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This paper studies the dynamic demand for residential electricity in Taiwan employing a monthly panel data set,
composed of 19 counties and spanning the period from 2007:01 to 2013:12. The partial adjustment model used
addresses the endogeneity of the electricity price that results from the increasing-block pricing. The estimated
results show that there is a significant seasonal difference in the demand for electricity between the summer
and non-summer periods. Both the adjustment speed and own price elasticity during the summer months are
found to be lower than those in the non-summer months due to the hot weather in summer. It is easier for con-
sumers to adjust their electricity consumption in response to the changes in electricity pricing during the non-
summer time. The estimated inelastic short-run and long-run income effects show that electricity is a necessity
for consumers. Moreover, the controversial electricity-conservation policies are found to be ineffective measures
for reducing electricity consumption in Taiwan.
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1. Introduction

Energy-related resources are scarce in Taiwan. The indigenous ener-
gy supply accounts for only around 2% of the total and the remaining
98% must be imported (Bureau of Energy, Taiwan). Around half of the
energy consumption in this island is in the form of electricity. Electricity
consumption per capita was as high as 10,500 kWh in 2013, having
grown by 100% over the previous two decades. To resolve the problems
that result from the huge shortage of indigenous energy in the market,
increasing and volatile international energy costs, CO2 emissions, and
the huge financial deficits recorded by the public electricity utilities
among other things, the government has attempted to improve the
demand-side management of electricity consumption by modifying
electricity policies.

In terms of residential electricity demand, policies such as increasing
the electricity tariff, providing a tariff discount based on energy conser-
vation, launching the energy efficiency rating and labeling system, and
subsidizing the purchase of energy-conservation appliances, have
been advocated and implemented. These policies and proposals, in
fax: +886 2 26209731.
.

particular increasing the electricity tariff and the “Power Tariff Discount
on Energy Conservation IncentiveMeasures,” have, however, stirred up
widespread controversy and led to conflicts among the government, the
general population, industries, and the electric utility.

The electricity price is regulated in Taiwan. It has been adjusted up-
ward several times in the past few years mainly to respond to the in-
creasing and volatile production costs and is planned to be floating in
the very near future. On the one hand, the rising electricity price has
been criticized for aggravating the living burden faced by the general
public and its effect in term of conserving electricity has been
questioned. On the other hand, the “Power Tariff Discount on Energy
Conservation Incentive Measures” have allowed those households
whose average daily electricity consumption has fallen below that in
the same period for the previous year to be entitled to certain tariff dis-
counts. This policy has been aimed at promoting residential electricity
conservation and at reducing the impact of and resistance to the en-
forcement of the rise in the electricity price. Nonetheless, the actual ef-
fect of this policy on electricity conservation is unclear. This is because it
provides the conservation incentive only to existing (not new) electric-
ity users and it might become harder and harder to further conserve
electricity over time. In addition, because of the tariff discounts, this pol-
icy is associated with a revenue loss which worsens the already serious
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Table 1
Legal rate structures in 2007–2013.

Time span Electricity blocks
(kWh per month)

Summer rate
(NT$/kWh)

Non-summer rate
(NT$/kWh)

2007.01–2008.06 1–110 2.10 2.10
111–330 2.73 2.415
331–500 3.64 2.90
501 and above 3.74

2008.07–2008.09 1–110 2.10 2.10
111–330 2.87 2.54
331–500 3.85 3.09
501–700 4.11 3.24
701 and above 4.47 3.48

2008.10–2012.05 1–110 2.10 2.10
111–330 3.02 2.68
331–500 4.05 3.27
501–700 4.51 3.55
701 and above 5.10 3.97

2012.06–2013.09 1–120 2.10 2.10
121–330 3.02 2.68
331–500 4.39 3.61
501–700 4.97 4.01
701 and above 5.63 4.50

2013.10–2013.12 1–120 2.10 2.10
121–330 3.02 2.68
331–500 4.39 3.61
501–700 5.44 4.48
701–1000 6.16 5.03
1001 and above 6.71 5.28

Notes: 1. Summer denotes the time period from Jun. 1 to Sep. 30; Non-summer denotes all
other days of the year.
2. In 2013, NT$ 29.77 = US$ 1 (Central Bank, Taiwan).

