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Abstract 
 

Funding policy and portfolio selection are two crucial issues in pension fund management.  Merton (1969, 1971) initially explores these 
problems in a continuous time framework by constructing the Hamilton-Jacobi-Bellman (HJB) equations. This type of approach becomes 
complicated when control constraints are incorporated under an incomplete market. In this paper, we suggest using the Markov chain ap-
proximation methods proposed by Kushner and Dupuis (1992) to obtain the optimal solutions numerically. Monitoring mechanism linking 
plausible scenarios and numerical solutions are employed to scrutinize the contributions and asset allocations for defined benefit pension 
schemes. In the numerical illustration, we estimate the optimal strategies within a simplified two-asset opportunity set. The results show that 
the plan turnovers, the initial fund levels, and the time horizon heavily influence the optimal strategies. 

 
Keywords: Stochastic control; Markov chain approximation; Pension fund management 

                                                 
* Corresponding author, e-mail: bchang@nccu.edu.tw 
1. Examples of background variables are the investor's wage process, the 

contributions to and withdrawals from a pension fund, and the indemnities 
paid by the insurer to the insured. 

1. Introduction 

There are two types of pension schemes: defined benefit 
(hereafter DB) and defined contribution (hereafter DC) 
plans. The benefits in a DB plan are fixed in advance and the 
plan sponsor adjusts the contributions annually, while the 
benefits in a DC plan are determined by the performance of 
the invested portfolio and the contributions are fixed. Al-
though DB plans have a longer history than DC plans and 
plan members prefer DB plans, the global trend caused by 
the retirement related regulations is moving from DB to DC. 
Such a trend lets plan sponsors transfer the financial risks to 
plan members through members’ individual retirement ac-
counts. DC plans can be extremely risky relative to a DB 
benchmark (see Blake, Cairns and Dowd, 2001). In this 
study, we propose a computational method to assist the 
decision making process for pension plans and this method 
can be applied to DB plans as well as DC plans. 

Most conventional pension models are one-period 
models that employ the mean-variance approach. The pen-
sion plan manager searches for an optimal investment deci-
sion for the next period, considering the plan’s current po-
sitions and expectations about future funding, investment 
returns, and risks. Such a mechanism has two drawbacks. 
First, the aggregation of single-period optimal decisions 
across periods might not be optimal for multiple periods as a 
whole. Second, single-period decisions cannot simultane-
ously deal with the investment and funding sides of the 
pension plan because the linkage between investment and 

funding appears only in the multi-period setting. Sharpe 
(1991) describes the mean-variance approach as a way that 
characterizes investors’ goals parsimoniously, employs a 
myopic view (i.e., one period at a time), and focuses on only 
two aspects of the probability distribution of returns over 
that period. Since most pension fund holders are long-term 
investors and the financial strength of a pension plan de-
pends on both sides of the balance sheet, pension plan 
management should be considered within a multi-period 
framework and take both funding and investment into ac-
count.  

An important tool that can be used to assist pension fund 
managers in developing optimal investment and funding 
policies over time is the stochastic optimal control theory. 
This theory can be used to solve long-term financial plan-
ning problems through global optimization across periods. It 
can also deal with the liability risk of a pension fund resulted 
from demographic uncertainties that are outside the financial 
markets and are often referred to as background risks in the 
finance literature.[1] The availability of inexpensive but 
high-speed computers has aided the popularity of the sto-
chastic control method. Many papers emerge to tackle the 
pension fund management problem using this method, e.g., 
O’Brien (1986, 1987), Haberman and Sung (1994), 
Haberman (1997), Runggaldier (1998), Schäl (1998), Chang 
(1999), Cairns (2000), Chang (2000, 2000), Chang and Chen 
(2002), Chang et al. (2002), Menoncin (2002), and Chang, 
Tzeng and Miao (2003). 
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Although scholars can formulate the optimal strategy of 
a pension plan as a stochastic control problem in a con-
tinuous-time framework and obtain the HJB equation, 
solving the HJB equation analytically is rather difficult. The 
HJB equation has been solved in few particular cases only 
and the non-negative constraints make the task more diffi-
cult (see Merton (1969, 1971) and Josa-Fombellidal and 
Rinc-Zapatero (2001)). The stochastic duality theory of 
Bismut (1973) might ease the problem a little bit, but it is 
still awkward for practical use because of the complicated 
and long-winded measure-theoretical technicalities (see 
Pliska (1997); Cvitani� and Karatzas (1992), He and Pagé 
(1993), Cuoco (1997), and the references therein). 

