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Abstract

This paper investigates whether there are three distinctive features in financial asset prices, that is, time-varying
conditional volatility, jumps and the component factors of volatility. It adopts a component-GARCH-Jump, which
can efficiently capture the three features simultaneously. Our results demonstrate that the three features exist in
the Taiwan exchange rate. Besides time-varying conditional volatility, our model identifies 172 jumps between 5
January 1988 and 21 March 2003. The empirical evidence shows that the permanent component of the conditional
variance is a relatively smooth movement except for a fairly sharp shift which began in 1997. This means that the
effect of the Asian crisis shock might very well have exerted not only a transitory jump effect, but also a permanent
effect on Taiwan’s exchange rate.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The specification of a statistical distribution which accurately models the behavior of asset prices con-
tinues to be a salient issue in financial studies. Option pricing, for example, requires a precise description
of the stochastic process that is followed by an underlying asset. Two distinctive features of the stochastic
process which are often mentioned in the literature are time-varying volatility and occasional jumps. The
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first of these suggests that the unconditional distribution of an asset price exhibits a “fat tail and high
peak”, though the price is conditionally normal. The most well-known models which characterize this
feature are the autoregressive conditional heteroscedasticity (ARCH) model by Engle[5] and the more
generalized version of it by Bollerslev[2]. The stochastic volatility models of Taylor[18] and Jacquier
et al.[10] are also designed to capture the effect.

While the GARCH-type models reflect time-varying volatility, they do not describe jump behavior,
i.e., the second distinctive feature of financial assets. Ignoring this feature may indeed distort hedging
or pricing strategies. To explain, if jumps are present but ignored, models may severely overestimate
the effectiveness of short-term hedging strategies which are based on dynamic portfolio adjustments.
Similarly, the prices of out-of-the-money options that are close to maturity will also be underestimated if
jumps are present but again not taken into account. Thus, the Merton[13] option pricing model explicitly
admits jumps in the underlying assets. Jorion[11], Nieuwland et al.[16] and Vlaar and Palm[19] present
a “GARCH-Jump” model, which addresses the issues of testing for jumps, the estimations of frequency
and the size of jumps within models that also allow for conditional heteroskedasticity. Ball and Torous
[1] provided empirical evidence of Poisson-distributed jumps in 30 daily common stock returns listed on
the New York Stock Exchange.

Engle and Lee[6] later claimed that there is a third feature of the stochastic process, i.e., perma-
nent and/or transitory components in volatiltiy. Typically, permanent and transitory components exist
in nonstationary volatility. Thus, finding a unit root in volatility is indirect evidence of this feature.
To cite some examples, Nelson[15], French et al.[9] and other reported that stock volatility is best
described as an ARIMA (0,1,3), which is indicative of a stochastic trend, a permanent trend in the
volatility. While component feature may exist, not much empirical evidence have been reported to di-
rectly demonstrate its existence,2 Furthermore, few studies have explored their dynamic characteristics
and how they are related with the first two features. For these reasons, Engle and Lee[6] proposed a
“component-GARCH” model to decompose time-varying volatility into a permanent (long-run) and a
transitory (short-run) component. Their specifications describe the behaviors of these two components
and the ARCH effect.

While the GARCH-Jump and component-GARCH models are both successful in integrating any two
of the three features of financial assets, neither takes all three of the distinctive features into account
simultaneously. It is, therefore, reasonable to adopt a component-GARCH-Jump model to consider the
concurrence of the above three features. This new model is ideal as far as applying it to all Taiwan
exchange rate since we have strong reason to believe that the Taiwan exchange rate encompasses three
features. To illustrate this, regarding the jump feature, during the Asian crisis, Taiwan’s authority initially
defeated all speculative attacks by providing unlimited US dollars. As a consequence, the exchange rate
remained at US$ 28.5 NTD in the early period. Once Taiwan had lost 7 billion US dollars in foreign
reserves, which almost depleted the vault foreign reserves, the authority halted all intervening abruptly
announcing at 5:00 p.m., 16 October 1997 a “respect the market” policy. The exchange rate immedi-
ately devalued (jumped) to 29.5 NTD the next morning, which obviously created a sharp jump in the
market.

