with slack and trans- 
fer resources from this activity to support activities 
on critical arcs. For details and surveys, see [ 1 ]. 

In one way or another, analysis of  an activity 
network is concerned with scheduling (timing) is- 
sues. A considerable body of  research in PERT 
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a n d / o r  CPM focuses on various time factor aspects. 
For instance, some of  the research is concerned with 
estimating activity time more accurately [3,7,9], while 
another area of  research deals with the stochastic 
nature of  activity time. Basically, the stochastic ac- 
tivity time stream of research assumes that the activ- 
ity durations are nonnegative random variables, and 
then use statistical or stochastic techniques to find 
the critical path and critical activities [1,10,11,15,17]. 
However,  there is some controversy about which 
path is the most critical in a stochastic activity 
network [16,17]. Suffice to say, it is not easy to 
correctly estimate the completion time of a project 
whenever activity times are stochastic [2,8,10,12,13]. 

Although many aspects of  the time factor have 
been studied, an obvious and important time factor 
has been largely ignored. In the traditional model, it 
is assumed that an arc can begin at any time after all 
of its preceding arcs are finished. Although this is a 
reasonable requirement, it does not adequately de- 
scribe many practical situations. In reality, an activ- 
ity is seldom ready for execution at any time; some 
kinds of time constraint are usually attached to it. 

In this paper, we consider two improvements over 
the traditional activity network by including two 
types of  time constraint. The first is the time-window 
constraint [6,14], which assumes that an activity can 
only be started within a specified time interval. In 
other words, a t ime-window defines the earliest time 
and the latest time that an activity can begin its 
execution after all of  its predecessors are completed. 
The second is the time-schedule constraint [4], which 
assumes that an activity can begin only at one of an 
ordered schedule of  the beginning times. Practical 
situations of  the second kind include, for example, 
product shipping through scheduled flights, ocean 
liners, trains, buses or their combinations from one 
place to another. With a time-schedule constraint, an 
activity can begin only after all of  its predecessors 
are complete and at one of the beginning times in 
the time schedule. 

These two types of  constraints are commonly seen 
in projects. Failure to include time constraints may 
result in misleading information to the decision 
maker. For instance, suppose we found the time 
associated with the longest path is 100 time units 
when all the time constraints are ignored. We may be 
fortunate that this is the correct solution because all 

the time constraints are not binding. It is possible, 
however, the actual time of this path is much longer 
than 100 time units, because: 1) some critical arcs 
are subject to t ime-windows and the beginning times 
for them are prior to the time windows; a n d / o r  2) 
some critical arcs are subject to time-schedules and 
the beginning times are earlier than the next sched- 
uled times. As a result, this path may not be the 
critical path because some other paths may have 
shorter times when time constraints are considered. 
The solution may even be infeasible, because some 
critical arcs are subject to t ime-windows and the 
beginning times fall outside the time windows. Fur- 
thermore, even if the solution remains unaffected 
when the time constraints are included, the flow time 
associated with each arc may be seriously mislead- 
ing. Thus, it is important to include time constraints 
into activity network analysis. 

The remainder of  the paper is organized as fol- 
lows. In Section 2, we formally define the problem 
and present solution methods for activity networks 
with time constraints. In Section 3 we discuss the 
concept of  flow time in detail under the time con- 
straints. Conclusions are presented in Section 4. 

2. The problem and the solution method 

Let N = (V, A, t, s, d) be an activity network, 
where G = (V, A) is a'-directed acyclic graph with- 
out multiple arcs, t(u, v) >_ 0 denotes the processing 
time of arc (u, v), s is the starting node and d is the 
destination node. A project, represented by the corre- 
sponding network, is completed when every arc, 
which denotes an activity in the project, is finished. 
Arcs (activities) are classified into three different 
categories, i.e., normal arcs, time-schedule arcs and 
time-window arcs. A normal activity can begin its 
work at any time after all of  its preceding activities 
are finished. A time-schedule arc (u, v) is subject to 
the same constraint as a normal arc but with the 
additional constraint that it is associated with an 
ordered list of scheduled beginning times, 

T S ( u ,  v) = ( t s , (u ,  v ) , t s 2 ( u , v )  . . . . .  t s . ( u , v ) ) ,  

such that the arc can begin only at one of the 
scheduled times. A time-window arc (u, v) is the 
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same as a normal arc but with the additional con- 
straint that a time interval, 

I( u, v) = ( begin( u, v),  end( u, v) ), 

is associated with it such that the activity must begin 
in this time interval, 

In a traditional activity network consisting of only 
normal arcs, the longest path of a project and float 
times for activities are useful information for project 
management. A longest path in network N consti- 
tutes the most critical activities of the project, i.e. 
those activities which if delayed will cause the entire 
project to be delayed. The length (duration) of this 
critical path is the minimum time required for finish- 
ing the project. An arc's float time f (u,  v) is the 
difference between the arc's latest beginning time 
and the arc's earliest beginning time. This informa- 
tion tells us how long arc (u, v) can be delayed from 
its earliest beginning time without increasing the 
project's duration. 

