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a b s t r a c t

In this paper, we propose AR-GARCH (autoregression-generalized autoregressive conditional het-
eroskedasticity) models to fit and forecast mortality rates for a given age by two alternative approaches.
Specifically, one approach is to fit a time series of mortality rates for some age to an AR(n)-GARCH(1,
1) model, and project the mortality rate for that age in the next nth year; the other is to fit an AR(1)-
GARCH(1, 1) model, and project the mortality rates recursively for the age in the next consecutive years.
Further, we employ the copula method to capture the inter-age mortality dependence. Adopting mortal-
ity data of Japan, the UK, and the USA, we demonstrate that it is indispensable to consider the conditional
heteroskedasticity in our mortality models which provide better performances in out-of-sample projec-
tion and prediction intervals with a higher degree of coverage than the Lee–Carter model. Finally, we
numerically illustrate with mortality data of Japan that VaR (Value at Risk) values for longevity risk, re-
garded as additional reserves for annuity or pension providers, will be overestimated if the conditional
heteroskedasticity or/and the inter-age mortality dependence structure are ignored.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Mortality improvement, a downward time trend in mortality
rates, has been a substantial issue for annuity and pension products
in recent decades. An inappropriatemeasure inmortality improve-
ment would underestimate premiums and reserves of annuity and
pension products and then expose annuity and pension providers
to risks of financial distress.

Some methods of managing longevity risk have been proposed
in the literature. Li and Luo (2012), Cairns et al. (2014), and Cairns
(2013) apply mortality-linked securities to hedging longevity and
mortality risks, and measure the hedge effectiveness. Wang et al.
(2010), Tsai and Chung (2013), Lin and Tsai (2013, 2014), Wang
et al. (2013a), and Cox et al. (2013) hedge longevity/mortality risks
with strategies of natural hedges or mortality immunization. Hári
et al. (2008), Olivieri and Pitacco (2009), Lin and Tzeng (2010), and
Plat (2011) present risk-based capitals for longevity risk.
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Projecting mortality rates and modeling its randomness also
have aroused much attention. The Lee and Carter (1992) model
is the most widely cited and used method in mortality fitting and
forecasting. It assumes that the dynamics of the logarithm of cen-
tral death rates are driven by an age-specific constant plus the
speed of change at each age multiplied by an overall time trend
of mortality rates. The CBD model proposed by Cairns et al. (2006)
is also widely used where the logit function of mortality rates is
captured by an overall time trend plus a time trend related to age.
There aremany extensions of the twomodels. RenshawandHaber-
man (2006) and Haberman and Renshaw (2009) providemodifica-
tions of the Lee–Carter age-period model and add extra bilinear
terms (non-age specific factors) to the structure of the traditional
Lee–Carter model. Li et al. (2009) consider individual heterogene-
ity in each age-period cell in the Lee–Carter model, and provide
better goodness of fit. Plat (2009) proposes a model combining the
good factors in the Lee–Carter and CBDmodels. Each of thesemod-
els is useful for mortality prediction. However, all of them model
the mean level of mortality rates, and ignore the variance level of
mortality rates and the temporal dependence structure between
inter-age mortality rates.

The assumption of mortality independence traditionally adopt-
ed by stochastic mortality models has been challenged. In reality,
we can observe that mortality deterioration, such as deadly infec-
tious diseases (e.g., the influenza pandemic in 1918) and natural
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disasters (e.g., the tsunami in December 2004), and gradual mor-
tality improvement, such as medical breakthroughs, and nutri-
tion and public health enhancements, extensively influence social
groups across periods, ages, genders, and populations. Loisel and
Serant (2007) are the first to take inter-age and inter-period corre-
lations into account and propose a multi-dimensional extension of
the Lee–Cartermodel; they find that a positive correlation exists in
practice and cannot be neglected. Yang et al. (2008) demonstrate
that based on the mortality data of France and Switzerland, the
residuals of the Lee–Carter model are not independent across ages
and periods.Wills and Sherris (2010) demonstrate the effect of age
dependence on pricing longevity bonds. Li and Hardy (2011) show
that using female populations of the United States and Canada si-
multaneously, an overall time trend plus a population specific time
trend can reduce population basis risks produced by two indepen-
dent time trends under the Lee–Carter model. As a result, it is in-
dispensable to incorporate mortality dependence structures into
stochastic mortality models.

Mitchell et al. (2013) propose a model which is analogous to
the Lee–Carter model and expresses the change in the logarithm
of mortality rates for each age group, rather than the level of the
logarithm of mortality rates, as an age-dependent linear transfor-
mation of mortality index. The mortality rates for future consec-
utive years are projected conditioning on the mortality rates for
the current year. However, they employ SVD (singular value de-
composition) to calibrate the parameters and to capture the de-
pendence structure between mortality rates for ages, which in
turn leads to a limited dependence structure. Lin et al. (2013) pro-
pose a stochastic model which incorporates normalized multivari-
ate correlations between multi-country mortality indexes. Wang
and Yang (2013) incorporate the mortality dependence into the
Lee–Carter model by considering age-specific mortality correla-
tions under the multivariate Gaussian distribution. However, it is
well known that the multivariate normality assumption is usu-
ally not supported empirically by themultivariate data. The copula
methodproposedby Sklar (1959) provides a fabulous alternative to
the multivariate normal distribution and constructs a highly flex-
ible and non-standard multivariate dependence structure. Conse-
quently, the first goal of this paper is to employ the copula method
to capture the inter-age mortality dependence structure, which is
still absent in the literature to the best of our knowledge.

Observing that mortality data display a linear relationship and
volatility clustering phenomenon, the second goal of this paper is
to employ AR-GARCH (autoregression-generalized autoregressive
conditional heteroscedasticity)models to capture themarginal dy-
namics of mortality rates. We propose two alternative approaches
to fitting and forecasting in our AR-GARCH models. Specifically,
for the first approach we fit the mortality data for an age to an
AR(n)-GARCH(1,1) model and then employ it to project the mor-
tality rate for that age for the next nth year; for the second one, we
fit the AR(1)-GARCH(1,1) to mortality rates for an age and predict
recursively the mortality rates for that age for the next consecu-
tive years. Our AR structure is analogous to the Lee–Carter model
under which the logarithm of mortality level is a linear function.
However, under our models the trend in the mortality data for an
age comes from the previousmortality rate for the same age rather
than the overall hidden mortality index. Consequently, condition-
ing on the mortality rate for a specific age in the current year, we
can predict the future mortality rates for that age. Even though we
fit and forecast the mortality rates age by age, we can still consider
the dependence structure of the residuals across ages in our mod-
els by adopting the copula method.

In empirical testing, adopting mortality data for both genders
of Japan, the UK, and the USA, we demonstrate that (G)ARCH er-
ror structures produce better in-sample goodness of fit than Gaus-
sian one based on the criteria of Akaike Information Criterion (AIC)
and Bayes Information Criterion (BIC). Compared to the Lee–Carter
model, our models also provide better performances in out-of-
sample projection according to the MAPE (mean absolute percent-
age error) criterion and prediction intervals with a higher degree
of confidence. In addition, our models of the two approaches pro-
duce similar mean forecasts but variance ones; the AR(n) can pro-
duce reliable coverage of forecasted mortality rates with narrower
confidence intervals. Finally, using themortality data for both gen-
ders of Japan, we empirically test the dependence structure be-
tween mortality rates for different ages. For different mortality
projection periods, we demonstrate that the Gaussian copula, the
simplest one, usually provides better goodness of fit than the time-
varying Gaussian copula, and the static and time-varying Student’s
t copulas. In addition, using the copula and AR models with the
best goodness-of-fit error structures, we show that VaR (Value at
Risk) and CVaR (Conditional Value at Risk) values which can be re-
garded as additional reserves of life annuities and pension annu-
ities against longevity risks may be overestimated if the inter-age
mortality dependence and (G)ARCH error structures are neglected.