Aside from the jump just referred to, jumps have also frequently appeared in other periods. TheFig. 1
plots the daily raw data of the Taiwan exchange rate. Where several big jumps are evident. TheFig. 2 is
the daily returns of the Taiwan exchange rate, and many spikes are observed in the return plots, and these

2 This is probably because the technique to decompose it is not an easy one, or alternatively the effect may be elusive.
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Fig. 1. Taiwan exchange rate.

correspond closely to the jumps shown in the upper panel. TheFig. 3displays the absolute value of the
daily returns for the exchange rate, which may suggest not only the presence of conditional time-varying
volatility but also long-term trend components.

This paper investigates how to extract these three features using the Taiwan exchange rate. Because the
component-GARCH-Jump model nests the GARCH-Jump, component-Jump and component-GARCH,

Fig. 2. Daily returns.
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Fig. 3. Absolute value of daily returns.

we can test the validity of taking only two features into account. Another question which arises is how
the three features evolve over time if they do in fact exist? Finally, this model explores the common belief
that the Asian crisis has only had a temporary effect on volatility.

Our results are fruitful. First, our model rejects others which only consider two features. Thus, we
demonstrate that pricing or hedging strategies we should be careful with since the three features may also
exist in other financial assets. Also, our results are helpful when it comes to volatility forecasting. We
also note that the permanent component of the conditional variance is relatively smoothed except for the
sharp shift which began in 1997 and coincided with the Asian crisis. This means that the effect of the
Asian crisis shock could have exerted not only a transitory jump effect, but also a permanent effect on
Taiwan’s exchange rate. Third, for the most of part, the jumps are short and only have a temporary effect
on exchange rate volatility, 172 jumps are identified from 5 January 1988 to 21 March 2003. The year
with the highest numbers of jumps is 1989, with a total of 26.

The organization of the paper is as follows:Section 2briefly presents a review of the history of
Taiwan’s exchange rate market.Section 3describes the setup of empirical models, including that of the
component-GARCH model and of the component-GARCH-Jump model.Section 4presents the data and
empirical results.Section 5concludes the paper.

2. Taiwan exchange market

It is well known that dramatic market shocks and/or such non-market changes as political events may
contribute to observed high volatility in an exchange rate. Taiwan is no exception. In addition, jumps
in exchange rates may well be generated by discontinuities in the arrival of “news”, which Mussa[14]
and Frenkle[8] argued should be the predominant cause of exchange rate movements. Jumps may also
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be caused by changes in monetary policies directed at affecting the external value of a currency, which
Flood and Hodrick[7] labeled “process switching”. The component behavior, however, is less discussed
in the literature, and not easy to describe ex ante.

Exchange rates in many countries are often not floated but are managed floating or pegged to one or
some key currencies.3 The Taiwan monetary authority adopts a managed floating exchange rate system.
It pegs the US dollar but also allows the exchange rate to adjust when the rate is considered to have
deviated from the fundamental rate or when there is a so-called non-market shock. Besides the jumps
during the Asian crisis of 1997 mentioned inSection 1, other examples include the two China missile
tests in the Taiwan Straits in 1995 and 1996. During those periods, the Central Bank actively intervened
in the market protecting the NTD from devaluation and successfully stabilizing the exchange rate, which
is indicative of suggesting a “flat” exchange rate with no jump.

Shen and Chen[17] claim that the Taiwan exchange rate displays a unique phenomenon of “fast devalu-
ation, slow appreciation”. That is, the exchange rates persist for an extended period during the appreciation
stage but that they are short-lived during the depreciation stage. Such an asymmetric swing depicts a long
swing in appreciation and a short swing in depreciation,4 the latter representing the phenomenon of jumps.

3. Component-GARCH-Jump model

We first discuss the models in light of only the two features, that is the GARCH-Jump and component-
GARCH models. We then address the component-GARCH-Jump model in light of all three features.