However, if the underlying network consists of 
normal arcs, time-window arcs and time-schedule 
arcs, then the above properties no longer hold. Un- 
like a traditional activity network, the latest begin- 
ning times of the arcs on the longest path may be 
greater than their corresponding earliest beginning 
times. Thus, an arc on the critical path may have a 
positive float time, a characteristic normally associ- 
ated with the arcs not on the critical path in the 
traditional activity network. In addition, the interpre- 
tation of flow time is different when time constraints 
are present. An arc in the traditional model is associ- 
ated with a single, nonnegative float time value, 
while an arc in our model is associated with two 
types of nonnegative time components. The first is 
the arc's float time and the second is the arc's forced 
waiting time. Since the waiting time is ' forced'  as a 
result of the time constraint, the concept of waiting 
time is entirely different from that of the float time. 
Waiting time implies cost because we are forced to 
wait while doing nothing. On the other hand, float 
time implies a possible benefit because how long an 
activity can be delayed when the next activity begins 
is our own discretion. Consequently, the more float 
time an arc has, the more flexibility we have in 
scheduling the activity; conversely, more forced 
waiting time indicates the activity is less flexible. 

Fig. 1 shows an activity network with 8 nodes and 
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Fig. 1. An example of a scheduling network with three types of 
a r c s .  

13 arcs. Activity times are shown as the number on 
the arc, and the number inside each node is the 
node's topological order. Arc (A, B) is a time-sched- 
ule arc with TS(A, B ) =  (3, 6); arc (B, D) is a time- 
schedule arc with T S ( B , D ) =  (6,10, 12); arc (E,G) 
is a time-schedule arc with TS(E,G) = (11,16); arc 
(E, F) is a time-schedule arc with TS(E, F) = (12, 15); 
and arc (B, E) is a time-window arc with I(B, E ) =  
(7, 8). Topological order is an order of the nodes in 
an acyclic graph and this order can be easily con- 
structed in time O([AI + IVl) by using the algorithms 
in [5], where [AI and IV[ are the numbers of arcs and 
nodes in the network, respectively. If node u has a 
smaller topological order than node v, all activities 
or arcs emanating from node v cannot be predeces- 
sors to activities or arcs emanating from node u. 
Therefore, if we execute all the activities according 
to their related topological order, then it is ensured 
that all precedence relationships have been satisfied. 

Our algorithm for solving networks with time 
constraints is similar to the two-phase (forward pass, 
backward pass) procedure used in the traditional 
activity networks consisting of only normal arcs. The 
first phase (forward pass) is to find the earliest 
beginning time of every node and the longest path 
from s to d. The second phase (backward pass) is to 
find the latest beginning time of every node and 
analyze every a rcs  float time and waiting time. In 
the first phase, we examine every node v in the 
network according to their topological order in as- 
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cending sequence. For each node v in node set V, a 
label early(v) is assigned, which denotes the earliest 
beginning time to leave node v. For each arc (u, v) 
in A, a label reaching(u,v) is assigned, which 
denotes the earliest time to reach node v if we go 

into node v by arc (u, v). Our algorithm differs from 
the traditional procedure in the method that early(o) 
is calculated for time-schedule and time-window arcs. 
In Appendix A, we prove a theorem which validates 
the following algorithm for finding early(v). 

Algor i thm for  the first phase 
Step 1. Examine every node v in ascending sequence of  topological orders. 
Step 1.1. Let early(v)= O. 
Step 1.2. For each arc (u, v) going into node v, 

if (u, v) is normal, then reaching(u, v) = early(u) + t(u, v) 
if (u, v) is time-schedule, then 

find the smallest scheduled time, say tsk(u, v), of  arc (u, v) >_ early(u) 
if no such a tsk(u, v) exists, then the problem is infeasible 
let reaching(u, v) = ts~(u, v) + t(u, v). 

if (u, v) is time-window, then 
if early(u) < begin(u, v), 

then let reaching(u, v) = begin(u, v) + t(u, v) 
else if begin(u, v) < early(u) ~ end(u, v), 

then let reaching(u, v) = early(u) + t(u, v) 
else if early(u) > end(u, v), then the problem is infeasible 

if reaching(u, v) > early(v), then let early(v) = reaching(u, v) and P(v)  = u 
Step 2. By reversing from P(d)  until P(s),  the longest path is found. 