The remainder of this paper is organized as follows. Section 2
describes the models. Sections 3 and 4 compare the goodness of
fit and the forecasting performances between our models and the
Lee–Carter model, respectively. In Section 5, we further consider
a copula structure between mortality rates for different ages and
apply it to an estimation of VaR values for longevity in life annuities
and pension annuities, respectively. The conclusions are presented
in Section 6.

2. The models

2.1. AR-GARCH mortality models

Denote px,t and qx,t = 1 − px,t the probabilities that a person
aged x in year t will survive one year and die within one year, re-
spectively, and µx,t the associated force of mortality. The assump-
tion that the force of mortality µx,t is constant within each integer
age x and year t (that is, µx+r,t+s = µx,t for r, s ∈ [0, 1)) implies
thatµx,t = − ln(px,t); moreover, the central death rate for age x in
year t under the assumption is equal to the force of mortality, that
is,mx,t = µx,t . The assumption of a constant force of mortality has
been made by many mortality models for mortality data transfor-
mation between qx, t and mx, t or µx, t .

The classical Lee–Carter model expresses the logarithm of
central death rates as follows:

ln(mx, t) = ax + bx × kt + ex, t , x = xL, . . . , xU , (2.1)

where ax represents the average age-specific mortality, kt is the
general mortality level, bx is the age-specific reaction to the time-
varying factor, and ex, t is the error term capturing the age-specific
effects not reflected in the model. As suggested in Lee and Carter
(1992), the parameters in (2.1) can be estimated by the singu-
lar value decomposition (SVD) or a close approximation to SVD,
and the time trend kt follows a random walk with drift as kt =

θ + kt−1 + εt , where εt |It−1 ∼ N(0, σ 2
ε ) and It−1 represents the

information up to time t − 1. The estimated variance (σ̂ 2
ε ) of εt

is used to calculate the uncertainty of the forecasted kt over any
given horizon, and then the confidence intervals on the forecasted
kt can be used in the same way to calculate the confidence inter-
vals on the logarithm of the forecasted central death rates (see Lee
and Miller (2001)).

Lee–Carter model is vulnerable in that it models the level of the
logarithm of central death rates as a linear function of mortality
index, and hence misrepresents the age-specific dependence
structure or variance of mortality rates. In order to reform that
drawback, Mitchell et al. (2013) express the logarithm of central
death rates for the next year as that for the current year, rather
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(a) n = 1 for UK males. (b) n = 5 for UK males.

(c) n = 1 for UK females. (d) n = 5 for UK females.

Fig. 1. ln(mx, 1950+τ+n) against ln(mx, 1950+τ ), τ = 1, . . . , 60 − n, for x = 35, 45 and 55.
Fig. 2. Diagram for mortality fitting and forecasting.
than a temporal hidden mortality index, plus a random vector for
each age group so that the trend in the mortality data comes from
mortality rates for the previous years rather than a trend in the
hidden mortality index. Mitchell et al. (2013) also demonstrate
that thismodification of conditioning on themortality rates for the
current year leads to the predictions of very high quality for the
future years.

Along this line, we propose an AR(n)-GARCH(1,1) model to
describe the evolution of the logarithm of central death rates for
a specific age x, that is,

ln(mx, t) = a(n)
x + b(n)

x × ln(mx, t−n) + ϵ
(n)
x, t , (2.2)

where n is a predetermined projection time period and ϵ
(n)
x, t is the

error term. Fig. 1(a)–(d) display the relationship between a se-
quence of the logarithm of central death rates and the sequence
of corresponding ones lagged by n years (n = 1 and 5) for indi-
viduals aged 35, 45, and 55 for both genders of the UK, where the
mortality data come from the Human Mortality Database (HMD,
www.mortality.org). From the figures, we observe that two se-
quences of the logarithm of central death rates with a time lag of
n years show a linear relationship, and the intercept term and the
slope coefficient are adjusted to reflect the rates of mortality im-
provement or deterioration over n years. Based on the observation,
we replace the temporal mortality index with the mortality rates
for the same ages in the previous years as a unique explanatory
variable, which is different from Mitchell et al. (2013).

In this paper, we make out-of-sample projections for future
consecutive years by the AR models with empirical data. As
exhibited in Fig. 2, given a study period [T1, T2] for whichmortality
rates are available, we assume that we currently stand at the
end of year T and would like to project the mortality rates and
evaluate the forecasting performance for years T + 1, . . . , T2 with
the mortality data for [T1, T ]. Conditioning on mx, T , the logarithm
of central death rate for year T + n, ln(mx, T+n), can be forecasted
by (2.2) with (â(n)

x , b̂(n)
x ), the estimate of (a(n)

x , b(n)
x ), for each n =

1, . . . , T2 − T . It is called the AR(n) model hereafter (in fact, a

http://www.mortality.org
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(a) Japan males. (b) Japan females.

Fig. 3. ln(m45, t ) − ln(m̂45, t ) for n = 1 over t = 1951–2000.
special case of the regular AR(n) model). Alternatively, ln(mx, T+k)
can also be predicted recursively with the initial value ln(mx, T ) by
(â(1)

x , b̂(1)
x ) and (2.2) with n = 1 for k = 1, . . . , T2 − T , and we call

it the AR(1) model hereafter. Specifically, for the AR(n) model,

ln(m̂x, T+n) = â(n)
x + b̂(n)

x × ln(mx, T ), n = 1, . . . , T2 − T .

For the AR(1) model,

ln(m̂x, T+1) = â(1)
x + b̂(1)

x × ln(mx, T )

and

ln(m̂x, T+k) = â(1)
x + b̂(1)

x × ln(m̂x, T+k−1)

= â(1)
x ×

1 − (b̂(1)
x )k

1 − b̂(1)
x

+ (b̂(1)
x )k ln(mx, T ),

k = 2, . . . , T2 − T .

Note that the AR(n) model needs T2 − T pairs of estimated param-
eters (â(n)

x , b̂(n)
x ), n = 1, . . . , T2 − T , whereas the AR(1) model

needs only one parameter pair (â(1)
x , b̂(1)

x ). Moreover, ln(mx, T+n)

has the variance Var[ϵ(n)
x, T+n] for the former, and Var[

n−1
h=0(b̂

(1)
x )h×

ϵ
(1)
x, T+n−h] for the latter. If the sequence {ϵ

(1)
x, T+n−h : h = 0, . . . , n −

1} is positively correlated, then Var[
n−1

h=0(b̂
(1)
x )h×ϵ

(1)
x, T+n−h] for the

AR(1) model is increasing in n since b̂(1)
x is generally close to one.

Moreover, observing the errors between the logarithm of cen-
tral death rates and the fitted ones by (2.2) with n = 1 which are
assumed to be Gaussian white noises for Japan males and females
aged 45, shown in Fig. 3, we find a typical volatility clustering phe-
nomenon that large (small) changes tend to be followed by large
(small) ones. Thus, we further assume that the sequence of error
terms, ϵ(n)

x, t , for age x follows a GARCH(1,1) model, that is,

ϵ
(n)
x, t = σ

(n)
x, t · ε

(n)
x, t (2.3)

and

(σ
(n)
x, t+1)

2
= α

(n)
x, 0 + α

(n)
x,1 · (ϵ

(n)
x, t )

2
+ β

(n)
x,1 · (σ

(n)
x, t )

2 (2.4)

where α
(n)
x,0 > 0, α

(n)
x,1 ≥ 0, β

(n)
x,1 ≥ 0, ϵ

(n)
x, t+1| It is normally

distributed with mean zero and variance (σ
(n)
x, t+1)

2, and ε
(n)
x, t is a

sequence of independent and identical standard normal random
variables. If β

(n)
x,1 = 0, then the GARCH(1,1) model reduces to the

ARCH(1) model; if α(n)
x,1 = 0 as well, then ϵ

(n)
x, t becomes a sequence

of independent and identically normally distributed random vari-
ables with mean zero and variance α

(n)
x,0 , and is called Gaussian

white noise (WN). In this paper, we fit the AR(1) and AR(n) mod-
els associatedwith GARCH(1,1), ARCH(1) andGaussianwhite noise
(WN) as error structures to the mortality rates for a specific age,
which are called the AR-GARCH, AR-ARCH and AR-WNmodels, re-
spectively.
2.2. Conditional copula methods for AR-GARCH mortality models

We model the mortality rates age by age with (2.2)–(2.4) in
the preceding subsection, and then introduce the copula method
to capture the inter-age mortality dependence structure in the
current and next subsections. Copulas, first introduced by Sklar
(1959), are tools for modeling the dependence between random
variables. Copula model, a competitive alternative to the Gaussian
dependence structure, meets the need of constructing flexible and
non-standard multivariate distributions. Besides, many studies
demonstrate that the specification of time-varying correlation
gives better results than unconditional copula models (e.g.,
Alexandra and Paul (2010)), so we also employ the time-varying
copulas.