3.1. The component-GARCH model

Defineyt = ln(St/St−1) as exchange rate, expressed in the rate of return, whereSt is the exchange rate
per US dollar. The component-GARCH model, first proposed by Engle and Lee[6], is employed here as
a benchmark as follows:

yt = δ+ εt, (1)

εt|Ψt−1 = σtξt ∼ N(0, σ2
t ), ξt ∼ N(0,1), (2)

σ2
t = qt + α(ε2

t−1 − qt−1)+ β(σ2
t − qt−1), (3)

qt = ω + ρ(qt−1 − ω)+ φ(ε2
t−1 − σ2

t−1), (4)

where termδ is the mean of the process, andqt a permanent, or trend, component in the conditional
variance that captures the idea of time-varying long-term volatility with the speed of mean reversion
determined byρ. TermΨt−1 denotes the information set. Typicallyρ is between 0.9 and 1, so theqt
approach it unconditional variance very slowly. Forρ = 1, the long-term volatility process is integrated.
The forecasting error term (ε2

t−1−σ2
t−1) is the zero-mean and serial uncorrelated, which drives the evolution

of the permanent component. The difference betweenσ2
t andqt represents the transitory component of

3 See the IMF’s country report for different exchange rate systems.
4 They applied Engle and Hamilton’s[4] two-state Markov Switching model to examine long swings in Taiwan’s exchange rate,

and they attribute such asymmetric swings to the Central Bank’s asymmetric preferences, where a long swing in appreciation is
a result of a “slowdown” policy, and a short swing is the “let-it-go” policy.
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the conditional variance that dies out with time; thus the long-run movement of asset return volatility is
dominated by the current expectation of the permanent trend givenα+ β is less than one. Note that the
GARCH (2,2) process represents the underlying data-generating process for the conditional variance in
the component model as shown in Engle and Lee[6].

3.2. The GARCH-Jump model

The GARCH-Jump model is an extension of the GARCH model and allows the jump variableJt,
which is an indicator of jumps which account for the spikes. The complete GARCH-Jump model can be
represented as follows:

yt = δ+ εt +
Jt∑
j=0

vj, (5)

εt|Ψt−1 = σtξt ∼ N(0, σ2
t ), ξt ∼ N(0,1), (6)

Jt ∼ e−λλj

j!
, vj ∼ N(µ, ν2), (7)

σ2
t = ω + αε2

t−1 + βσ2
t−1, (8)

whereJt is assumed to be a Poisson random variable with parameterλ. It is assumed that each Poisson event
causes a discrete jump of size exp(vj), j = 1,2, . . . , Jt. Hence, jumps are assumed to be independently
lognormally distributed random variables, which are independent ofξt, while vj is assumed to be an
identical independent, and normally distributed random variable with meanµ and varianceν2.

3.3. The component-GARCH-Jump model

The component-GARCH-Jump model is an extension of the component-GARCH model and allows
the jump variableJt, which is an indicator of jumps. The complete component-GARCH-Jump model can
be represented as follows:

yt = δ+ εt +
Jt∑
j=0

vj, (9)

εt|Ψt−1 = σtξt ∼ N(0, σ2
t ), ξt ∼ N(0,1), (10)

Jt ∼ e−λλj

j!
, vj ∼ N(µ, ν2), (11)

σ2
t = qt + α(ε2

t−1 − qt−1)+ β(σ2
t − qt−1), (12)

qt = ω + ρ(qt−1 − ω)+ φ(ε2
t−1 − σ2

t−1). (13)

where the definition of the termJt is the same as that in the last section. This model has also been used, for
example, by Yoo and Kim[20], Chang and Kim[3], and Kim and Mei[12] who have respectively studied
seven EMS exchange rates, Hong Kong exchange rate volatility behavior, and the Korean financial crisis.
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3.4. State-space representation of the model

If the maximum number of jumps isJt = 5, then the component-GARCH-Jump model (with(j) = 5)
can be represented as a state-space form as follows:
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(15)

Alternatively,Eqs. (14) and (15)can be written in a more compact form:

Yt = ∆(j) +G
(j)
t ζt, (16)

ζt = Ttζt−1 + R!t, (17)

whereE(R!! ′R′) = Q = diag{σ2
t , ν

2, ν2, ν2, ν2, ν2}. The maximum likelihood method is employed
to estimate the unknown parameters. A numerical estimation of the unknown parameters is performed
using the OPTMUM module of GAUSS 3.2 with a combination of the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm. Readers are referred to the appendix of Chang and Kim[3] for
details.