Example  1. Using the above algorithm to solve the 
activity network in Fig. 1, the applying sequence is 
A, C, B, E, D, F, G, H and the final result is shown in 
Fig. 2. When we examine node E, we have early(A) 
= O, early(C) = 4, early(B) = 5, and early(E) = O. 
There are two arcs, (B,E) and (C,E), going into 
node E. The first arc, (B, E), is time-window and has 

and early(D) is set to 11. The second arc, (C,D), is 
normal, its value is 

reaching(C, D) = early(C) + t(C, D) = 4 + 6 = 10, 

and early(D) is still kept in 11. The last arc, (E, D), 
is normal, its value is 

begin(B, E) = 7 > early(B) = 5; reaching(E, D) = early(E) + t(E, D) = 9 + 4 = 13, 

hence, 

reaching(B, E) = begin(B, E) + t(B, E) = 7 + 0.5 = 
7.5, 

and early(E)= 7.5. The second arc, (C,E), is a 
normal arc and has 

early(C) + t (C,E) = 4 + 5 = 9; 

hence, early(E) is updated to 9. Next, we examine 
node D, which has three arcs going into it. The first 
arc, (B, D), is time-schedule, its value is 

reaching(B,D) = tsj(B,D) + t(B,D) = 6 + 5 = 11, 

and early(D) is changed to 13. Since the other arcs 
are handled in the same way, we omit the details. 

Let Tf be the duration of  the longest path (e.g., 
Tf = early(d)). We now discuss the second phase of  
the algorithm. In the backward pass, we examine 
every node v in this network according to their 
topological orders in descending sequence. For each 
node v in node set V, a label latest(v) is assigned, 
which denotes the latest beginning time we can leave 
node v and still complete all remaining activities in 
time Tf. After nodes vlv I, Vlv I_ 1,. - •, vi+ ~ all have 
been examined, we examine node v i, where the 
subscript denotes the topological order value of the 
node. 
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Fig. 2. The first phase for finding the earliest leaving time of each 
node and the critical path of the network. 

The value of latest(v i) can be defined as 

min{temp( v i , u )[ (  v i, u) ~ A},  

where temp(vi, u) is the latest time arc (vi, u) must 
begin in order to complete all remaining activities in 
time Ty. Calculations for the backward pass for the 
three types of arcs are explained as follows. 

Case 1: Arc ( v i, u) is normal. Let 

temp( vi, u) = latest(u) - t( vi, u) ,  

and let the float time be 

f (  v i, u) = latest(u) - t( Oi, U) -- early(vi ) ,  

where both definitions are the same as in the conven- 
tional activity network. 

Case 2: Arc ( vi, u) is time-schedule. Let 

temp'~( v i, u) = latest(u) - t( Ui, U), 

which is the latest time arc (v i, u) must begin, if arc 
(re, U) is a normal arc. Because arc (vi, u) is a 
time-schedule arc, tempS'( v i, u) is typically different 
from temp(v i, u). Let tsk(v i, u) be the largest (latest) 
scheduled beginning time of  arc (v  i, u) < 
temp~(vi, u). Then, the latest time to begin arc (vi, u) 
is tsk(vl, u), because beginning at times such as 
tSk(Vi, u), tSk_l(vi, U) . . . . .  tSl(V i, U), we will arrive at 
node u sooner than latest(u); but beginning at times 
such as tsk+l(vi, u),tsk+2(vi, u) . . . . .  we will arrive 
at node u later than latest(u). Hence, we have 
temp(v i, u) = tsk(v i, u). We prove (Appendix B, 

Lemma 1) that it is impossible for tSl(Vi, u ) >  
tempS~( v i, u). As a result, we can find a value of  k 
(k > 1) which meets the condition. 

Now, we discuss the float time f ( v  i, u) and wait- 
ing time on a time-schedule arc (v/, u). There are 
two types of waiting time: pre-waiting time 
prew( v i, u) and post-waiting time postw( vi, u). Pre- 
waiting time is the time that we are forced to wait 
before beginning the activity of  arc (v i, u) and post- 
waiting time is the time that we are forced to wait 
after finishing the activity of  arc (v i, u). The post- 
waiting time is defined as 

postw( vi, u) = latest(u) - tsk( vi, u) - t( v i, u) .  