Recall that a copula function is a multivariate cumulative dis-
tribution function (cdf) of standard uniform random variables (see
Nelsen (1999)). Let Fi and fi be the conditional cumulative distri-
bution function (cdf) and conditional probability density function
(pdf) of a continuous random variable Yi, t at time t given It−1 with
parameter set θi, i = 1, . . . ,m, where It−1 represents the informa-
tion up to time t−1, and F and f be them-dimensional conditional
cumulative distribution function and conditional probability den-
sity distribution of the random vector Ỹt = (Y1, t , . . . , Ym, t) given
It−1. To capture the dependence between inter-agemortality rates,
we rewrite F in terms of a conditional copula andm univariate con-
ditional marginal cdfs F1, . . . , Fm as follows:

F(y1, t , . . . , ym, t; θ, ϑ |It−1)

= C(F1(y1, t; θ1|It−1), . . . , Fm(ym, t; θm|It−1); ϑ |It−1)

where yi, t is the realized value of Yi, t , i = 1, . . . ,m, C is an
m-dimensional conditional copula function with parameter set ϑ
and θ =

m
i=1 θi. As proved by Sklar (1959), the copula function

uniquely exists when Ỹt is a continuous random vector. For the
continuous conditional random vector Ỹt given It−1, its conditional
copula density is related to f with the following canonical repre-
sentation (Patton, 2006):

f (y1, t , . . . , ym, t; θ, ϑ |It−1)

= c(u1, t , . . . , um, t; θ, ϑ |It−1)

m
i=1

fi(yi, t; θi|It−1), (2.5)

where c is a conditional copula density function and ui, t =

Fi(yi, t; θi|It−1), i = 1, . . . ,m.
In this paper, we employ the time-varying Student’s t copula

to capture the co-movement between inter-age mortality rates.
First, let TR, ν be a multivariate Student’s t distribution withm×m
correlation matrix R of ν degrees of freedom. An m-dimensional
Student’s t copula function is of the form:

C(u1, t , . . . , um, t; R, ν) = TR,ν(T−1
ν (u1, t), . . . , T−1

ν (um, t)),

where T−1
ν is the inverse function of a univariate standard Student’s

t cdf with ν degrees of freedom. Its associated copula density
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function is defined as

c(u1, t , . . . , um, t; R, ν) = |R|−
1
2
Γ


ν+m
2


Γ


ν
2

 
Γ


ν
2


Γ


ν+1
2

m

×


1 +

1
ν
ζ ′
t R

−1ζt
−

ν+m
2

m
i=1


1 +

ζ 2
i, t
ν

−
ν+1
2

,

where ζt = (ζ1, t , . . . , ζm, t)
′ and ζi, t = T−1

ν (ui, t), i = 1, . . . ,m.
Note that the Student’s t copula degenerates to a Gaussian copula
as ν goes to infinity.

Empirical evidence tends to support the time-varying depen-
dence structure between multivariate financial asset returns. Pat-
ton (2006) first introduces the concept of time-varying copulas
by using transformations of the past observations and an autore-
gressive term to construct time-varying dependence parameters.
Vogiatzoglou (2010) incorporates the dynamic conditional correla-
tion (DCC) proposed by Engle (2002) into a multivariate Student’s
t copula. The DCC matrix Rt of the time-varying Student’s t copula
is of the form:

Rt = diag(Σt)
−

1
2 · Σt · diag(Σt)

−
1
2 , (2.6)

where

Σt = (1 − γ − η) · Q + γ · ζt−1ζ
′

t−1 + η · Σt−1,

Q is an unconditional correlation matrix of ζt , and γ and η are
nonnegative parameters satisfying γ +η < 1. Eq. (2.6) guarantees
that Rt is a correlationmatrix as long asΣt is positive definite. Note
that ifγ = η = 0 thenΣt = Q andRt = diag(Q )−

1
2 ·Q ·diag(Q )−

1
2 ,

the correlation matrix of the (static) Student’s t copula. Therefore,
the (static) Student’s t copula (γ = η = 0), the Gaussian copula
(γ = η = 0 and ν → ∞) and the time-varying Gaussian copula
(ν → ∞) are special cases of the time-varying Student’s t copula.

2.3. Calibration of copula-AR-GARCH mortality models

Eq. (2.5) is for the sole random vector Ỹt = (Y1, t , . . . , Ym, t)
given It−1. To apply the time-varying dependence structure to our
case (see Fig. 2), consider T − (T1 +n)+1 random vectors Ỹt given
It−1, t = T1 + n, . . . , T . Let m be the length of the age span, and
Yi, t = ε

(n)
xi, t = ϵ

(n)
xi, t/σ

(n)
xi, t by (2.3), i = 1, . . . ,m and t = T1 +

n, . . . , T , for each of n = 1, . . . , T2−T where xi is the ith age in the
age span, ϵ(n)

xi, t = ln(mxi, t)−[a(n)
xi +b(n)

xi ×ln(mxi, t−n)] from (2.2), and
σ

(n)
xi, t follows (2.4). Since Ỹt |It−1, t = T1+n, . . . , T , are independent,

the log-likelihood function of
T

t=T1+n f (y1, t , . . . , ym,t; θ, ϑ |It−1)
by (2.5) is

T
t=T1+n

ln[f (y1, t , . . . , ym, t; θ, ϑ |It−1)]

=

T
t=T1+n

m
i=1

ln[fi(yi, t; θi|It−1)]

+

T
t=T1+n

ln[c(u1, t , . . . , um, t; θ, ϑ |It−1)]. (2.7)

The first term on the right-hand side involves the marginal pa-
rameter sets θ1, . . . , θm, and the second term involves both the
marginal parameter set θ =

m
i=1 θi and the copula parameter

set ϑ; the input of conditional copula density is obtained by the
integral transform which needs the calibrated marginal parame-
ters. It is difficult to estimate the marginal parameter set θ and the
Table 1
The percentages of the total number of the smallest AICs (BICs) over 101 for AR(1).

Gender Male Female
Country AIC/BIC GARCH ARCH WN GARCH ARCH WN

Japan AIC 33% 29% 38% 23% 41% 36%
BIC 17% 27% 56% 12% 32% 56%

UK AIC 5% 47% 48% 4% 41% 55%
BIC 2% 38% 60% 0% 26% 74%

USA AIC 6% 28% 66% 10% 20% 70%
BIC 1% 21% 78% 3% 11% 86%

Note: 101 = 101 · 1 from 101 ages (x = 0–100) and n = 1.

copula parameter set ϑ simultaneously via the maximum likeli-
hood estimation from (2.7). Instead, we employ the inference func-
tions for margins (IFM) method proposed by Joe and Xu (1996) to
estimate the parameters of a copula-AR-GARCH mortality model.
The IFM method is highly efficient and easy to implement, and is
widely used in the literature; see, for example, Patton (2006), Oki-
moto (2008), Guégan and Zang (2010), Garcia and Tsafack (2011),
Kenourgios et al. (2011), and Kumar and Okimoto (2011). The IFM
estimation technique involves two steps:
Step 1: For the first term on the right-hand side of (2.7), we
calibrate the relevant parameter set θj for the conditional marginal
distribution fj via the maximum likelihood estimation (MLE) by

θ̂j = argmax
θj

T
t=T1+n

m
i=1

ln[fi(yi,t; θi|It−1)], j = 1, . . . ,m.