Therefore, we employ the Markov chain approximation 
method proposed by Kushner and Dupuis (1992) to solve the 
control problems numerically. As stated in the papers and 
monographs of Kushner (Kushner and Dupois (1986); 
Kushner (1990, 1997, 1998)), the Markov chain approxi-
mation method is a far-reaching approach in solving con-
tinuous-time stochastic control problems numerically. Hindy, 
Huang and Zhu (1997) describe a numerical analysis tech-
nique based on this methodology. Munk (2000) uses Markov 
chain approximation method in optimal consump-
tion/investment problem with unidentifiable income risk and 
liquidity constraints. Monoyious (2004) uses the same 
method in pricing options with transaction costs. The main 
merit of the Markov chain approximation methods lies in, as 
the preface of the book "Numerical Methods for Stochastic 
Optimal Control Problems in Continuous Time" authored by 
Kushner and Dupois (1992) goes, the less demanding con-
vergence proof, the general applicability, and the relatively 
practical implementations. Within the framework of the 
Markov chain approximating methods, we are able to re-
formulate the constrained problem of a pension fund with 
the consideration for demographic uncertainties. 

Our proposed framework involves constructing an ap-
proximating control process to minimize the risk measure-
ments according to a probabilistic experience set of actuarial 
assumptions. A brief summary of the advantages of this 
approach is listed below. 

1. The non-myopic optimal solution given short-sale con-
straints in the incomplete market can be obtained 
through numerical approximation. Although the feed-
back controls of the constrained problem can be con-
structed from the solution of the dual problem, it is 
awkward for practical uses due to the recondite meas-
ure-theoretical technicalities. 

2. The numerical approach can generate optimal solutions 
and is capable of evaluating certain sort of managerial 
interventions such as the investment time frame, the 
background risks, and the associated factors in measur-
ing the contribution rate risk and the solvency risk. The 
approach employed in this study can be implemented 
onto DC plans in which contributions are fixed and the 

benefits depend on the return on the fund’s portfolio. 

The rest of the paper is structured as follows. Section 2 
establishes the model as a controlled diffusion problem and 
outlines the dynamic programming approach. The optimal 
controls in the feedback form are obtained as well. Section 3 
outlines the approach of Markov chain approximation 
method. The collection of more detailed formulae is in Ap-
pendix. Section 4 computes the optimal portfolio composi-
tion and contributions for a DB pension plan and presents 
the approximated solution results of the control problem. 
Section 5 consists of conclusions. 

2. The Model 

2.1 The Controlled Diffusion Problem 

Following the earlier works done by O’Brien (1986, 
1987) and Cairns (2000), we formulate the funding and 
investment decisions of pension funds as a stochastic control 
problem. These decisions are modeled using continu-
ous-time stochastic processes over a specific time horizon. 
The financial market variables are modeled in a filtered 

probability space 
1

1 1( , , )F PΩ  with filtrations
1

tF , t∈[0,T], 
and the pension plan’s turnover and demographic variables 
are modeled in a filtered probability space 

2
2 2( , , )F PΩ  with 

filtrations
2

tF , t∈[0,T]. The sample space for the dynamics 
of the pension plan with regard to both assets and liabilities 
are then the product space: 

* 1 2
1 2 1 2( , , ) ( , , ) ,F P F F P PΩ = Ω × Ω × ×

 
1 2.t t tF F F= ×  

For simplicity, we assume that the probability measures 
on the financial market and the plan’s demographics are 
independent. Since the uncertainties resulted from the plan 
turnovers are not traded in the financial market, our model is 
an incomplete one.  