2 The price variable used by Holtedahl and Joutz (2004) was the annual average real
price of electricity per kilowatt hour for all sectors, which was not specific to the residen-
tial sector. The price variable employed by Su et al. (2011) was the ex post average elec-
tricity price that was obtained with the electricity expenditure divided by electricity
consumption. The price variable so derived tends to distort the actual rate structures. Be-
cause the electricity consumption and expenditure are influenced by various factors,
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problem of the financial deficit generated by the utility. Exactly what
the empirical effect of this policy might be deserves further research.
Therefore, the unknown effects of the price and discount-incentive pol-
icies motivate us to estimate the empirical demand for electricity. The
price and income elasticities of demand for electricity are essentialmea-
sures describing the behavior of consumers and the empirical results
can be used to examine the policy effects aswell as provide us with use-
ful policy implications.

There exist few studies that estimate the electricity demand function
for the case of Taiwan. Holtedahl and Joutz (2004) used Taiwan annual
time-series data for the period 1955–1995 to estimate the residential
electricity demand. Su et al. (2011) used a household data set with
monthly average variables for the period from January 2009 to August
2010. Hsueh (1988) pooled household data from 1982 and 1986 (sum-
mer and winter, respectively) to perform the estimation. This paper
aims to improve the literature from the points of view of data collection,
the treatment of seasonality, the endogeneity of the electricity price,
and the specifications of the empirical model.

First, the samples that the above three papers applied are either
based on time series or cross-sectional data sets. In this study, we in-
stead collect a panel data set composed of monthly county-level aggre-
gate data spanning the period from January 2007 to December 2013.
This large and richer data set allows us to explore the electricity demand
both over time and across regions. In particular in recent years, the eco-
nomic and energy environments and relevant policies have varied dra-
matically in Taiwan and around theworld. Our newer data set is able to
offer more accurate information on consumer behavior and allow us to
examine the effects of recently implemented electricity-conservation
policies.

Second, by taking advantage of monthly data, we can study the sea-
sonality of electricity consumption. Because the peak of electricity con-
sumption in a year is concentrated in the summermonths, the regulated
rates in June, July, August, and September (called the summer rates
hereafter) have been higher than those in the non-summer months
(called the non-summer rates hereafter) since 1989. This pricing struc-
ture aims to reduce the possible waste of electricity consumption in the
summer months in addition to reflecting the higher marginal produc-
tion costs. Under different electricity prices and weather conditions, it
is reasonable to expect that the residential electricity consumption pat-
terns differ between the summer and non-summer months. It is thus
crucial to distinguish the demand function in the summer months
from that in the non-summer months, or biased estimates may result.

Third, the rate structure in Taiwan is increasing-block pricing (see
Table 1 for the rate structures promulgated within the time span of
our data set). The co-determination of the price and consumption of
electricity will yield biased and inconsistent estimates when ordinary
least squares (OLS) is used. In this paper, an instrumental variable ap-
proach proposed by Billings (1982) is employed to deal with the simul-
taneity bias.1 This IV method creates a set of constant IVs for each legal
rate structure that corresponds to the Taylor–Nordin specification of
the marginal price and difference parameters (see Nordin (1976) and
Taylor (1975)). It assumes that consumers, instead of taking the effort
to learn how a rate structure works and which block they are applying
at each moment in time, will roughly estimate the whole rate structure
from a linear regression of the theoretical electricity bills to obtain the
price information and consume electricity accordingly. Because the IVs
are predetermined and vary over the rate structures (and not over the
quantities consumed), no feedback regarding the effect of quantity on
price can be obtained. This IV method appears to be appropriate for
the case of Taiwan. The reason is that because the rate structure enforced
1 See Section 4 for the details. This IVmethod is also applied by some recent papers to es-
timate the residential water demand with increasing block pricing (see Agthe and Billings
(1996), Dharmaratna andHarris (2012),Martínez-Espiñeira (2003), andMartínez-Espiñeira
and Nauges (2004)).
on the island is very complicated, it is impossible for households to fully
understand what is the exact marginal price they are charged. In addi-
tion, the IVs can reflect the differences in rate structures among seasons
and years and avoid the problem of simultaneity bias.2

Finally, we specify a dynamic panel data model to estimate the bal-
anced panel data set that covers the county-level, monthly data for 19
counties in Taiwan. It is recognized that household consumption may
be governed by habits. A partial adjustment model of household elec-
tricity consumption appears to be more suitable and this model allows
for serial correlation in the error term.