In view of the equation above, we can estimate the marginal
parameter set θj separately as θ̂j = argmaxθj

T
t=T1+n ln[fj(yj,t;

θj|It−1)] for each of j = 1, . . . ,m.

Step 2: Using θ̂ =
m

i=1 θ̂i with θ̂j, j = 1, . . . ,m, obtained from
Step 1, we can estimate the copula parameter set ϑ by MLE from
the second term on the right-hand side of (2.7). Specifically, given
the calibrated marginal parameter set θ̂ =

m
j=1 θ̂j, the copula

parameter set ϑ is obtained by

ϑ̂ = argmax
ϑ

T
t=T1+n

ln[c(u1,t , . . . , um,t; θ̂ , ϑ |It−1)].

Finally, the IFM estimator is defined as Θ̂IFM = (θ̂ , ϑ̂).

3. Fitting the models

In the section, we fit our models using mortality data for both
genders of Japan, the UK, and the USA available from the Human
Mortality Database. Sixty yearly central death rates for each gender
and country are obtained by dividing the yearly observations
of age-specific death numbers by the matching population sizes
exposed to the risk of death from 1950 to 2009.

We first estimate the parameters a(n)
x and b(n)

x in (2.2) with the
logarithm of central death rates for the period 1950–2000 and
the age span 0–100, and then forecast the mortality rates over
the period 2001–2009 in the next section. That is, T1 = 1950,
T = 2000, T2 = 2009, and n = 1, . . . , 9. Two most common
criteria, Akaike Information Criterion (AIC) and Bayes Information
Criterion (BIC), are adopted for each of (x, n), x = 0, . . . , 100 and
n = 1, . . . , 9, to find the best goodness of fit among theAR-GARCH,
AR-ARCH and AR-WN models. Thus, for each model, there are to-
tally 101(=101 · 1) values under the AR(1) and 909 (=101 · 9) val-
ues under the AR(n) for each of AIC and BIC. The smallest AIC or BIC
means the best goodness of fit. For eachmodel, we display the per-
centages of the total number of the smallest AICs (BICs) over 101 for
the AR(1) and over 909 for the AR(n) in Tables 1 and 2, respectively.
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Table 2
The percentages of the total number of the smallest AICs (BICs) over 909 for AR(n).

Gender Male Female
Country AIC/BIC GARCH ARCH WN GARCH ARCH WN

Japan AIC 25% 34% 41% 18% 24% 58%
BIC 15% 27% 58% 8% 18% 74%

UK AIC 6% 24% 70% 7% 23% 70%
BIC 2% 17% 81% 1% 16% 83%

USA AIC 11% 58% 31% 10% 57% 33%
BIC 5% 53% 42% 3% 51% 46%

Note: 909 = 101 · 9 from 101 ages (x = 0–100) and n = 1, . . . , 9.

In terms of AIC for the AR(1) in Table 1, both the GARCH and
ARCH models totally take 62% for Japan males and 64% for Japan
females, 52% for the UKmales and 45% for the UK females, and 34%
for the USA males and 30% for the USA females; in terms of AIC for
the AR(n) in Table 2, both the GARCH and ARCH models take 59%
for Japan males and 42% for Japan females, 30% for both genders of
the UK, and 69% for the USA males and 67% for the USA females.
In terms of BIC, although the GARCH and ARCH models get much
lower percentages, they still have 44% for both genders of Japan
and 40% for the UKmales under the AR(1), and 42% for Japanmales
and 58% (54%) for the USA males (females) under the AR(n). Thus,
considering the conditional heteroskedasticity in (2.2) is crucial
in fitting mortality data for both genders of the three countries.
Besides, except for the AIC case for Japan males under AR(1), the
percentages in Tables 1 and 2 for the ARCH model are higher than
those for the GARCH one.

Fig. 4 illustrates the real and fitted mortality rates for males of
Japan, the UK, and the USA with x = 45 and 85 under the AR-
GARCH, AR-ARCH and AR-WN models with n = 1 and 5. We find
some features of the models as follows. First, the fitted mortality
rates for each model with n = 1 largely imitate the true ones;
the shape of the fitted mortality rates for each model with n = 5
still copies that of the true ones but induces a longer time lag. The
similarity between the real and fitted mortality rates reasonably
decreases in n. Moreover, the differences between the models be-
come apparent with n = 5 for USA males aged 45 and 85 (see
Fig. 4(i) and (l)); even so, the shapes and the trends of the fitted
mortality rates among the three models are still very similar in
these cases.
4. Forecasting performance

In this section, we examine the forecasting performances be-
tween the Lee–Cartermodel and ourmodelswith andwithout con-
ditional heteroskedasticity. Tomeasure the error between the true
and forecasted mortality rates, we adopt the MAPE (mean abso-
lute percentage error), a common statistical quantity as used in
D’Amato et al. (2012) and Wang et al. (2013b); specifically,

MAPET+1
x, T2−T =

1
T2 − T

T2−T
n=1

 q̂x, T+n − qx, T+n

qx, T+n

 × 100%.

To evaluate the forecasting performances of our models associated
with the GARCH, ARCH and WN, we set n = 1 in (2.2)–(2.4) for
the AR(1) model and n = 1, . . . , 9 in (2.2)–(2.4) for the AR(n)
model, respectively. We forecast the mortality rates for the years
2001–2009 (T = 2000 and T2 = 2009) for both genders of Japan,
the UK, and the USA with the parameters estimated by the mor-
tality data for the years 1950–2000 (T1 = 1950) under our models
and the Lee–Cartermodel. Since the performance of the Lee–Carter
model in mortality fitting and forecasting depends on the choice
of age span, we choose two age spans. One is the age span 21–85
(from the age of young adults to a life expectancy for some well-
developed countries) which is most adopted to evaluate the fore-
casting performances of mortality models in the literature such as
Haberman and Renshaw (2011); that is, [xL, xU ] = [21, 85]. For
comparisons, we also extend the age span to 21–100 ([xL, xU ] =

[21, 100]).
Tables 3 and 4 display the means and standard deviations of

MAPEs over the age span 21–85, respectively. In the tables, the
GARCH, ARCH and WN columns report the statistics under these
three error structures. Both the means and standard deviations of
MAPEs over six combinations of both genders and three countries
for the GARCH, ARCH and WN under the AR(1) and AR(n) models
are lower than those for the Lee–Carter model except for the AR(n)
model for the USA males. As a result, the averages of the means
and standard deviations of MAPEs over these six combinations are
much smaller than those (12.52% for the mean and 7.11% for the
standard deviation) for the Lee–Carter model. Among the three
error structures, the GARCH under the AR(1) and theWNunder the
AR(n) yield the lowest averages of both the means and standard
deviations of MAPEs. Next, Tables 5 and 6 give the results when
Table 3
Means of MAPEs over ages 21, . . . , 85.

Model AR(1) (%) AR(n) (%)
Country Gender GARCH ARCH WN LC GARCH ARCH WN LC

Japan Male 6.01 6.07 6.13 12.05 5.55 5.71 5.17 12.05
Female 5.84 5.92 5.89 20.50 5.98 6.26 6.44 20.50

UK Male 9.25 9.19 9.00 14.35 7.94 7.96 8.03 14.35
Female 10.62 10.56 11.23 12.90 8.84 8.82 7.69 12.90

USA Male 6.88 6.97 6.48 8.75 12.27 12.11 11.21 8.75
Female 6.43 6.47 6.53 6.57 6.83 6.82 6.29 6.57

Average 7.51 7.53 7.54 12.52 7.90 7.95 7.47 12.52
Table 4
Standard deviations of MAPEs over ages 21, . . . , 85.

Model AR(1) (%) AR(n) (%)
Country Gender GARCH ARCH WN LC GARCH ARCH WN LC

Japan Male 3.07 3.00 3.11 8.28 2.73 2.75 2.16 8.28
Female 2.97 3.00 2.73 11.46 2.93 2.96 3.15 11.46

UK Male 6.49 6.58 6.70 7.66 5.77 5.68 5.53 7.66
Female 6.00 6.03 6.40 6.78 4.54 4.52 4.48 6.78

USA Male 4.01 4.08 3.86 4.79 12.48 12.57 11.81 4.79
Female 2.78 2.85 2.72 3.69 2.10 2.08 2.47 3.69

Average 4.22 4.26 4.25 7.11 5.09 5.09 4.93 7.11



116 T. Lin et al. / Insurance: Mathematics and Economics 61 (2015) 110–124
(a) x = 45, n = 1, Japan. (b) x = 45, n = 1, UK. (c) x = 45, n = 1, USA.