Funding policies and investment strategies for the pen-
sion plan are defined by a stochastic process u(t)=((C(t), 
p(t)), t∈[0,T]), i.e., a feedback control, with values in R² 

adapted to the natural filtration ( )tF  of the Brownian motion, 
where C(t) denotes the contribution rates (contributions to 
the pension plan per unit of time) at time t and p(t) is the 
proportion vector of assets held in the fund portfolio at time t. 

Note that u is an adapted process, i.e. C(t) is
1

tF  measurable 

and p(t) is
2

tF  measurable. 2 

A continuous-time framework of the controlled sto-
chastic process for funding levels F incorporating the 
demographic feature of the pension plan is described by the 
following stochastic differential equation: 

( , ) ( ),t t t t t b bdF F d t F C dt B dt dZ tδ σ= + − +  
,00

FFt =  0tt ≥ ,  (1) 

                                                 
2 In the following, the function notation may be abbreviated by dropping (t) 
or subscripts t when no confusion arises. 
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where tF  = the fund size at time t, 
( , )td t Fδ  = the return rate on the assets between time t 

and t+dt, 
tC  = the contribution rate at time t, 
tB  = the projected benefit outgoing rate at time t, 

bσ  = the volatility of tB , and 
( )bZ t  = the Brownian motion process at time t. 

The controlled process tF  follows a time homogeneous 
Markov process for a fixed time horizon T. 

−+ dtCFtdF ttt ),(δ dtB t  is the controlled drift function 

and ( )b bdZ tσ  is the controlled diffusion function. 

We assume that the pension board decides to invest in N 

mutual funds with the prices-per-unit )(,),(1 ⋅⋅ NSS �  being 
continuous, strictly positive, and the returns following: 

][
1
�

=

+=
d

j
jijiii dZdtSdS σµ ,                      

where Ni ,...,1=  and 
1, , dZ Z�  are d independent Wiener 

processes. The independence hypothesis poses no loss of 
generality since we can transform the uncorrelated Wiener 
processes to correlated ones (and vice versa) via the Cho-
lesky decomposition of the correlation matrix.  

In the following, we focus on a two-asset setting that has 
been seen in the literature (e.g., Cairns (2000)) and can be 
justified by the so-called mutual fund theorem (see example 
in Merton (1973) and Magill (1976)). More specifically, we 
simplify equation (2) as: 

�
�
�

�
�
�

�

=++=

=++=

,1)0(,

,1)0(,

22221212
2

2

12121111
1

1

SdZdZdt
S

dS

SdZdZdt
S

dS

σσµ

σσµ  (2) 

where the constants � �  and � �  measure the expected 
growth in assets, and 11σ , 12σ , 21σ , and 22σ  together 
describe the instantaneous volatilities. If we set 22σ = 21σ = 

12σ =0, then asset S �  can be regarded as the risk-free asset 
in the financial market. 

The proportions of the funds invested in asset S �  and 
S � are denoted by p and 1-p, respectively. d�, the return on 
assets between time t and t+dt, is formulated as: 

[ ] [ ] .]1[)1( 21
2221

1211
21

TdZdZppdtppd �
�

�
	



�
−+−+=

σσ
σσ

µµδ  

Since pension fund managers are not allowed to take 
short positions, we impose the short-sale constraint on p and 
the non-negativity of 

tF  and 
tC : 

,bpa ≤≤ ]1,0[],[ ⊂ba , .0C  ,0 t ≥≥tF  (3) 

2.2 Finite Time Control Problem 

Under the above setting, the problem of choosing the 

optimal asset allocation and funding strategy over the ad-
missible control space � can be formulated as the following 
minimization problem: 

( ){ }  |)(exp)),(,()exp(  inf t

T

t Tss
u
tu

FFGTdssFuFLsE � −+−
Ω∈

ββ , (4) 

where {}u
tE  denotes the expectation operator at time t, β is 

the discount rate applied to the risk performance, and G )(⋅  
represents the boundary condition indicating the terminal 
management requirement. L )(⋅  is the risk measurement of 
the pension plan given the admissible policy }0),,({ ≥ttFu t . 
We assume that L )(⋅  and G )(⋅  are strictly positive, con-
tinuously differentiable, and satisfying certain regular con-
ditions (see Karatzas et al., (1997)). 