In sum, in this paper we wish to estimate the price and income elas-
ticities of the demand for electricity in Taiwan and to examine the em-
pirical effects of electricity-conservation policies which are now unclear
and controversial. We use a newer and larger panel data set, consider
the seasonality and the endogeneity of the electricity price, and specify
a dynamic panel data model in our estimation.

The remainder of this paper is organized as follows. In Section 2, we
offer a brief review of the literature. Section 3 discusses ourmodel spec-
ification and related econometric issues. Section 4 describes the data.
The empirical estimation results are discussed in Section 5. Section 6
concludes.
e.g., weather conditions, in addition to the electricity price, this gives rise to an uncertainty
that the average price in the summer months might not be higher than that in the non-
summermonths, as implied by the actual rate structures. Hsueh (1988) applied the IVpro-
cedure used by Henson (1984) to deal with the simultaneity bias arising from the use of
themarginal price. However, the rate structures in the summer and non-summermonths
were the same during the sample period. The only variation in price between seasons
came from the CPI deflator.
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2. Literature review

By using different data sets and price variables for the case of Taiwan,
Holtedahl and Joutz (2004), Su et al. (2011), andHsueh (1988) obtained
very different elasticity estimates. The estimated price elasticities
ranged from −1.7 to −0.15 and income elasticities ranged from 0.026
to 1.04 (see Table 2). It is interesting to know the estimated elasticities
by using a recent panel data set.

In addition, the price elasticity in the non-summermonths (off-peak
electricity demand) was found to be larger than that in the summer
months (peak electricity demand) in absolute value terms. However,
Hsueh (1988)'s estimates were very elastic while Su et al. (2011)'s
were inelastic. Filippini and Pachauri (2004) applied three seasonal
data sets, i.e., winter, monsoon, and summer, to examine the house-
holds' demand for electricity in urban India. The results showed that
electricity demandwas both income- and price-inelastic in all three sea-
sons. The absolute value of the price elasticity in summer (peak electric-
ity demand) was lower than that in the other two seasons. Paul et al.
(2009) employed a state-level panel of monthly observations to esti-
mate the U.S. electricity demand. The estimates of the price elasticities
for the summer, winter, and spring/fall seasons were very inelastic
and exhibited a narrow range of variation.3 From the above literature re-
view, it is shown that the estimated results of the seasonal price elastic-
ities vary with the regions and data sets applied.

With respect to the problem of simultaneity caused by the
increasing-block pricing, although it is a very important issue in the
study of the demand for residential electricity or water with decreas-
ing/increasing block pricing (see, e.g., Wilder and Willenborg (1975),
McFadden et al. (1977), Billings (1982), Henson (1984), Deller et al.
(1986), Nieswiadomy and Molina (1989), and Hewitt and Hanemann
(1995)), most recent papers use the average or marginal price without
considering the endogeneity of the price variable. Their main contribu-
tions lie in the application of more advanced econometric techniques
and more complete data to estimate the electricity demand in different
country/region cases.4 Alberini and Filippini (2011) argued that, at the
aggregate level, the potential for the average price to be endogenous is
mitigated by the presence of many different pricing levels and schemes
in different locales. In Alberini and Filippini (2011) and Alberini et al.
(2011), the endogeneity of price is not considered, while they instru-
ment for price to deal with the problem of measurement error. Two re-
cent papers, Kamerschen and Porter (2004) and Reiss and White
(2005), considered the simultaneity bias problem explicitly. The former
employed a simultaneous equationmodel and the latter used amodel of
endogenous sorting to conduct the estimation.