(d) x = 85, n = 1, Japan. (e) x = 85, n = 1, UK. (f) x = 85, n = 1, USA.

(g) x = 45, n = 5, Japan. (h) x = 45, n = 5, UK. (i) x = 45, n = 5, USA.

(j) x = 85, n = 5, Japan. (k) x = 85, n = 5, UK. (l) x = 85, n = 5, USA.

Fig. 4. Real vs. fitted qx,t for males of Japan, the UK and the USA.
the age span is extended to 21–100. Similarly, all of the GARCH,
ARCH, andWN under the AR(1) and AR(n) models produce smaller
means and standard deviations than the Lee–Carter model except
for the AR(n) model for the USA males. Thus, we conclude that the
forecasting performances of the AR(1) and AR(n) models with the
three error structures are quite satisfactory, and both the models
outperform the Lee–Carter model.

As shown in Tables 3–6, the averages of themeans and standard
deviations of MAPEs over the six combinations under both the
AR(1) and AR(n) models do not differ too much nomatter whether
the conditional heteroskedasticity is involved (GARCH and ARCH)
or not (WN). Since themortality rates for the same age x in the next
nth year can be predicted by the AR(n) from (2.2) for that age, the
structure of error terms in (2.4) for each age x and each n can be
different. Thus, even if we adopt the AR(1) or the AR(n) with the
best fitted error structure producing the lowest AIC or BIC among
GARCH, ARCH andNW for each age x and each n, which is labeled as
MIX (amixture of GARCH, ARCH, andWN), themeans and standard
deviations of MAPEs also do not differ too much among the three
error structures and their mixture. The forecasting performances
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Table 5
Means of MAPEs over ages 21, . . . , 100.

Model AR(1) (%) AR(n) (%)
Country Gender GARCH ARCH WN LC GARCH ARCH WN LC

Japan Male 6.41 7.06 7.86 11.93 5.49 5.90 5.68 11.93
Female 5.84 6.24 6.95 21.33 6.04 6.47 6.67 21.33

UK Male 10.27 10.32 10.53 13.39 8.47 8.58 8.66 13.39
Female 10.05 9.99 10.91 11.20 8.11 8.11 7.22 11.20

USA Male 6.83 6.91 6.56 8.05 11.05 10.92 10.17 8.05
Female 6.10 6.12 6.16 6.14 6.24 6.24 5.81 6.14

Average 7.58 7.77 8.16 12.01 7.57 7.70 7.37 12.01
Table 6
Standard deviations of MAPEs over ages 21, . . . , 100.

Model AR(1) (%) AR(n) (%)
Country Gender GARCH ARCH WN LC GARCH ARCH WN LC

Japan Male 3.35 4.38 5.17 8.29 2.92 3.38 3.60 8.29
Female 3.26 4.17 5.47 11.57 2.84 2.99 3.20 11.57

UK Male 6.39 6.54 6.95 7.96 5.39 5.33 5.22 7.96
Female 5.60 5.61 5.88 7.06 4.39 4.36 4.19 7.06

USA Male 3.84 3.91 3.75 4.52 11.59 11.65 10.92 4.52
Female 2.68 2.73 2.63 3.04 2.30 2.27 2.47 3.04

Average 4.19 4.56 4.97 7.08 4.91 5.00 4.93 7.08
between the AR(1) and AR(n) depend on the data; for example, the
AR(1) is more suitable for the USA, and the AR(n) outperforms the
AR(1) for the UK.

Figs. 5, 6 and 7 give plots of the real mortality rates and the
forecasted ones associatedwith 90% confidence intervals (CIs) over
nine years (2001–2009) for males aged 45, 55, 65, and 75 of Japan,
the UK and the USA, respectively. The forecasted mortality rates
and CIs are produced by the Lee–Carter model based on the age
span 21–85 and by the AR(1) model with the GARCH and WN
error structures (left column) and the AR(n) model with the MIX
(the error structure is selected with the lowest AIC among GARCH,
ARCH and WN) and WN error structures (right column). First, we
find that the forecasted mortality rates under the AR(n) model,
especially the MIX one, tend to imitate the trend and volatility
of the true ones, whereas those under the AR(1) and Lee–Carter
models are always approximately linearly decreasing. For example,
for the Japan males aged 65 (shown in Fig. 5(f)), the predicted
mortality rates under the AR(n) with the MIX capture the trend of
the real ones.

Second, the upper and lower bounds of 90% CIs under the
Lee–Cartermodel also linearly decrease as the forecastedmortality
rates do, and its CIs become wide with time. The CIs under the
AR(1) model with the GARCH and WN also become wide since the
variance of the forecastedmortality rate for each of the next n years
is recursively obtained by Var[

n−1
h=0(b̂

(1)
x )h × ϵ

(1)
x, T+n−h] which is

increasing in n where ϵ
(1)
x, T+n−h follows (2.3) and (2.4) with n = 1,

whereas those under the AR(n) model with theMIX andWNdo not
necessarily widenwith time because the variance of the forecasted
mortality rate for the next nth year can be directly obtained as
Var[ϵ(n)

x, T+n] by applying (2.3) and (2.4) one time. Therefore, the
CIs under the AR(1) are reasonably wider than those under the
AR(n). Notwithstanding the narrower CIs for AR(n) than AR(1),
the AR(n) produces quite satisfactory coverage of the forecasted
mortality rates. Besides, the error structures under the AR(1) and
AR(n) also contribute to confidence intervals with different width.
However, which kind of error structure can produce narrower or
wider CIs depends on the mortality data; for example, the GARCH
produces wider CIs than the WN for Japan males aged 55 but
narrower ones for age 65 under the AR(1) model (see Fig. 5(c) and
(e), respectively).
Since the forecasted mortality rates are closer to the real ones
under our AR(1) or AR(n) models, the forecasted mortality rates
can be almost fully covered by corresponding CIs except for UK
males aged 55 (see Fig. 6(d)), and USA males aged 55 (see Fig. 7(c)
and (d)). On the contrary, whether the forecasted mortality rates
under the Lee–Carter model can be covered varies case by case
due to that the forecasted mortality rates are sometimes far away
from the real ones. For example, the CIs under the Lee–Carter
model cannot cover the forecastedmortality rates for the UKmales
aged 65 and 75 (see Fig. 6(e) and (g)) and for the USA males
aged 45 (see Fig. 7(a)), whereas the CIs can give the full coverage
of the forecasted mortality rates for the USA males aged 65 (see
Fig. 7(e)).

Wemake a summary of the results from Tables 3–6 and Figs. 5–
7. First, the AR(1) and AR(n) both yield more accurate forecasted
mortality rates with more satisfactory confidence intervals than
the Lee–Carter model. Second, the confidence intervals under the
AR(1) are obviously much wider than those under the AR(n), but
the coverage of the forecasted mortality rates for the AR(n) is not
necessarily worse than that for the AR(1); the confidence intervals
also vary with the error structures. Since the confidence intervals
with different width can produce different risk-based capitals
required to avoid the financial distress resulted from longevity
risk, we will analyze Value at Risk (VaR) for longevity risk under
the AR(1) and AR(n) with error structures and inter-age mortality
dependence in the following section.

5. Value at risk for longevity risk

Since life insurers price products according to their estimated
mortality rates, it is important to care about how much loss they
may suffer from the difference between the real mortality rates
and the estimated ones. In particular, the modern society is facing
the problem of a rapidly aging population, which poses a big
threat to annuity providers and pension funds. The goal of the
following subsections is to study and quantify the possible losses
incurred by longevity risks under our models with and without
conditional heteroskedasticity, respectively, in life annuities and
pension annuities. Furthermore, we take a dependence structure
between mortality rates for different ages into consideration with
the copula method. Because the estimated losses can be regarded
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(a) x = 45. (b) x = 45.