(1) 
In the above equation, the latest beginning time of  
arc (v i, u) is at time tsk(vi, u) and we will finish the 
work of arc (v i, u) at time tSk(Vi, U) + t(vi, U). So,  

we will be latest(u) - tsk(vl, u) - t(v i, u) time units 
sooner than the required latest beginning time of 
node u. 

Next, we will define the pre-waiting time. Let 
tsr(v ~, u) be the smallest scheduled beginning time 
of  (v  i, u) >_ early(vi). Then the earliest possible time 
to begin arc (vg, u) is tsr(vi, u). This means that even 
if we are ready to begin work at time early(vi), we 
must wait tsr(vi, u) - early(v i) time units before we 
can proceed to do the work of arc ( v i, u). Hence, we 
have 

prew( vi, u) = tsr( vi, u) - early(ui) .  (2) 

The float time f (vi ,  u) of  arc (v i, u) can be de- 
fined as 

f (  v i, u) = [latest(u) - early(re) - t( vi, u)] 

- prew( Oi, U) -- postw ( Ui, U) ,  ( 3 )  

where the first term, [ l a t e s t ( u ) - e a r l y ( v i ) -  
t(vi, u)], is the traditional definition of float time and 
prew(v i, u) and postw(vi, u) are the pre- and post- 
waiting times as defined by Eq. (2) and Eq. (1). 

Case 3: Are (vi, u) is time-window. Because arc 
(v i, u) is time-window, temp~( vi, u) may be differ- 
ent from temp(vi, u). If 

begin( vi, u) < temp&( vi, u) ~ end( vi, u) ,  

then the latest time to begin arc (v i, u) is the same as 
temp~( v i, u), i.e., 

temp( Ui, R) = temp~( vl, u) .  
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If 

temp&( v i, u)  > end(  v i, u ) ,  

then the latest time to begin arc (v~, u) is end (v  i, u), 
i.e., 

t emp(  v i , u)  = end(  v i, u ) .  

We prove (Appendix B, Lemma 2) that it is 
impossible for begin( v i, u) > tempa(  v i, u). 

Now, we analyze the float time f(v~, u) and wait- 
ing time associated with arc (v i, u). The  following is 
the definition of post-waiting time: 

postw( u) 

= max{O, l a t e s t (u )  - t (  v i, u) - end(  Vi, U)}. 
(4) 

In the above equation, the latest time arc (v i, u) must 
begin its work is at time 

min{ la tes t (  u)  - t (  v i , u ) ,  end(  v i, u)}. 

If l a t e s t ( u ) - t ( v i ,  u) is the smaller, then we will 
arrive node u at time la tes t (u)  and there is no 
post-waiting time. On the other hand, if end(v~, u) is 
the smaller, then we will finish the work of arc 

(Vi, U) at time end(v  i, U) + t(Vi, U) and this is 
la tes t (u)  - t ( v  i, u) - end(v  i, u) time units sooner 
than the latest beginning time of node u. 

Next, we define the pre-waiting time. If 

begin(  vi, u)  > ear l y (u i )  , 

then the earliest possible time to begin arc (v i, u) is 
beg in(v  i, u). This means that even if we are ready to 
begin the activity (v i, u) at early(v i ) ,  we have to 
wait begin(vi ,  u ) - e a r l y ( v  i) time units before we 
can begin the activity. On the other hand, if 

begin(  v i , u)  < e a r l y ( v i )  <_ end(  v i , u ) ,  

then it is not necessary to wait and we can begin the 
activity at time early(v~). Finally, it is impossible for 
ear ly (v  i) > end( v i, u), because it implies an infeasi- 
ble solution. Hence, we have 

p r e w (  vi, u) = max{O, begin(  v i, u) - e a r l y ( v i )  }. 

(5) 
Similarly, the float time f(v~, u) of arc (v~, u) can be 
defined as 

f (  v i, u)  = [ l a t e s t (u )  - e a r l y ( v i )  - t( v i, u)] 

- p r e w (  Vi, U) -- pos tw (  v i, u ) .  (6) 

The algorithm for the second phase is given be- 
low. 