In this paper,we apply the instrumental variable approach proposed
by Billings (1982) to deal with the problem of simultaneity bias. The IVs
are predetermined by the rate structure and do not vary over the quan-
tities consumed, which also largely overcome the bias occurring due to
errors of measurement of quantity (mis-measurement of quantity
might result in incorrect price obtained under the increasing-block
3 There was some earlier literature which estimated the U.S. monthly/bimonthly resi-
dential electricity demand in the national or state-level data set under declining-block tar-
iffs. The estimates of the price elasticities inMurray et al. (1978), Acton et al. (1980), Parti
and Parti (1980), and Garbacz (1984) exhibited a greater range of variation from inelastic
to elastic in a year, while those of Archibald et al. (1982) exhibited a narrower range of var-
iation with inelastic estimates. There was no consentaneous conclusion for the difference
in seasonality.

4 See for example, Nakajima and Hamori (2010) for case of the United States; Bernard
et al. (2011) for Canada; Blázquez et al. (2013), Moral-Carcedo and Vicéns-Otero (2005),
and Pardo et al. (2002) for the case of Spain; Hondroyiannis (2004) for Greece; Filippini
(2011) for the case of Switzerland; Narayan and Smyth (2005) for the case of Australia;
Nakajima (2010) for the case of Japan; Holtedahl and Joutz (2004) for the case of
Taiwan; Sa'ad (2009), Yoo et al. (2007), and Jung (1993) for the case of South Korea;
Filippini and Pachauri (2004) and Bose and Shukla (1999) for the case of India; Chaudhry
(2012) for the case of Pakistan; and Ziramba (2008) for the case of South Africa, among
others.
pricing). The IVs can also reflect the differences in rate structures
among seasons, years, and regions.

For the estimation of a dynamic panel data model, most of the previ-
ous literature used fixed or random effect models to control for unob-
served heterogeneity. Some recent papers, for example, Alberini and
Filippini (2011), Alberini et al. (2011), Filippini (2011), and Blázquez
et al. (2013), were concerned with the inconsistent and biased esti-
mates of the LSDV (least squares dummy variable) estimator especially
when N (the number of groups) is large and T (the number of time pe-
riods) is small. They turned to apply the generalized method of mo-
ments (GMM; see Arellano and Bond (1991) and Blundell and Bond
(1998)) and the corrected least squares dummy variable (LSDVC; see
Kiviet (1995)) estimator to estimate the dynamic model. In this paper,
after taking the characteristics of the data set into consideration, the es-
timators of GMM and LSDVC are not used. We apply the pooled mean
group (PMG) estimator introduced by Pesaran et al. (1999) to perform
the estimation. The PMG specifies a common long-run coefficient with-
out requiring identical dynamics in each group.

3. Model specification and econometric approaches

According to the household production theory, households purchase
electricitywith appliances to produce services such as cooling/warming
the house, heating the water, and lighting. By maximizing the house-
hold utility subject to its budget constraint, the optimal consumption
of electricity is a function of its own price and the prices of related ener-
gies, household income, household characteristics, and climatic vari-
ables, etc. This desired, or long-run, demand for electricity (Eit⁎) may
be expressed in log form as:

ln E�it ¼ α0 þ α1 ln Pit þ α2 ln Iit þ γ0 lnXit þ uit; i ¼ 1;…;N; t ¼ 1;…; T

ð1Þ

where Pit, Iit, and Xit are the electricity price, household income, and the
vector of other explanatory variables, respectively; α1 and α2 are the
long-run ownprice and incomeelasticities, respectively; and uitdenotes
the error term that may be serially correlated.