Two types of risks concerning the stability and security 
of funding are employed to monitor the stability and security 
of funding: the contribution rate risk and the solvency risk. 
These two types of risks characterize the trade-offs in the 
decision making process. We follow Chang (1999, 2000) to 
construct a ratio-induced measure associated with these two 
risks to derive the optimal contributions and investments 
subject to specific constraints through dynamic optimization. 
The ratio-induced measure L )(⋅  is defined as: 

22 )1()1()),,(,(
AL
F

k
NC
C

FFsCFL ss η
−+−= , (5) 

where NC is the projected normal cost rate, AL is the pro-
jected accrued liability, k and � are constants in measuring 
the trade-offs. 2)1(

NC
C−

 measures the deviations of the con-

tributions from the normal costs relative to the size and is 
related to the stability of the plan; 2)1(

AL
F

η
−

 measures the 

relative deviation of the fund level and the actuarial liability 
and serves as an indicator of the security of the plan. 

Following Merton (1969, 1971), we define 
{ }� −+−=

T

t TsstpC
TFGTdsFFsCsLsEFtV ),()exp()),,(,()exp(  inf),(

,
ββ , 

and obtain the formal Bellman equation of optimality as (see 
Fleming and Rishel (1975)): 

�
�
�

−++++−= FtpC
VBCpFFVFCtLt )(),,()exp(inf0 2,

λµβ  (6) 


�
�++++ ])([

2
1 2

01
2

2
2

bFF ppFV σεεε , 

where   
21 µµλ −= , 

     2
2212

2
21112 )()( σσσσε −+−= , 

     ])()[(2 2222122121111 σσσσσσε −+−= , 
     2

22
2

210 σσε += , 

     
t
V

Vt ∂
∂= , 

F
V

VF ∂
∂= , and 

2

2

F
V

VFF ∂
∂= . 

The first order condition in equation (6) without 
short-selling constraints implies that the optimal contribu-
tion and the risky asset proportion is (also see Chang , 2000):    
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F
tVe

NC
NCC β

2
* −= , (7) 

2

1

2

*

2
1

ε
ε

ε
λ −−=

FF

F

FV
V

p  (8) 

We thus have a proposition characterizing the plan 
manager’s optimal strategy under the two-asset model. 

Proposition 1: The unconstrained solutions to the optimal 
control problem formed in equations (1), (3), 
and (4) under the two-asset assumption with 
the ratio-induced measure defined in equa-
tion (5) are equations (7) and (8). 

The optimal plan contributions are expressed in equa-
tion (7) as the combination of the projected NC and an ad-
justment factor reflecting the marginal effect on the value 
function from the fund level, the discount factor, and the 
projected normal cost. Given that 0>FV , i.e., the marginal 
changes of the indirect utility function due to the fund level 
is positive, the optimal contribution decreases with the dis-
count factor �. In the special case that the marginal change of 
the indirect utility function due to the fund level is zero, the 
optimal contribution is the projected normal cost. 

Equation (8) expresses the optimal portfolio as the usual 
mean-variance optimal portfolio. The optimal proportion of 
the first risky asset is inversely related to the Arrow-Pratt 
risk aversion index and is proportional to the excess pre-
mium of the first risky asset over the second one. Further-
more, the optimal proportion of the funds allocated to the 
first risky asset increases with the negative correlation be-
tween assets, i.e., 01 <ε . 

Since the risky assets are correlated, 
2

1

2
1

ε
ε−

 is required 

to adjust the co-variation effect. When the risky assets are 
independent of each other, our solution is the same as the 
one recognized in the classic paper of Merton (1973). 
Similarly, if one of the two assets is risk free, the optimal 
proportion *p  for the risky asset reduces to the Merton-type 
ratio. The optimal allocation to the first risky asset may also 
be explained by a single asset with the hypothetical mean � 
and variance 2ε , after adjusted by 

2

1

2
1

ε
ε− . 