Algorithm for the second phase 
Step 1. Let l a t e s t ( d ) =  ear ly(d) .  
Step 2. Examine every node v in descending sequence of topological orders. 
Step 2.1. For each arc (v, u) leaving from node v, 

if (v, u) is normal, then temp( v, u) = la tes t (u)  - t( v, u) 
if (v, u) is time-schedule, then 

let temp~(  v, u) = lates t (u)  - t( v, u) 
let ts~(v, u) be the largest scheduled time of (v ,  u) < t e m p ~ ( v ,  u) 
let t emp(v ,  u) = tsk(v, u) 
le" tSr(V, U) be the smallest scheduled time of (v ,  u) > ear ly(v) .  

if (v, u) is time-window, then 
let t emp~(v ,  u) = lates t (u)  - t (v ,  u) 
if begin(v ,  u) < temp~(  v, u) < end(v ,  u), then temp(  v, u) = temp~(  v, u) 
if temp~(  v, u) > end(v ,  u), then temp( v. u)  = end(v ,  u) 

Step 2.2. Let la tes t (v )  = min{ temp(  v, u) l(v, u) ~A} 
Step 3. Examine every node v in descending sequence of topological orders again. 
Step 3.1. For each arc (v, u) leaving from node v, 

if (v, u) is normal, then 
prew(  v, u) = O, 
pos tw(  v, u) = O, 
f l oa t ( v ,  u) = l a t e s t ( u ) -  t( v, u ) -  ear ly (v ) ,  
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if (v, u) is time-schedule, then 
prew(  v, u) = tsr(v, u) - early(o) ,  
pos tw(  v, u) = latest(u)  - tsk(v, u) - t( v, u ), 
and 
f loa t (v ,  u ) =  l a t e s t ( u ) -  t( v, u ) -  e a r l y ( v ) -  pr  ew(  v, u ) -  pos tw(  v, u ). 

if (v, u) is time-window, then 
prew(  v, u) = max{ begin(v ,  u) - early(v) ,  0}, 
pos tw(  v, u) = max{O, latest(u)  - t( v, u) - end( v, u)}, 
and 
f loa t (v ,  u) = latest(u)  - t( v, u) - ear ly (v )  - p rew(  v, u) - pos tw(  v, u). 

We show in Appendix B, Lemma 3 that the time 
complexity of the algorithm is O(IA[ + IVI). 

Example 2. If the above algorithm is used to solve 
the activity network in Fig. 2, then the applying 
sequence is H, G, F, D, E, B, C, A. The latest begin- 
ning time information is also indicated in Fig. 2 and 
all of the other final results are summarized in Table 
1. 

The results of this example show the following 
difference of the solution from that obtained from 
the traditional activity network: 
1. The earliest leaving times of the nodes on the 

critical path may be different from their latest 
leaving times. 

2. The arcs on the critical path may have positive 
float times. For example, arcs (A, C) and (C,E) 

have positive float times, although both are on the 
longest path. 

3. The earliest time leaving node A is 0 and the 
latest time leaving node A is 1, which indicates 
that the actual time required for this network is 20 
time units rather than 21 time units. In other 
words, the project will be finished at the same 
time, regardless of whether it begins at time 0 or 
time 1. This time difference may be called the 
float time of the system. 

4. Arcs may have pre-waiting time and post-waiting 
time. 

5. The possible float time of an arc may be a set of 
discrete values, not a continuous range. For ex- 
ample, arc (E, G) has latest(G) = 16, early(E) 
= 9 and ts (E,G)= (11, 13). Therefore, arc (E,G) 
has a pre-waiting time of 2 time units, a post- 

Table 1 
The second phase for computing the pre-waiting time, post-waiting time and float time of each arc 

Node Seq. Arc latest(u) early( v ) t( v, u) prew postw float 

H 1 (F,H) *a 21 18 3 0 
H 2 (G,H) 21 15 5 1 
G 3 (D,G) 16 13 2 1 
G 4 (E,G) 16 9 1 2 2 2 
F 5 (D,F) 18 13 4 1 
F 6 (E,F)* 18 9 6 3 0 0 
D 7 (B,D) 14 5 5 1 3 0 
D 8 (C,D) 14 4 6 4 
D 9 (E,D) 14 9 4 1 
E 10 (B,E) 10 5 0.5 2 1.5 1 
E II (C,E)* 10 4 5 1 
B 12 (A,B) 6 0 2 3 1 0 
C 13 (A,C)* 5 0 4 I 
A 14 

a The arc marked ' * ' is in the longest path. 
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waiting time of 2 time units, and a float time of 2 
time units. The flow time is either 0 or 2, rather 
than any value in the range from 0 to 2. In other 
words, we may either begin this activity at time 
11 or 13, but it is not allowed, for example, to 
begin at time 12. 