However, actual electricity consumption (Eit) may differ from the
long-run equilibrium consumption because the equipment stock/
electricity-using habit cannot be adjusted immediately. The change in
actual demand between any two periods of t − 1 and t is therefore
only some fraction (0 b λ b 1) of the difference between the actual de-
mand in period t − 1 and the long-run equilibrium demand in period
t.5 That is,

ln Eit− ln Eit−1 ¼ λ ln E�it− ln Eit−1
� �

: ð2Þ

The lower the value of the adjustment speed λ is, the longer the elec-
tricity consumption takes to adjust to its long-run optimal level. By
substituting ln Eit⁎ from Eq. (1) into Eq. (2) and rearranging, we obtain
the short-run partial adjustment model:

ln Eit ¼ βE ln Eit−1 þ β0 þ β1 ln Pit þ β2 ln Iit þ δ0 lnXit þ εit; ð3Þ

whereβE=1−λ, β0= λα0, β1= λα1, β2= λα2, δ′=λγ′, and εit= λuit.
In Eq. (3), β1 and β2 are the short-run own price and income elasticities,
respectively. The long-run elasticities of α1 and α2 can be recovered by
α1 = β1/(1− βE) and α2 = β2/(1 − βE).

Eqs. (1) and (2) can also be rearranged into the following equation:

Δ ln Eit ¼ ϕ ln Eit−1− α0 þ α1 ln Pit þ α2 ln Iit þ γ0 lnXit

� �� �þ εit ; ð4Þ

where ϕ = − λ (minus the adjustment speed) and the coefficients in
the parentheses are the long-run coefficients.
5 See Alberini and Filippini (2011) for the details.



6 Using aMonte Carlo approach, Judson andOwen (1999) found that the LSDVCoutper-
forms other estimators. If the LSDVC cannot be implemented, when T = 30, FE performs
just aswell or better than the viable alternatives. In addition, according to their simulation
results (Table 2), in the cases where N = 20 and T = 20 or 30, the average bias of FE is
smaller than that of GMM (one-step and two-step estimations) and OLSwhile bigger than
that of the LSDVC and Anderson and Hsiao estimator; the RMSE of FE is basically lower
than all other estimators apart from that for the LSDVC. However, it should be noted that
the bias of LSDV can be sizeable even when T = 20.

Table 2
Selected empirical studies and price/income elasticities.

Study Type of data coverage Own price elasticity Income electricity

Holtedahl and Joutz (2004) Taiwan annual aggregate data from 1955 to 1995 Short-run: −0.15
Long-run: −0.16

Short-run: 0.23
Long-run: 1.04

Su et al. (2011) Household-level data with time-series (Jan. 2009 to Aug. 2010)
average, Taiwan

Summer: −0.303
Non-summer: −0.526 to −0.366

Summer: 0.407 to 0.434
Non-summer: 0.407 to 0.527

Hsueh (1988) Pooled household data from 1982 and 1986, Taiwan Summer: −1.32 to −1.089
Winter: −1.7

Summer: 0.046 to 0.08
Winter: 0.026 to 0.25

Alberini and Filippini (2011) Annual aggregate data at the state level for 48 U.S. states from
1995 to 2007

Short-run: −0.15
Long-run: −0.73

0.05&

Alberini et al. (2011) Nationwide household-level data for the U.S. from 1997 to
2007

Short-run: −0.736
Long-run: −0.814

Short-run: 0.009
Long-run: 0.01

Nakajima and Hamori (2010) Six types of panel data for 48 U.S. states and the District of
Columbia from 1993 to 2008

−0.34 to −0.12 0.33 to 1

Paul et al. (2009) State-level panel of monthly observations for 48 U.S. states
and the District of Columbia from Jan. 1990 to Dec. 2006

Short-run summer: −0.15
Short-run winter: −0.11
Short-run spring/fall: −0.12
Long-run summer: −0.52
Long-run winter: −0.32
Long-run spring/fall: −0.35

0.11

Reiss and White (2005) Household-level cross-sectional data, 1993 and 1997,
California, USA

−0.39 0.00

Kamerschen and Porter (2004) Nationwide annual data from 1973 to 1998, USA −0.94 to −0.85 0.65 to 0.69
Bernard et al. (2011) Four independent household surveys conducted in 1989,

1994, 1999, and 2002, Quebec, Canada
Short-run: −0.51
Long-run: −1.32

Short-run: 0.08
Long-run: 0.2&

Blázquez et al. (2013) Aggregate panel data at the province level for 47 Spanish
provinces from 2000 to 2008