4. Data and results

4.1. Data analysis

Our daily data starts from 5 January 1988 to 21 March 2003, which totals 3642 observations. The data
are taken from thePacific Exchange Rate Service. Table 1summarizes the sample statistics for the daily
return data. The positive skewness of 1.41 implies that a devaluation in size may dominate the data.5

The kurtosis is 36.73 which suggests the market is highly non-normally distributed. The LM-ARCH

5 Our skewness and kurtosis are, in fact, the excess skewness and excess kurtosis, which deviate from their respective means.
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Table 1
Sample statistics of the log difference in the exchange rate

Statistics Estimate

Mean 0.005316
Median 0.000000
Maximum 3.930653
Minimum −2.797611
Standard deviation 0.283756
Skewness 1.412817
Kurtosis 36.73748

Jarque–Bera normality test 173888.3
Probability (0.000000)

LM-ARCH test 21.69170
Probability (0.000000)

Ljung–Box autocorrelation test 81.07000
Probability (0.000000)

Jarque–Bera normality test:T ∗ (Kur2/24+ SK2/6) ∼ χ2
2, whereT : sample size; Kur: kurtosis; SK: skewness. LM-ARCH test:

y2
t = a0 + ∑4

i aiy
2
t−i, TR2, whereR2 is the coefficient of determination. Ljung–Box:T(T + 2)

∑24
i=1(T − i)−1r2

i ∼ χ2
24, where

r2
i is the autocorrelation function.

test equals to 21.69, rejects the null hypothesis of no relation between the squared return and its lagged
squared returns. The Ljung–Box is equal to 81, rejecting the null of no autocorrelation among returns.

4.2. Empirical results

Table 2presents the parameter estimates of the GARCH (1,1) and component-GARCH and GARCH-
Jump models, respectively.6 With regard to the GARCH (1,1) model, the volatility persistence rate is
estimated to beα + β = 0.987, which approximates unity. Thus, a nonstationary variance may exist.
While the diagnostic tests using LM-ARCH show the ARCH effect is removed, a strong autocorrelation
remains in the residuals. The high skewnesss and kurtosis, 2.69 and 68, respectively, causes the normality
assumption to be rejected.

Turning to the case of the component-GARCH model inTable 2, the estimatedα+β is similar to that of
the GARCH model. The decay rate of the permanent component,ρ, is estimated as 0.985, implying that
approximately 73.9% ((=0.985)20) of a shock remains even after 20 trading days. Diagnostic checking
shows similar results to those using only the GARCH effect. Because the GARCH is nested in the
component GARCH, we can apply the log-likelihood ratio to examine the validity of the GARCH model.
The log-likelihood ratio test, which is−2 × (logL1 − logL2) = 14.626, shows that the null of no
components is rejected at the 5% significant level. The possible reason for the rejection of the GARCH

6 Since most empirical implementations of the GARCH(p, q) models adopt low orders for the lag lengthsp andq and such a
small number of parameters seem sufficient to model variance over very long sample periods, we setp = q = 1 for the GARCH
model.
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Table 2
Parameter estimates from the GARCH-type model

Parameter GARCH (1,1) Component-GARCH GARCH-Jump

Estimate |t|-stat. Estimate |t|-stat. Estimate |t|-stat.

ω 0.124 15.108 0.863 1.964 0.131 2.217
α 0.531 21.699 0.527 20.731 0.417 19.493
β 0.456 19.906 0.458 18.948 0.576 27.451
δ −0.010 3.307 −0.010 3.289 −0.001 1.156
λ 0.143 12.447
µ 0.018 0.805
ν 0.521 18.290
ρ 0.985 18.067
φ 0.001 0.119
logL 228.576 235.889 1339.759

H0: no component LR 14.636
H0: no jump LR 2222.366

Diagnosis check of residuals
Mean 0.077 0.065 0.013

Skewness 2.693 2.533 −0.039
Probability (0.000) (0.000) (0.326)

Kurtosis 68.123 69.046 −0.361
Probability (0.000) (0.000) (0.000)

Jarque-Bera 647803.8 665675.4 20.838
Probability (0.000) (0.000) (0.000)

LM-ARCH 0.095 0.050 3.751
Probability (0.983) (0.995) (0.005)

Ljung–Box 50.384 53.728 41.007
Probability (0.001) (0.001) (0.017)

model is its missing “jumps” factor. However, the component-GARCH is also far from perfect since the
residuals suffer from large kurtosis.