3. Further discussion of waiting time 

An important finding of this paper is the interpre- 
tation of flow time when time constraints are consid- 
ered in an activity network. In this section we pro- 
vide a more detailed analysis and discussion for flow 
time as it is decomposed into pre-waiting time and 
post-waiting time. 

To begin, we assume that the arc (v, u) is time- 
schedule. From previous definitions (1), (2), and (3), 
we obtain 

postw( v, u) = latest(u) - tsk( v, u) - t( v, u ) ,  

prew( v, u) = tsr( v, u) - ear ly (v ) ,  

f loat(  v, u) = latest(u) - t( v, u) - ear ly(v)  

- prew( v, u) - postw( v, u) .  

Recall tsk(v, u) is the largest scheduled time of arc 
(v, u) < latest(u) - t(v,  u) and ts~(v, u) is the small- 
est scheduled time of arc (v, u)>_ early(v). 

The above relationships are illustrated in Fig. 3a 
and contrasted with the traditional flow time. In 
addition, both pre-waiting time and post-waiting time 
can be further decomposed into a flexible part and a 
fixed part (see Fig. 3b and Fig. 3c). First consider 
the pre-waiting time. Suppose 

latest(v)  < ts,(  v, u) .  

Then the flexible part is the time interval (early(v),  
latest(v)) and the fixed part is the interval 

( l a t e s t ( v ) ,  tSr(V, U)). W e  call the in terval  
(early(v),  latest(v)) flexible because the duration of 
the waiting time in this time period is at the discre- 
tion of the project manager. All activities emanating 
from node v are ready for execution at the earliest at 
time early(v) because of precedence relationships, 
while they must begin no later than at time latest(v) 
in order to finish the project on schedule. We call the 
interval (latest(v),  ts~(v, u)) fixed because this wait- 
ing time period is unavoidable. Although arc (v, u) is 

ready for execution on or before time latest(v), we 
still must wait until time tsr(v,  u) because it is the 
earliest scheduled beginning time for this activity. 

Similarly, the post-waiting time can be decom- 
posed into a flexible part and a fixed part. Suppose 

early(u) > tsk( v, u) + t( v, u) .  

Then, the fixed part is the time interval (tsk(v, u) + 
t(v,  u), early(u)), and the flexible part is the time 
interval (early(u),  latest(u)). The interval (tsk(v, u) 
+ t(v, u), early(u)) is fixed because we have to wait 
until time early(u) to begin the activities emanating 
from node u, although the activity of arc (v,  u) is 
finished at time tsk(v, u) + t(v,  u). ]'he interval 
( early( u), latest( u)) is called flexible because we 
have flexibility to begin the activities leaving from 
node u at any point in the interval [early(v), 
latest(v)] without delaying the completion of the 
project. 

Consider the time-schedule arc (E, G) in Fig. 2. 
We have ear ly (E)=9,  latest(E)= 10, t ( E , G ) =  1, 
t s r ( E , G ) =  11, t s k ( E , G ) = 1 3 ,  early(G)= 15, and 
latest(G) = 16. Calculations of pre-waiting and 
post-waiting times and their decomposition into flex- 
ible and fixed parts are shown as follows: 

The traditional flow time is 

latest(G) - early(E) - t(E, G) = 16 - 9 -  1 = 6. 

The pre-waiting time is 

ts r(E,G) - early(E) = 11 - 9 = 2. 

The post-waiting time is 

l a t e s t (G) -  t s k ( E , G ) -  t ( E , G ) =  1 6 -  1 3 -  1 = 2. 

The float time is 

latest(G) - t(E, G) - early(E) - prew(E, G) - 
postw(E, G) = 2. 

The fixed pre-waiting time is 

tsr(E, G ) -  latest(E)= 11 - 10 = 1. 

The flexible pre-waiting time is 

latest(E) - early(E) -= 10 - 9 = 1. 

The fixed post-waiting time is 

early(G) - t s k ( E , G ) -  t (E,G)  - 15 - 13 - 1 = 1. 
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Fig. 3. (a) Different defmitions of float time for normal arcs and 
time-schedule arcs; (b) decomposition of the pre-waiting time into 
two components; (c) decomposition of the post-waiting time into 
two components. 

The flexible post-waiting time is 

l a t e s t ( G ) -  e a r l y ( G ) =  1 6 -  15 = 1. 