Short-run: −0.07
Long-run: −0.19

Short-run: 0.23
Long-run: 0.61

Hondroyiannis (2004) Monthly aggregate data for Greece from 1986 to 1999 −0.41 1.56
Filippini (2011) Aggregate data at the city level for 22 Swiss cities from 2000

to 2006
Short-run peak: −0.778
Long-run peak: −2.266
Short-run off-peak: −0.652
Long-run off-peak: −1.652

Short-run peak: 0.035&

Short-run off-peak: −0.106&

Narayan and Smyth (2005) Annual aggregate data for Australia as a whole from 1969 to
2000

Short-run: −0.271 to −0.263
Long-run: −0.541 to −0.474

Short-run: 0.012& to 0.042&

Long-run: 0.323 to 0.408
Nakajima (2010) Panel data for 46 prefectures from 1975 to 2005, Japan −1.204 to −1.127 0.602 to 0.651
Sa'ad (2009) Nationwide time series data from 1973 to 2007, South Korea −0.27 1.33
Yoo et al. (2007) Cross-sectional household data for Seoul, South Korea, 2005 −0.246 0.059
Filippini and Pachauri (2004) Three cross-sectional urban Indian household-level data sets

in 1993–1994 for the winter, summer, and monsoon seasons,
respectively

Winter: −0.42
Summer: −0.29
Monsoon: −0.51

Winter: 0.64
Summer: 0.63
Monsoon: 0.60

Bose and Shukla (1999) Time series data for 9 years (1985/86–1993/94) pooled over
19 Indian states

−0.65 0.88

Ziramba (2008) Annual aggregate data from 1978 to 2005, South Africa Short-run: −0.02&

Long-run: −0.04&
Short-run: 0.30
Long-run: 0.31

Note: & indicates that the figure is not significant at the 10% level.
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To estimate the dynamic panel data demand, there are a number of
alternative estimation methods that vary from the degree of parameter
heterogeneity. At one extreme are the pooled estimators where slope
coefficients and error variances are constrained to be the same. These
estimators include fixed effects (FE), random effects (RE), GMM, and
LSDVC estimators among others. At the other extreme, one can estimate
separate equations for each group—provided that the time-series di-
mension is sufficiently large. All coefficients are fully heterogeneous
and the mean of the estimates is of particular interest. This includes
the mean group (MG) estimator proposed by Pesaran and Smith
(1995). In between the two extremes is the PMG estimator introduced
by Pesaran et al. (1999). This intermediate estimator allows the inter-
cepts, short-run coefficients (including the adjustment speed), and
error variances to differ freely across groups, but constrains the long-
run coefficients to be the same.

Which estimator is more appropriate to use depends strongly on the
sizes ofN and T. The panel data set used in this paper coversN=19 and
T = 84 for the whole sample, and T = 28 for the summer subset and
T=56 for the non-summer subset if we separate the sample according
to the seasonality. These samples are characterized by that bothN and T
are quite large. For this kind of data set, the choice among alternative es-
timators faces a general trade-off between consistency and efficiency.
The pooled estimators dominate the heterogeneous estimators in
terms of efficiency if the slope coefficients are identical. If they are not,
the pooled estimators can give inconsistent and potentially highly
misleading estimates of the coefficients (see Blackburne and Frank
(2007), Loayza and Rancière (2006), Pesaran and Smith (1995), and
Pesaran et al. (1999)).