Since the value of the risky asset varies with time, the 
pension fund manager has to rebalance the portfolio con-
tinuously to achieve the optimal allocation. The optimal 
strategy looks like that the fund manager set normal cost 
estimates first and then makes adjustments based on the 
marginal changes in value function. Increases in the mar-
ginal changes of the value function due to the fund levels 
will result in decreases of the contribution.   

3. Markov Chain Approximation Method 

An efficient approach to obtain the solutions of the op-
timal cost function ),( tFV that satisfy the formal dynamic 

programming equation is the Markov chain approximation 
method. The basic idea of the Markov chain approximation 
method is to approximate the original controlled process by 
an appropriate controlled Markov chain on a finite state 
space and discrete time grids. The convergence proofs for 
the Markov chain approximation method are purely prob-
abilistic and have been discussed in details by Kushner and 
Dupois (1992). The following passages are some sketches of 
this method in the one-dimensional control process setting. 

Suppose that a controlled diffusion process F obeys the 
stochastic differential equations: 

dF = b(F, u)dt + �(F, u)dW, 

where µ denotes the associated process that serves as the 
controller and dW denotes the increment of the underlying 
Wiener process. Let 1u  indicate the proportion of the fund 
invested in asset 1S  and 2u  indicate the contribution rate at 
time t under the admissible controller set, we have the ad-
missible control space as 

}0,|{ 21 ≥≥≥=Ω uaubu , 

BupFFuFb −++= 22),( λµ , and 
2

011
2

12
22 )(),( buuFuF σεεεσ +++= . 

Unless explicitly stated, we tacitly assume all control-
lers appeared in the subsequent discussion to reside in �. 

Let uA  denote the Dynkin operator of the controlled 
process F with respect to the controller u and consider the 
formal expression: 

0),()(),()(),(
2
1

),(),( 2 =++=+ uFLFVuFbFVuFtFLtFVA FFF
u σ  (9) 

Applying the standard finite difference approximations 
leads us to obtain: 

 

2

)(2)()(
:)(

h
FVhFVhFV

FVFF

−−++= , and (10) 

h
hFVhFV

FVF 2
)()(

:)(
−−+=  (11) 

Substituting equations (10) and (11) into equation (9), 
we obtain the approximation scheme after some simplifica-
tion: 

)(
),(2

),(),(
)(

),(2
),(),(

)( 2

2

2

2

hFV
uF

huFbuF
hFV

uF
huFbuF

FV −−+++=
σ

σ
σ

σ       

),(
),( 2

2

uF
h

uFL
σ

+  (12) 

We interpret the above in the context of Markov chain 
by introducing the following notations: 

)|,(
),(2

),(),(
2

2

uhFFp
uF

huFbuF +≡+
σ

σ , 

)|,(
),(2

),(),(
2

2

uhFFp
uF

huFbuF −≡−
σ

σ , and 

),(
),(2

2

uFt
uF

h ∆≡
σ

, 
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and rewrite equation (12) in the suggestive form: 

),(),()()|,()()|,()( uFtuFLhFVuhFFphFVuhFFpFV ∆+−−+++= (13) 

If { }huFbuF
u

),(),(inf 2 +σ  > 0 and define 0)|,( ≡uyFp  for 

hFy +≠ , then 
� =

y

uyFp 1)|,( . Thus the totalities 

)|,( uyFp  are the transition probabilities for a Markov 
chain and ),( uFt∆  is the interpolation interval. 

The above illustration on the Markov chain approxima-
tion method is tangential and covers merely the explicit 
method. The explicit method indicates transitions in state 
space x only with the interval parameter t∆  while the im-
plicit method incorporates both F and t state space transi-
tions. There are also two classical iterating approaches in 
deriving the final optimal cost function V and the optimal 
controller u, namely, approximation in the policy space and 
approximation in the value space.  