The last column ofTable 2reports the estimated results of the GARCH-Jump model. T estimated
α + β is again similar to that of the GARCH model. It is surprising to find that the kurtosis is sub-
stantially reduced from 68.123 in the GARCH model to−0.361 in the present GARCH-Jump model.
Kurtosis aside, the skewness is also reduced from 2.693 to−0.039. Thus, it seems that adding the
jump effect can largely reduce the phenomenon of fat tail and high peak. While the skewness and kur-
tosis are reduced, the LM test for the ARCH effect increases, becoming significantly different from
zero. The likelihood ratio test is equal to 387, which also rejects the null of no jumps. Thus, the
factor of adding jumps can reduce the effects of kurtosis and skewness but leave the ARCH effect
unchanged.

As the null of no components and no jumps are rejected, it is worth considering the three features concur-
rently.Table 3presents the estimated results of the component-GARCH-Jump model. Three interesting
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Table 3
Parameter estimates from the component-GARCH-Jump model

Parameter Estimate |t|-stat. Estimate |t|-stat.

ω 0.038 4.074 0.001 3.515
α 0.278 10.246 0.340 16.622
β 0.402 8.359 0.564 19.611
δ −0.001 0.546 0.000 0.346
λ 0.119 10.14 0.114 13.041
µ 0.042 1.314 0.021 0.518
ν 0.568 16.603 0.603 18.0963
ρ 0.994 676.973 1 –
φ 0.184 7.812 0.032 9.834
logL 1360.150 1384.137

H0: component-GARCH LR 2248.552
H0: GARCH-Jump LR 40.782

Diagnostic check of residuals
Mean −0.001 0.001

Skewness −0.057 0.008
Probability (0.159) (0.832)

Kurtosis −0.303 −0.274
Probability (0.000) (0.001)

Jarque–Bera 15.966 11.457
Probability (0.000) (0.003)

LM-ARCH 1.541 2.387
Probability (0.187) (0.049)

Ljung–Box 40.609 37.478
Probability (0.018) (0.039)

results are worth highlighting. First, the estimatedρ is high reaching 0.994, which is very close to 1.
This further strengthens our belief that the permanent component of volatility can be integrated. We
examine this issue by providing the statistical test by usingρ = 1. Then, we re-estimate the model and
calculate the restricted log-likelihood function, denoted as logLR, while logLU is the unconstrained
version. As shown inTable 3, the unrestricted and restricted log-likelihood value is 1360.15 and 1384.12,
respectively. Then the log-likelihood ratio test 2×(logLU−logLR) = −47.97, which cannot reject the re-
stricted component-GARCH-Jump model. The permanent component of volatility is, therefore, a random
walk.

Next, the jump parameter,λ = 0.119, is significant at the 5% significant level, which is consis-
tent with past studies, e.g., Nieuwland et al.[16]. This estimate suggests that the average number of
Poisson-distributed jumps is about 0.12. Hence, the flow of information that arrives in the market can be
described most of the time by the heteroscedastic diffusion process, but is occasionally subject to jump
risks.
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Fig. 4. Total volatility vs. permanent component.

Last, the high kurtosis and skewness found in the previous GARCH and component-GARCH models
are again substantially reduced, which mirror the results from the GARCH-Jump model. While the testing
of the statistics of the normality test is still significant at the conventional level, the size of the statistic is
largely reduced, demonstrating that the diagnostic tests, when compared with those of the two models,

Fig. 5. Permanent component.
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Fig. 6. Transitory component.

Fig. 7. Posterior probability for jump.
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Fig. 8. Identified jump dates.

are indeed improved. Employing LR tests, we reject both the GARCH-Jump and component-GARCH
model.

Figs. 4–6plots the estimated (overall) conditional volatility and its two components, the permanent
and transitory components.Figs. 4–6shows total volatility is mostly flat with a slight peak around 1997.
The permanent component is relatively smoothed before 1997 but displays a sharp rise after that. It drops
down to a low level after 1999. The transitory component is simply the difference between the above two,
resembling overall volatility. As the rising parts of the three volatilities are coincident with the occurrence
of the Asian crisis, the effect of the crisis shock may have exerted not only a transitory jump effect, but
also a permanent effect on Taiwan’s exchange rate. It is worth noting that while the permanent component
displays a sharp fluctuation around 1997, its absolute size is small (only 0.2). Hence, the influence of
jumps is short-lived and has only a temporary effect on exchange rate volatility.