(c) x = 55. (d) x = 55.

(e) x = 65. (f) x = 65.

(g) x = 75. (h) x = 75.

Fig. 5. Real vs. forecasted qx,t with 90% confidence intervals for Japan males AR(1) (left column) and AR(n) (right column).
as the additional reserves for life insurers to remain solvent
when they expose to longevity risks, we quantify these losses by
employing VaR (Value at Risk) and CVaR (Conditional Value at
Risk), and show the effects of conditional heteroskedasticity and
the mortality dependence on them.

5.1. Testing mortality dependence

In the section, we use the mortality data for both genders aged
65–89 of Japan as an example. First, we estimate the parameters
using the longest sample period 1947–2009 available from the
HMD, and then forecast the mortality rates for 2010–2034; that
is, we reset T1 = 1947, T = 2009, T2 = 2034, and n = 1, . . . , 25.
Moreover, we adopt the fitting and forecasting results with the
sole WN and a mixture of GARCH, ARCH, and WN where the error
structure is determined by the AIC.

Second, we test the best goodness of fit among four mortality
dependence structures: the static Gaussian copula, the time-
varying Gaussian copula, the Student’s t copula, and the time-
varying Student’s t copula for each n. Table A.1 in the Appendix
reports the testing results of LLF (log-likelihood function), AIC and
BIC. Table 7 summarizes the percentages of the total number of
the best goodness of fit over 25 for each dependence structure
based on AIC and BIC, respectively.We find that the static Gaussian
is usually the best choice because it takes the largest portions in
AIC and BIC (44% in AIC and 56% in BIC for males; 56% in AIC and
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(a) x = 45. (b) x = 45.

(c) x = 55. (d) x = 55.

(e) x = 65. (f) x = 65.

(g) x = 75. (h) x = 75.

Fig. 6. Real vs. forecasted qx,t with 90% confidence intervals for UK males AR(1) (left column) and AR(n) (right column).
Table 7
The percentages of the total number of the best goodness of fit over 25 for each
dependence structure.

Copula Static Gaussian Time-varying
Gaussian

Student’s t Time-varying
Student’s t

Panel A: male

AIC 44% 20% 12% 24%
BIC 56% 20% 20% 4%

Panel B: female

AIC 56% 12% 24% 8%
BIC 68% 4% 24% 4%
68% in BIC for females). In order to further enhance the statistical
comparisons, the likelihood ratio test is conducted for two nested
models to determine if the null model (static Gaussian copula) is
more appropriate than each of the three alternative models (time-
varying Gaussian copula, Student’s t copula, and time-varying
Student’s t copula) since the static Gaussian copula is a special case
of the other three structures; the results are displayed in Table A.2
in the Appendix.We find that the likelihood ratio test fails to reject
the static Gaussian copula at a 1% significance level for most n
values. As a result, using the static Gaussian copula to capture
the inter-age mortality dependence structure is appropriate. For
the simplicity, we adopt the static Gaussian copula for the AR(n)
in the applications of calculating VaR values for longevity risk in
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(a) x = 45. (b) x = 45.

(c) x = 55. (d) x = 55.

(e) x = 65. (f) x = 65.

(g) x = 75. (h) x = 75.

Fig. 7. Real vs. forecasted qx,t with 90% confidence intervals for USA males AR(1) (left column) and AR(n) (right column).
Sections 5.2 and 5.3. Since Table A.1 in the Appendix shows that
the time-varying Gaussian copula is the best choice for n = 1, we
take the time-varying Gaussian copula for the AR(1) in the same
applications.

5.2. Life annuities

Consider a life annuity immediate that pays $1 at the end of
each year as long as the insured is alive. To examine the effect of
longevity risk, we ignore the interest rate risk by assuming that
the pricing interest rate is equal to the actual market interest rate
throughout the section. Moreover, we assume that both mortality
risk and interest rate risk are independent under the measure.
Then, using the above forecasted mortality rates, we calculate the
price (net single premium, NSP) of a life annuity immediate for an
insured aged x at the beginning of year 2010 (i.e., T + 1) as

ax,2010 =

ω−x
k=1

kp̂x, 2010 · vk
2010, (5.1)

where vk
2010 denotes the discount factor of $1 paid in year 2010+k,

kp̂x, 2010, the estimate of kpx, 2010 (the k-year survival probability for
the insured aged x in year 2010), is given by

kp̂x, 2010 = p̂x, 2010 × p̂x+1, 2011 × · · · × p̂x+k−1, 2010+k−1,

k = 1, 2, . . . , ω − x, (5.2)
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Table 8
Prices of life annuities, and α-VaRs and α-CVaRs of the additional reserves for α = 95% for AR(1).

Age HMD MIX with copula MIX WN
x ax,2010 ax,2010 Qx(α) CQx(α) ax,2010 Qx(α) CQx(α) ax,2010 Qx(α) CQx(α)

Panel A: male

65 12.90 13.36 0.3211 0.4076 13.36 0.3959 0.4917 13.25 0.6318 0.7808
75 8.19 8.39 0.2245 0.2757 8.39 0.2685 0.3316 8.31 0.4743 0.5877
85 3.34 3.37 0.0649 0.0799 3.37 0.0760 0.0943 3.34 0.1401 0.1713

Panel B: female

65 14.99 15.60 0.1721 0.2088 15.60 0.2148 0.2655 15.62 0.3548 0.4310
75 9.82 10.14 0.1277 0.1583 10.14 0.1562 0.1929 10.13 0.2925 0.3574
85 3.81 3.85 0.0423 0.0529 3.85 0.0491 0.0609 3.85 0.0814 0.0997
Table 9
Prices of life annuities, and α-VaRs and α-CVaRs of the additional reserves for α = 95% for AR(n).

Age HMD MIX with copula MIX WN
x ax,2010 ax,2010 Qx(α) CQx(α) ax,2010 Qx(α) CQx(α) ax,2010 Qx(α) CQx(α)

Panel A: male

65 12.90 13.50 0.0502 0.0644 13.50 0.0517 0.0656 13.70 0.0727 0.0934
75 8.19 8.52 0.0490 0.0606 8.52 0.0504 0.0636 8.57 0.0764 0.0985
85 3.34 3.38 0.0277 0.0344 3.38 0.0287 0.0357 3.37 0.0543 0.0683

Panel B: female

65 14.99 15.77 0.0249 0.0318 15.77 0.0249 0.0314 15.93 0.0349 0.0452
75 9.82 10.31 0.0567 0.0720 10.31 0.0563 0.0726 10.31 0.0429 0.0553
85 3.81 3.86 0.0245 0.0302 3.86 0.0246 0.0309 3.86 0.0300 0.0378
Table 10
α-VaRs and α-CVaRs of the pension fund for AR(1).

MIX with copula MIX WN

α 99% 95% 99% 95% 99% 95%

tf Panel A: VaR

1 1,648,667 1,171,035 2,877,425 2,068,662 2,931,470 2,112,530
3 1,749,071 1,242,351 3,052,660 2,194,643 3,109,996 2,241,183
5 1,855,589 1,318,010 3,238,567 2,328,297 3,299,395 2,377,671

tf Panel B: CVaRs

1 1,919,344 1,465,200 3,238,315 2,543,341 3,288,930 2,588,492
3 2,036,232 1,554,431 3,435,529 2,698,230 3,489,226 2,746,131
5 2,160,238 1,649,096 3,644,752 2,862,553 3,701,720 2,913,370
and p̂z,y is the predicted one-year survival probability for age z
in year y. We adopt the predicted cohort mortality rate sequence
{p̂x+i, 2010+i : i = 0, 1, . . . , ω − x − 1} for calculating kp̂x, 2010.
We also assume that the interest rate is constant for simplicity, i.e.,
i = 3% and vk

2010 = [1/(1 + i)]k, and set the limiting age ω equal
to 90 such that the mortality rate for age 90, q90, is equal to 1.