Next, we consider the case where ( v , u )  is a 
t ime-window arc. Using Eqs. (4), (5), (6), 

postw( v, u) 

= max{0,  l a t e s t (u )  - t (  v ,  u)  - end(  v,  u)} ,  

p r e w (  v, u) = max{ begin(  v,  u)  - e a r l y ( v ) ,  0},  

and 

f l oa t (  u, u)  = la t e s t (u )  -- t (  v ,  u)  -- e a r l y ( v )  

-- p r e w (  v,  u)  -- pos t w(  v,  u ) .  

The above relationships are illustrated in Fig. 4a 
and compared with the traditional flow time. Fig. 4b 
shows the decomposit ion of the pre-waiting time into 
its flexible and fixed parts. Suppose 

l a t e s t ( v )  < begin(  v ,  u ) .  

Then, the f lexible part is the time interval 
( ear l y (v ) ,  la tes t (v ) )  and the fixed part is the interval 
( la tes t (v ) ,  beg in(v ,  u)). Although arc (v,  u) is ready 
for execution no later than la tes t (v) ,  we have to wait 
until time begin(v ,  u) because of  the t ime-window 
constraint. Fig. 4c shows the decomposit ion of the 
post-waiting time into its flexible and fixed parts. If 

e a r l y ( u )  > end(  v ,  u)  + t( v ,  u) ,  

then the f ixed part is the time interval (end(v ,  u) + 
t (v ,  u), ear ly (u) )  and the flexible part is the time 
interval ( early(  u), latest( u)). Although the activity 
of  arc (v,  u) can be finished at time end(v ,  u ) +  
t (v ,  u), we still have to wait until time ear ly(u)  to 
begin the activities emanating from node u. This 
waiting time is fixed. The interpretation of the flexi- 
ble part of  the flow time is similar to that for 
t ime-schedule arcs. 

Consider  the t ime-window arc (B, E) in Fig. 2. 
We have ear ly (B)  = 5, lates t (B)  = 6, t(B, E) = 0.5, 
begin(B,  E) = 7, end(B,  E) = 8, early(E)  = 9 and 
latest(E) = 10. The calculations of  the pre-waiting 
and post-waiting t imes and the decomposit ion of  the 
flexible and f ixed parts for this t ime-window arc are 
shown as follows: 

The traditional flow time is 

latest(E) - ear ly(B)  - t(B, E) = 10 - 5 - 0.5 = 4.5. 

The pre-wait ing time is 

begin(B,  E) - ear ly (B)  = 7 - 5 = 2. 

The post-waiting time is 

latest(E) - end(B,  E) - t(B, E) = 10 - 8 - 0.5 = 
1.5. 

The float time is 

latest(E) - t(B, E) - early(B)  - p r e w ( B ,  E) - 
p o s t w ( B , E )  = 1. 

The fixed pre-waiting time is 

begin(B,  E) - la tes t (B)  = 7 - 6 = 1. 

The flexible pre-waiting time is 

latest(E) - early(E)  = 6 - 5 = 1. 

The fixed post-waiting time is 

early(E)  - end(B,  E) - t(B, E) = 9 - 8 - 0.5 = 0.5. 
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Fig. 4. (a) Different definitions of float time for normal arcs and 
time-window arcs; (b) decomposition of the pre-waiting time into 
two components; (c) decomposition of the post-waiting time into 
two components. 

The flexible post-waiting time is 

latest(E) - early(E) = 10 - 9 = 1. 

used for traditional activity networks. Both phases of  
our algorithm can be run in time of  O(IAI + IVI), 
where IAI and IVI are the numbers of  arcs and nodes 
in the network, respectively. From the time complex- 
ity point of view, algorithms which run in time 
O(IAI+IVI) are called optimum time algorithms; 
that is, we cannot find another algorithm which has a 
better time complexity. 

2. The effects of the time constraints on the 
solution are identified. These effects, which are given 
in Section 2, are mainly on the float times and 
waiting times associated with the arcs on the critical 
path. They provide important managerial insights to 
managing a project with time constraint considera- 
tion. 

3. Four meaningful components in the waiting 
time are identified. The waiting time associated with 
an arc has been decomposed into pre-waiting time 
and post-waiting time. The pre-waiting time is the 
longest period we need to wait before beginning file 
activity of  the arc, and the post-waiting time is the 
longest period we need to wait after finishing the 
activity before beginning another activity. The pre- 
waiting time and post-waiting time are further de- 
composed into a fixed part and a flexible part. The 
fixed part of a waiting time is unavoidable, whereas 
the project manager has scheduling discretion within 
the bounds of  the flexible part. These four compo- 
nents have different managerial implications to pro- 
ject managers. 