Once we have the transition probability expressions and 
the approximation scheme, we select an arbitrary admissible 
control, say 0u , and insert it into the scheme equation (13). 
Computing all transition probabilities and solving the cor-
responding V, we obtain an improved control, say 1u , by 


�
�

�
�
�

∆+= �
y

u
uFtuFLyVuyFpxu ),(),()()|,(minarg)( 0001

 

Keep iterating and we can obtain the limiting value of 

nu  and the corresponding V that represent the optimal con-
troller and optimal cost function respectively. This is the 
approximation in the policy space. The approximation in the 
value space is to reverse the iteration order of u and V. We 
will adopt the implicit method with approximations in the 
policy space in the following sections because of the supe-
rior converging speed and numerical accuracy. More de-
tailed formulas are in Appendix. 

4. An Illustrative Example 

We apply the above proposed dynamic control model to 
a DB pension scheme of a semi-conductor and electronic 
company in Taiwan. According to the Labor Standard Law 
enacted by the Taiwan government in 1984, the employer is 
required to contribute 2% to 15% of the employees’ payroll 
to a government-managed trust fund. The mandatory pen-
sion plan is a DB one since the participant’s retirement 
benefits are based on the length of employed time and the 
final salary upon retirement. Although the trust fund enjoys 
minimum returns guaranteed by the government, it is subject 
to insolvency risk because the contributions coupled with 
the investment returns may not meet the benefit payments. 

This company’s pension plan covers 2,768 members 
with the accrued liability of 380,688,220 NTD. In projecting 
the dynamics of the plan’s workforce, we assume that the 
group is open but the group size remains intact, i.e., when-
ever the employee leave, the same number of new employ-

ees comes in. The probability of an employee leaving the 
workforce at different ages follows an assumed mortality 
table, while the leaving probability within an age interval is 
assumed to have a uniform distribution. More detailed de-
scriptions on the dynamics of the plan’s workforce can be 
seen in Chang and Cheng (2002). 

The accrued liabilities, normal costs, and benefit out-
goes are calculated suing the entry age normal (EAN) cost 
method (Anderson, 1992). Because we do not have the data 
to estimate the volatilities of normal costs NC, benefit out-
goes B, and withdrawals W, we first simulate 100 sets of NC, 
B, and W under the assumptions that salaries increase 3% 
annually and the valuation interest rate is ln(1.03)/52 in the 
weekly interval. Then we take the simulated standard de-
viations as the volatilities. 

We select subjectively the model parameters as shown in 
Table 1. The time horizon T is set as 3 years and is further 
divided into 100 grids/terms. The tried initial fund levels are 
in the range from 0 to 

8105×  NTD. Due to computational 
constraints, only the process of the fund level F is modeled 
as a stochastic process and the values of other state variables 
such as NC, B, and AL are projected through simulations. 
Details of the implementation can be found in Chang et al. 
(2002). We use a two-dimensional grid with 200 × 100 = 
20,000 points to discretize the state space. The algorithm 
requires about 4 hours solving the problem on a Pentium 4 
desktop PC with 990 MB of memory. 

To facilitate comparisons, we tried the case without 
short-sale constraint and the cases with the maximum pro-
portion of the fund invested in asset 

1S  being 1, 0.8, 0.6, and 
0.4. The contribution rates over the future three-year time 
period without short-sale constraints are plotted in Figure 1. 
Figure 1 shows that the contribution rates are around 24% 
and vary over the years. We further find that imposing 
short-sale constraints makes insignificant differences in the 

 
Table 1. Parameter Values Used in the  

Numerical Analysis 

Parameter Descriptions Notation Parameter Values 
The value for the short-term interest rate r 0.02 
The market price of risk 

1λ  0.24 

The market price of risk 
2λ  0.25 

The expected growth of asset 1 
1µ  0.05 

The expected growth of asset 2 
2µ  0.0787 

Volatility of the stock index 
11σ  0.25 

Volatility of the stock index 
12σ  -0.12 

Volatility of the stock index 
21σ  -0.12 

Volatility of the stock index 
22σ  0.35 

Discount factor β  0.03 

Trade-off factor k 1 
Trade-off factor η  1 
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optimal contribution rates, which might be due to the plan’s 
specific demographics. 