Recall that economic capital in finance is the amount of risk
capital required by a firm to secure survival or solvent in a worst
case scenario for some risks. Economic capital is often calcu-
lated as VaR (Value at Risk) or CVaR (Conditional Value at Risk).
By definition, α-CVaR is the expected loss exceeding α-VaR. We
use our AR(1)/AR(n) models associated with the MIX (plus time-
varying/static Gaussian copula) and WN to obtain the distribution
of the forecasted price of life annuity. Let DPx denote the distribu-
tion of the predicted price for x and DPx(α) be the percentile of or-
der α (α is the confidence level) ofDPx. The α-VaR of the additional
reserve for longevity risk is given by

Qx(α) = DPx(α) − ax,2010,

and the α-CVaR is given as

CQx(α) =
1

1 − α

 1

α

Qx(γ )dγ .
Tables 8 and 9 show the prices of life annuities, 95%-VaRs and
95%-CVaRs of the additional reserves for both genders aged 65, 75
and 85 under the AR(1) and the AR(n), respectively. They also dis-
play the prices of life annuities based on the real period mortality
rate sequence for age x in year 2009, {px+i, 2009 : i = 0, 1, . . . , ω −

x−1}, from theHMDas a benchmark for comparisons. The prices of
the annuities under theMIXwith andwithout the copula are equal,
and are not that much different from those under the WN for both
of the AR(1) and AR(n); the prices under our models are all higher
than those using the real periodmortality rate sequence. However,
due to the confidence intervals with different width, the VaR and
CVaR values for the AR(1) aremuch larger than those for the AR(n).
The VaR and CVaR values under the MIX are lower than those un-
der the WN, and the MIX with the copula generally reduces them
further.

5.3. Pension annuities

In this subsection, we build a representative closed pension
fund which includes N0 retirees for both genders aged 65–89,
whose age and gender composition is the portrayal of the Japan
elderly population for year 2009 (the beginning of year 2010 (=T
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Table 11
α-VaRs and α-CVaRs of the pension fund for AR(n).

MIX with copula MIX WN

α 99% 95% 99% 95% 99% 95%

tf Panel A: VaR

1 429,894 294,100 560,806 382,980 698,196 484,052
3 456,074 312,011 594,959 406,303 740,717 513,531
5 483,849 331,013 631,192 431,047 785,826 544,805

tf Panel B: CVaRs

1 484,667 378,455 641,946 490,572 802,277 613,545
3 514,183 401,503 681,040 520,447 851,135 650,910
5 545,497 425,955 722,516 552,143 902,970 690,550
+ 1)); thus, N0 =


g∈{M,F}

89
x=65 n

g
x,2010 where ng

x,2010 is the pop-
ulation size of Japan for the gender g (M for males and F for fe-
males) and age x in year 2010. The pension annuity is also a life
annuity immediate. There are no new entrants into the pension
fund and the premiums (calculated as in Section 5.1) are collected
from these retirees at time 0 when the closed fund commences
(denoted as tf = 0 at the beginning of year 2010). The initial
value of the pension fund’s total assets (premiums collected) at
time 0, A0, equals the present value of the future expected liabil-
ities (1 × Ntf , the population size in year 2010 + tf , tf = 1, 2, . . .),
L0, that is, L0 = A0 =


g∈{M,F}

89
x=65 n

g
x,2010 · agx,2010 where

agx,2010 =
ω−x

k=1 kp̂
g
x, 2010 · vk

2010 by (5.1).
Table A.1
LLFs, AICs, and BICs for testing mortality dependence.

Copula Static Gaussian Time-varying Gaussian Student’s t Time-varying Student’s t
LLF AIC BIC LLF AIC BIC LLF AIC BIC LLF AIC BIC

n Panel A: males

1 1106 −1096 −1086 1116 −1104 −1091 1107 −1096 −1084 1116 −1103 −1089
2 1083 −1073 −1063 1083 −1071 −1059 1083 −1072 −1061 1083 −1070 −1057
3 1084 −1074 −1064 1084 −1072 −1060 1084 −1073 −1062 1084 −1071 −1058
4 1120 −1110 −1100 1120 −1108 −1096 1120 −1109 −1098 1120 −1107 −1094
5 1082 −1072 −1062 1082 −1070 −1058 1082 −1071 −1060 1082 −1069 −1056
6 1163 −1153 −1143 1163 −1151 −1139 1163 −1152 −1141 1163 −1150 −1137
7 1115 −1105 −1095 1115 −1103 −1091 1115 −1104 −1093 1115 −1102 −1089
8 1127 −1117 −1107 1132 −1120 −1108 1127 −1116 −1105 1132 −1119 −1106
9 1120 −1110 −1100 1131 −1119 −1107 1120 −1109 −1098 1131 −1118 −1105

10 1059 −1049 −1039 1059 −1047 −1036 1059 −1048 −1037 1059 −1046 −1034
11 1150 −1140 −1130 1156 −1144 −1132 1150 −1139 −1128 1156 −1143 −1130
12 1041 −1031 −1022 1047 −1035 −1024 1041 −1030 −1020 1047 −1034 −1022
13 1078 −1068 −1059 1078 −1066 −1055 1078 −1067 −1057 1078 −1065 −1053
14 1025 −1015 −1005 1025 −1013 −1001 1025 −1014 −1003 1025 −1012 −1000
15 903 −893 −883 905 −893 −882 904 −893 −883 906 −893 −881
16 1002 −992 −983 1002 −990 −979 1002 −991 −981 1002 −989 −977
17 885 −875 −866 885 −873 −862 888 −877 −867 889 −876 −864
18 869 −859 −850 871 −859 −848 872 −861 −851 874 −861 −849
19 808 −798 −789 808 −796 −785 813 −802 −792 816 −803 −792
20 845 −835 −826 845 −833 −822 849 −838 −829 861 −848 −836
21 869 −859 −851 869 −857 −847 871 −860 −851 871 −858 −847
22 958 −948 −939 958 −946 −936 961 −950 −940 964 −951 −940
23 829 −819 −810 832 −820 −810 830 −819 −810 834 −821 −810
24 871 −861 −853 871 −859 −850 873 −862 −853 873 −860 −850
25 840 −830 −821 840 −828 −818 840 −829 −820 840 −827 −816

No. 0 11 14 0 5 5 0 3 5 25 6 1

n Panel B: females

1 990 −980 −969 1012 −1000 −987 990 −979 −967 1012 −999 −985
2 1021 −1011 −1000 1021 −1009 −997 1021 −1010 −998 1021 −1008 −995
3 1055 −1045 −1035 1055 −1043 −1031 1055 −1044 −1033 1055 −1042 −1029
4 1059 −1049 −1039 1059 −1047 −1035 1059 −1048 −1037 1059 −1046 −1033
5 1049 −1039 −1029 1049 −1037 −1025 1049 −1038 −1027 1049 −1036 −1023
6 1117 −1107 −1097 1117 −1105 −1093 1117 −1106 −1095 1117 −1104 −1091
7 1085 −1075 −1065 1086 −1074 −1062 1085 −1074 −1063 1086 −1073 −1060
8 1063 −1053 −1043 1064 −1052 −1040 1063 −1052 −1041 1064 −1051 −1038
9 1123 −1113 −1103 1123 −1111 −1099 1123 −1112 −1101 1123 −1110 −1097