4. Summary 

In this paper, we incorporate two types of time 
constraints into the traditional activity network. The 
first is the time-window constraint, which requires 
that an activity be performed only in a specified time 
interval. The second is the time-schedule constraint, 
which requires that an activity can begin only at one 
of specified times. Since these two types of  time 
constraints are often encountered in practice, the new 
model is more practical than the traditional model. 
The main results of  this paper are summarized as 
follows. 

1. An efficient solution method is developed. The 
solution method developed in this paper is a modifi- 
cation of  the forward pass, backward pass algorithm 

Appendix A 

Theorem 1. Let early(v) denote the earliest time 
that all of the preceding activities on which node v 
depends are fnished. Then the algorithm for the first 
phase correctly finds early(v) for each node v in the 
node set V. 

Proof.  We prove this theorem by induction. Let vj 
be the first node examined in the algorithm. Obvi- 
ously, v I = s and the theorem is true for node s since 
node s does not follow any other nodes. Assume the 
theorem is true for nodes v 1, r E , . . . ,  v~_ 1- Now we 
consider node v i whose topological order value is i. 
For node vi, the value of  early(v) can be defined as 
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max{the time arc (u, Vi) reaches node v i I(u, v i) E A}. 
If  arc (u, v~) is normal, then the time of reaching uz 
is early(u) + t(u, vi), because node u has a topologi- 
cal order value smaller than vi and, by the induction 
assumption, early(u) is already known. If arc (u,v i) 
is time-schedule, then the reaching time is tsk(u, v i) 
+ t(u, ui), where tsk(u, v i) is the smallest scheduled 
time of arc (u, v i) > early(u), because, by the induc- 
tion assumption, early(u) is already known and 
tsk(u, v i) is the earliest time for arc (u, u i) to begin. 
Finally, if arc (u, u i) is time-window, then there are 
three possible cases. 

Case 1. If early(u) < begin(u, v~), then arc (u, v i) 
must wait until time begin(u, vi). Therefore, the 
reaching time is begin(u, u i) + t(u, vi). 

Case 2. If begin(u, u i) < early(u) < end(u, ui), 
then arc (u, v i) can begin right away. Therefore, the 
reaching time is early(u) + t(u, vi). 

Case 3. If early(u) > end(u, vi), then the problem 
is infeasible. 

In Step 1.2 of the algorithm, we examine each arc 
(u, u~) going into node u,; use the variable 
reaching(u, v~) to store the reaching time of arc 
(u, v~); compare this time with the currently known 
maximum value of early(v i) to see if the new value 
is larger; and update the value of early(u i) if re- 
quired. Therefore, early(v~) denotes the earliest time 
that all of the activities preceding node v~. are fin- 
ished. [] 

Appendix B 

L e m m a  1. For time-schedule arc (u i, u), tsl(v i, u) 
cannot be larger than temp~( v i, u) unless the prob- 
lem is infeasible. 

Proof. I f  t s l (u i ,  u) > temp&(vi, u), then even if we 
begin the activity of arc (vi, u) at time tsl(vi, u), we 
cannot arrive at node u at time latest(u). Because 
latest(u) >_ early(u) and tsl(vi, u) is the earliest pos- 
sible time to begin arc (u i, u), the earliest time to 
reach node u will be later than early(u). Based on 
this contradiction, the lemma is proved. [] 

Lemma  2. For time-window arc ( vi, u), begin( ui, u) 
cannot be larger than temp~( v i, u) unless the prob- 
lem is infeasible. 

Proof. If begin(u i, u):> temp&(ui, u), then even if 
we begin the work of arc (u i, u) at time begin(v i, u), 
we cannot arrive at node u at time latest(u). Be- 
cause latest(u) > early(u) and begin(v i, u) is the 
earliest possible time to begin arc (u i, u), the earliest 
time to reach node u will be later than early(u). 
This contradiction suggests that the lemma is true. 
[] 

Lemma  3. Assume that the number of  possible 
scheduled beginning times for  each arc is a constant. 
Then, the time complexity o f  the algorithm is O(IAI 
+ I VI), where I AI and I VI are the numbers of  arcs 
and nodes in the network, respectively. 

Proof. The procedure to find the topological order of 
all nodes requires time O(IAI+IVI) .  In the first 
phase, we examine every node, and for each node we 
examine its incident arcs. Therefore, every node and 
every arc is examined just one time, and the time 
complexity for the first phase is O(IAI + IVl). Simi- 
larly, the second phase has the same time complex- 
ity. Hence, the whole algorithm requires the time 
o ( I a l  + IVI). [] 
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