Fig. 7explicitly identifies the dates of all jumps by using posterior probabilities. The top panel of the
figure displays the posterior probability that jumps could have occurred with a magnitude ofJt = 2. The
dates of the jumps are identified if the posterior probability is greater than 0.9.7 The final identified dates
are plotted inFig. 8and are also summarized inTable 4. The model identifies 172 jumps from 5 January
1988 to 21 March 2003. There are 26 jumps in 1989, and the frequency of occurring is more than in other
years (Fig. 8).

7 We simply select 0.9 as the cutoff for conservative reasons. Choosing a small cutoff, such as 0.7, yields more jumps.
Nevertheless, our results showing that many jumps exist would therefore not be affected if different cutoffs being selected.



214 S.-W. Chen, C.-H. Shen / Mathematics and Computers in Simulation 67 (2004) 201–216

Table 4
Identified jump dates by the component-GARCH-Jump model

19880406 19900516 19950530 19990621
19880407 19900628 19950710 19990622
19880624 19900803 19950717 19991229
19880628 19910114 19950929 20000105
19880705 19910115 19951002 20000117
19880829 19910117 19951123 20000511
19881017 19910130 19951124 20000704
19881018 19910315 19960115 20000717
19881027 19910327 19960116 20000918
19881028 19910328 19960202 20000929
19881101 19910409 19960226 20001002
19881103 19910702 19960227 20001013
19881230 19910703 19960320 20001018
19890105 19910801 19960321 20001019
19890112 19910904 19960325 20001020
19890117 19910905 19960401 20001026
19890217 19910919 19960402 20001114
19890221 19920106 19960405 20001122
19890222 19920108 19960408 20001129
19890314 19920109 19960411 20010102
19890315 19920110 19960412 20010130
19890316 19920323 19960517 20010131
19890425 19920408 19960913 20010613
19890426 19920513 19960917 20010620
19890427 19920610 19970324 20010711
19890502 19920914 19970729 20010803
19890510 19930119 19970730 20010912
19890511 19930208 19970731 20011221
19890515 19930225 19970801 20020517
19890522 19930524 19970805 20020521
19890616 19930526 19971007 20020528
19890707 19930707 19971028 20020530
19890818 19930920 19971103 20020621
19890822 19940110 19971105 20020723
19890913 19940621 19971106 20020726
19890926 19940622 19971107 20020729
19891030 19940725 19980519 20020806
19891102 19950308 19980608 20020916
19891206 19950406 19980930 20021016
19900308 19950411 19981002 20030121
19900309 19950515 19990318 20030204
19900312 19950516 19990324 20030214
19900410 19950522 19990325 20030304

5. Conclusions

Three distinctive features in the financial asset prices—that is, time-varying conditional volatility, jump
and the component factors in volatility—are separately found in the literature. Past studies have typically
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focused on the first feature by using the GARCH-type model, and others using the use GARCH-Jump and
component-GARCH to describe the GARCH effect with the second or the third features, simultaneously.
However, few, with the exception of Kim and Mei[12] and Chang and Kim[3], have taken the three
features together. This paper adopts a component-GARCH-Jump, which can capture the three features at
the same time.

Our results show that the three features exist in the Taiwan exchange rate. Besides time-varying
conditional volatility, our model identifies 172 jump dates from 5 January 1988 to 21 March 2003,
of which there are 26 jumps in 1989, a frequency of occurrence which is more than that in other
years.

The permanent and transitory components are also found in the exchange rate. The permanent com-
ponent of the conditional variance is relatively smoothed except for a sharp beginning in 1997, which
coincides with the timing of the Asian crisis. This means that the effect of the Asian crisis shock could
have exerted not only a transitory jump effect, but also a permanent effect on Taiwan’s exchange rate.
The size of the permanent effect, however, is small. Thus, the influence of the jumps was short-lived and
only had a temporary effect on the exchange rate volatility.

Our results may provide useful insight into the filed of volatility forecasting, option pricing and futures
hedging strategies, among other. We leave it as a future study.
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