10 952 −942 −932 953 −941 −929 953 −942 −931 954 −941 −928
11 1050 −1040 −1030 1052 −1040 −1028 1052 −1041 −1030 1054 −1041 −1028
12 961 −951 −942 965 −953 −942 962 −951 −940 965 −952 −940
13 966 −956 −947 966 −954 −943 966 −955 −945 966 −953 −941
14 987 −977 −968 987 −975 −964 987 −976 −966 987 −974 −962
15 847 −837 −828 847 −835 −824 847 −836 −826 847 −834 −822
16 921 −911 −902 925 −913 −901 921 −910 −900 925 −912 −900
17 847 −837 −828 849 −837 −826 848 −837 −827 850 −837 −825
18 844 −834 −825 846 −834 −823 845 −834 −824 847 −834 −822
19 916 −906 −897 916 −904 −893 925 −914 −904 925 −912 −900
20 936 −926 −918 936 −924 −914 954 −943 −933 954 −941 −930
21 896 −886 −877 896 −884 −873 905 −894 −885 905 −892 −881
22 929 −919 −911 929 −917 −907 935 −924 −915 936 −923 −912
23 872 −862 −854 872 −860 −850 876 −865 −856 876 −863 −852
24 905 −895 −886 905 −893 −883 908 −897 −888 908 −895 −884
25 827 −817 −808 830 −818 −808 830 −819 −810 834 −821 −810
No. 0 14 17 0 3 1 0 6 6 25 2 1
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For tf = 1, 2, . . . , Tf , the fund value in year 2010 + tf equals

Atf = Atf −1(1 + Rtf ) −


g∈{M,F}

90
x=65+tf

ñg
x,2010+tf

, (5.3)

where Rtf is the return between time tf −1 and time tf , ñ
g
x,2010+tf

=

ñg
x−1,2010+tf −1 · p̃gx−1,2010+tf −1 is the simulated population size for

gender g and age x in year 2010+ tf with ñg
x−1,2010+tf −1 = ng

x−1,2010

for tf = 1, and p̃gx−1,2010+tf −1 is the simulated one-year survival
probability for gender g and age x − 1 in year 2010 + tf − 1. The
pension fund’s liabilities in year 2010+ tf involving two uncertain
variables ñ and ã are given by

Ltf =


g∈{M,F}

89
x=65+tf

ñg
x,2010+tf

· ãgx,2010+tf
, (5.4)

where

ãgx,2010+tf
=

ω−x
k=1

kp̃
g
x, 2010+tf

· vk
2010+tf .

Simulation of Atf and Ltf involves simulation of p̃gx,2010+tf
for ages

65 and higher and for tf = 1, . . . , Tf under our AR(1) and AR(n)
models with theMIX plus the copula, theMIX and theWN, respec-
tively. Therefore, α-VaRs of the pension fund in year 2010 + tf is
the α percentile of (Ltf − Atf ), and α-CVaRs of the pension fund in
year 2010+tf is the expected loss beyondα percentile of (Ltf −Atf ).
We ignore the interest rate risk again and assume the interest rate
is constant as in Section 5.2 (that is, Rtf = 3% for tf = 1, 2, . . . , Tf ),
and set N0 equal to 107.

The simulation results for tf = 1, 3, 5 are displayed in Tables 10
and 11. As in Tables 8 and 9, the VaR and CVaR values for the
AR(1) are much larger than (about four times on average) those for
the AR(n). The VaR and CVaR values reasonably increase with tf .
Implementing our model with the MIX reduces the VaR and CVaR
values of this pension fund compared to our model with the sole
WNonly, and theMIXwith the copula further reduces these values
to a great extent. As a result, the order (from the highest to the
lowest) in the VaR and CVaR values is the WN, the MIX, and the
MIX with copula. Therefore, from Tables 10 and 11, we can infer
that due to incorporation of conditional heteroskedasticity and/or
mortality dependence structure into our AR(1) and AR(n)models, a
pension funder in Japan can set aside less cash buffer for longevity
risk, and adopting the AR(n) even dramatically curtails the risk-
based capitals.

6. Conclusions

Mortality rates have been improving dramatically, which is a
threat to the financial soundness of annuity providers, retirement
programs and social security systems. In this paper, we propose
age-specific copula-AR-GARCHmortalitymodels. Our AR structure
is analogous to the Lee–Carter model; the prediction under our
model is conditioned on the mortality rate at the current year for
a specific age, and that under the Lee–Carter model is based on the
overall mortality index. We also propose two alternatives of using
AR(n): one is fitting the AR(n) to mortality rates and predicting the
mortality rates for the next nth year; the other is fitting the AR(1)
to mortality rates and predicting the mortality rates recursively
for the next consecutive years. Further, we consider conditional
heteroskedasticity and inter-age mortality dependence structures.

Using mortality data for both genders of Japan, the UK, and
the USA, we demonstrate that the non-Gaussian error structures
(GARCH and ARCH) can improve in-sample goodness of fit of
Table A.2
Statistics of likelihood ratio (LR) test.

n Male Female
LR(tvG) LR(sSt) LR(tvSt) LR(tvG) LR(sSt) LR(tvSt)

1 19 1 19 43 0 43
2 0 0 0 2 0 2
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 1 0 1
8 11 0 11 2 0 2
9 21 0 21 0 1 1

10 0 0 0 2 2 3
11 12 0 12 4 3 8
12 12 0 12 7 0 7
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 4 2 7 0 0 0
16 0 0 0 7 1 8
17 0 5 7 4 2 6
18 4 6 11 4 2 5
19 0 11 17 0 18 18
20 0 9 32 0 35 35
21 0 4 4 0 19 19
22 0 5 13 0 12 14
23 7 3 11 0 9 9
24 0 4 4 0 7 7
25 0 1 1 7 6 15
No. of
significance

6 2 10 4 6 6

* LR(A) = 2 × [ln(the likelihood for the alternative model A) − ln(the likelihood
for the null model)] where A = tvG, sSt and tvSt denote time-varying Gaussian,
static Student’s t , and time-varying Student’s t , respectively, and the null model
is static Gaussian.
** A bold value means that the null model is rejected at a 1% significance level.

the Gaussian one (WN); compared to the Lee–Carter model, our
models also give better performances in out-of-sample projection
and more satisfactory coverage of the forecasted mortality rates
with confidence intervals. Finally, in order to study the effect of
conditional heteroskedasticity and mortality dependence, the VaR
and CVaR measures are employed on the prices of a life annuity
immediate and a demography-based pension fund. Using the
mortality data for both genders of Japan, we show that the static
Gaussian copula usually gives better goodness of fit than the time-
varying Gaussian copula and the static/time-varying Student’s t
copulas. In addition, we illustrate that VaR and CVaR values can be
reduced further by incorporating the time-varying/static Gaussian
copula into the AR(1)/AR(n) models associated with the MIX (a
mixture of error structures from GARCH, ARCH and WN).

To sum up, we contribute to stochastic mortality models in
several major ways. First, our models can be fitted by mortality
data of a single age and then applied to forecasting for that age,
so our models have more flexibility in implementing mortality
fitting and forecasting than the Lee–Carter or CBD based models.
More specifically, we do not re-run the fitting to obtain themodel’s
parameters for forecasting mortality rates when the age span
is changed, whereas the estimated parameters and forecasting
results under the Lee–Carter model in (2.1) depend on the age
span [xL, xU ]. Second, the variance level and the error structures are
taken into account. We propose two approaches, AR(1) and AR(n),
to fitting and forecasting, which produce similar mean forecasts
but quite different variance ones. Li and Chan (2011) state that a
well-qualifiedmortalitymodel not only has goodmeanpredictions
but also prediction intervals with a high degree of coverage. Our
AR(1) and AR(n) models both contribute to good coverage on
forecastedmortality rates and theAR(n) evenproduces satisfactory
coverage with narrower prediction intervals; the non-Gaussian
error structures (GARCH and ARCH) can further improve goodness
of fit of our models. Third, although the parameters under our
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AR-GARCH models are estimated separately for each age, we still
capture the correlations between inter-agemortality rateswith the
copulamethods. In light of the article and the recent literature (see,
for example, Yang and Wang (2013), and Wang and Yang (2013)),
we plan to incorporate multi-country mortality data or cohort-
based concepts into econometrical models such as this article for
further development in the future.
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Appendix

Table A.1 reports the testing results of log-likelihood function
(LLF), Akaike Information Criterion (AIC) and Bayes Information
Criterion (BIC) for each n under the static Gaussian copula, the
time-varying Gaussian copula, the Student’s t copula, and the
time-varying Student’s t copula. Table A.2 displays the results
of likelihood ratio (LR) test between the null model (the static
Gaussian copula) and one of the alternative models (the time-
varying Gaussian copula, the Student’s t copula, and the time-
varying Student’s t copula).
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