Figures 2 - 6 display the optimal weights in asset 1S over 
the future three years and various fund levels under different 
range constraints on p. We find that the proportion of the 
pension fund invested in the first asset changes with the 
range of the fund level. The proportion of the first asset 
increases with the fund level within the fund range of 

8102 ×  
NTD and 

8104 ×  NTD, but it approaches zero when the 
fund level is outside of this range.  Our speculations about 
the results are as follows. When the pension fund is seriously  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Contribution Rates over Future Three 
Years without Short-sale Constraint 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Optimal Weights of the First Asset 
without Short-selling Constraint 

 

under funded (i.e., when the initial level is below 
8102×  

NTD), the manager has to invest all money into the second 
asset that can generate higher long-term returns (7.87% vs. 
5%) at the expense of higher volatility (37% vs. 28%).  The 
manager can hold a “normal” portfolio when the pension is 
initially adequately funded. More specifically, the optimal 
investing strategy for the pension plan is to put significant 
amount of the money on the first asset within the range 
between 

8102×  NTD and 
8104×  NTD. When the fund is 

“excessively” funded (i.e., the initial fund level is above 
8104 ×  NTD), the fund has minor insolvency risk and thus 

can afford to pursue aggressive investment strategy. 

 
 
 
 

 

 

 

 

 

 

 

Figure 3. The Optimal Weights of the First Asset Given p 
being in [0, 1] 

 

 

 

Figure 4. The Optimal Weights of the First Asset Given p 
being in [0, 0.8] 
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Figure 5. The Optimal Weights of the First Asset Given p 

being in [0, 0.6] 

 
Figure 6. The Optimal Weights of the First Asset Given p 

being in [0, 0.4] 
 

5. Conclusions 

In this paper, we introduce a numerical method that re-
lies on the Markov chain approximation to compute the 
optimal strategies. This method is quite general and market 
completeness is not required. It links together stochastic 
simulations and approximating optimal solutions and thus 
provides an efficient way to construct an optimal control 
function among a set of admissible solutions that minimize 
the risk measurement according to a probabilistic experience 
set of actuarial and economic assumptions. Pension plan 
managers can use this flexible method to approximate the 
optimal funding and investment strategies under the con-
siderations for short-sale constraints, actuarial status of the 
plan, and performance measurements.  

Under a simple two-asset model, we illustrate how the 
Markov chain approximation method is implemented in 
calculating the optimal contribution and asset weights over 
the planning horizon. Our results show that the uncertainty 
due to the plan turnovers, the level of the fund size, and the 

time horizon heavily influence the optimal strategies. We 
also find that short-selling constraints play an important role 
in deciding the optimal weights. 

Appendix 

In this section, we list the transitional probability 
expressions needed in implementing the Markov chain ap-
proximation.  Define Q(F, u) as: 

huFbuFuFQ ),(),(),( 2 +≡ σ  

If we denote the maximum of Q(F, u) in all admissible states 
by Q , we have the following expressions: 

δ
δ

Qh
h

t
+

=∆ 2

2 , 

δ
δδδ

Qh
h

unFnFp
+

=+ 2

2

)|,;,( , 

Fy
Qh

uyFN
unynFp ≠

+
= ,

),,(
)|,;,( 2 δ

δδδ , and 

δ
δδδ

Qh
uFQQ

unFnFp
+

−= 2

)),((
)|,;,( , 

where h and � are the space and time increments respectively, 
and N(F, y, u) is defined by 
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Broadly speaking, the implicit approximation of policy 

space consists of three steps: selecting the controller, solving 
for the cost functions at each F and T, and working back-
wards in each time stage. The general iterating schemes are 
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One must bear in mind that each control iu  is a function 
of F and t. The first iterating scheme is in fact a system of 
equations. In the second scheme, we have to do traditional 
minimizations with respect to all possible controllers. 
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