We employ the FE and PMG estimators to estimate the dynamic
panel data demand. First, the FE estimator is used because it is common-
ly applied bymany studies in the existing literature to estimate residen-
tial electricity demand. The estimated results are of reference value. In
the dynamic panel data model, the variable lnEt − 1 is frequently corre-
lated with the lagged εit. This leads the OLS and FE estimators of βE to be
biased and inconsistent and the bias does not vanish as N increases.
However, as T grows, the FE estimator becomes consistent (the
endogeneity bias → 0 as T → ∞). The value of T is large in our sample.
In fact, the FE estimates are found to outperform the other estimators,
in terms of the root mean square error (RMSE) criterion. On this see,
for example, Judson and Owen (1999),6 Baltagi et al. (2000), Baltagi
et al. (2002), and Flannery and Hankins (2013). It is therefore worth
the effort to estimate the FE results for the electricity demand.
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Second, the PMG estimator allows us to estimate a common long-
run coefficient without making the less plausible assumption of identi-
cal dynamics in each county.7 Therefore, the adjustment speed can be
different among counties in addition to the intercepts. In the long run,
because all counties are close to each other in geographic conditions,
are regulated by similar electricity policies, and share common conser-
vation information and technologies, there are good reasons to expect
that the long-run equilibrium relationships are similar across counties.
The PMG estimator is efficient and consistent if the long-run coefficients
are in fact equal across counties; inconsistent, otherwise. The MG esti-
mator is consistent in either case. We use the Hausman test to compare
the PMG and MG estimates. The result does not reject the long-run ho-
mogeneity and the PMG estimator is preferred.

It should bementioned that several estimators such as the difference
and system GMM estimators and the LSDVC are also applied to estimate
the dynamic electricity demand in some recent papers (see, e.g., Alberini
and Filippini (2011), Alberini et al. (2011), Filippini (2011), and Blázquez
et al. (2013)). However, because both GMM estimators are designed for
situationswith small T and largeNpanels (see Arellano andBond (1991),
Blundell and Bond (1998), and Roodman (2009a)), we do not employ
them to estimate our data set.8 On the other hand, we have employed
the LSDVCmethod to estimate the electricity demand. However, because
of the low within variations in some explanatory variables, such as the
two policy dummy variables and the characteristics of the house and
household, these variables are discarded by the estimation software au-
tomatically. In addition, several coefficients are not significant—a similar
finding by Blázquez et al. (2013).We therefore do not apply the estimat-
ed results of the LSDVC.9

4. Data description

In this study, we compiled a balanced panel data set, including 19
cities and counties in Taiwan, spanning the period from January 2007
to December 2013.10 Monthly residential electricity consumption fig-
ures for each city/county were downloaded from thewebsite of the En-
vironmental Protection Administration.11 These figureswere divided by
the number of electricity-using households in each city/county to yield
the variable for electricity consumption per household (E).

There are ten rate structures, as shown in Table 1, that were applied
in the sample period. Following Billings (1982), the IVs for themarginal
price and difference variable (denoted by PIV andDIV, respectively) were
7 The xtpmg command of Stata is used to estimate Eq. (4).
8 “Aweakness of IV andGMMestimators is that their properties holdwhenN is large, so

they can be severely biased and imprecise in panel data with a small number of cross-
sectional units.” (Bruno, 2005, p. 474). In addition, “…as T rises, the instrument count
can easily grow large relative to the sample size, making some asymptotic results about
the estimators and related specification tests misleading.” (Roodman, 2009b, p. 139).

9 We employ the procedure of xtlsdvc of the Stata software to obtain the LSDVC esti-
mates. The calculation of bias approximations necessitates the use of a preliminary consis-
tent estimator. The initial values required by the xtlsdvc are derived from Anderson and
Hsiao (1982) (AH) or GMMestimators (Arellano and Bond, 1991, ABor Blundell andBond,
1998, BB). We choose the AH estimator to initialize the correction procedure (the AB and
BB are also applied, a memory problem resulting from a large T for both GMM estimators
interrupts the program). The estimated coefficients of the lagged dependent variables are
equal to 0.633 and 0.401 for the summer and non-summer months, respectively. The cor-
responding FE estimates (with the same explanatory variables) are equal to 0.607 and
0.386, respectively. The above two sets of outcomes are similar.
10 Before 2010, there were 25 cities and counties included in the administrative area of
the Taiwan government. There was a large-scale rezoning of some cities and counties that
commenced on December 25, 2010. In this rezoning, Taipei County was upgraded into a
special municipality (New Taipei City), Taichung City and County weremerged into a spe-
cial municipality (Taichung City), Tainan City and County were merged into a special mu-
nicipality (Tainan City), and Kaohsiung City and County were merged into a special
municipality (Kaohsiung City). For this research, three offshore counties, Penghu, Kinmen,
and Lienchiang, were excluded. Thus, there were only 19 cities and counties included in
the sample. It should be noted that all variables have been adjusted adequately to be con-
sistent both before and after the rezoning.
11 Data source: http://ecolife.epa.gov.tw/Cooler/effect/Electricity_Area.aspx. Data on the
website are provided by the Taiwan Power Company (Taipower) to the Environmental
Protection Administration, Taiwan.
obtained. This was done by first calculating the theoretical electricity
bills (TEB) for each rate structure over the range of household electricity
consumption encountered in the data set. For example, the range of E in
our data set is 157 to 645 kWh. Based on 2 kWh increments from 157 to
645 kWh, we obtained 245 (=(645 − 157)/2 + 1) observations of Es
(157, 159,…, 645) and the correspondingly calculated TEBs. These
values of TEB were then regressed against their corresponding E values
to give the fitted values:

TÊB ¼ âþ b̂E:

The estimated intercept (â) represents DIV and the slope estimate of

b̂ (dTEB/dE) reflects PIV. Table 3 presents the corresponding IVs for each
rate structure. It can be seen that the differences in PIV between the time
periodswere aroundNT$0.2; the differences in PIV between the summer
and non-summer months were around NT$0.7.

This IVmethod appears to be appropriate for the case of Taiwan. The
first reason is that the rate structure enforced on the island is very com-
plicated (see Table 1), and it is therefore impossible for households to
fully understand what is the exact marginal price they are charged. In
addition, the accumulated consumption of electricity, bimonthly-
charged bills, and the setting up of electricity meters outside residences
exacerbate the difficulty of knowing the correct marginal price in real
time. Moreover, incentives for consumers to search for the marginal
price might be weak because the ratio of electricity expenditure to in-
come is quite low in Taiwan.12

The second reason is that the commonly used average price in the
literature is not an appropriate price measure in the case of Taiwan
since the electricity utility, the Taiwan Power Company (Taipower),
only publishes the annual average price for all households. Not only
are its between variations negligible and caused only by the CPI deflator,
but its within variations are also not large relative to the variable PIV.
This price measure can neither reflect the price difference between
the non-summer and summer months, nor is it consistent with con-
sumers' perceptions. Although the households do not know the exact
marginal price, they are fully informed of the rate structure that is
higher in the summer months, since this rate discrimination has been
enforced for more than two decades. On the other hand, as indicated
in Footnote 2, the average price which divides the electricity expendi-
ture by electricity consumption is also inappropriate. This average
price does not necessarily reflect a higher tariff in the summer months
than that in the non-summer months as the actual rate structures
suggest.13

On the contrary, the IVs are predetermined by the rate structures
which can reflect the differences in rates among seasons and years.
They can also avoid the endogeneity problem of back feeding the effect
of quantity on price and the problem of measurement error in the elec-
tricity consumption variable.14
12 The ratios of electricity expenditure to final consumption expenditure per household
are 1.38%, 1.35%, 1.42%, 1.43%, 1.39%, 1.31%, and 1.37% for the years 2007 to 2013, respec-
tively (Taipower: http://info.taipower.com.tw/#). It could be expected that the ratio for
electricity expenditure to income per household should be even lower.
13 In a preliminary analysis, we applied the marginal price (without instruments) and
sample averageprice as theprice variable to estimate the electricity demand.We also tried
to use the laggedmarginal prices of one and two periods and the lagged average prices of
one and two periods, respectively, as the instruments of the current electricity price. The
estimated results show positive price elasticities for both price variables and all those
IVs. This implies that those lagged marginal and average prices are likely to be invalid in-
struments and the marginal and average prices (without instruments) are inappropriate
when it comes to estimating Taiwan's electricity demand.
14 Ohsfeldt (1983) noted that the two-part tariff approximation procedure used by
Billings (1982) does not delete the errors-in-variables problem in demand models with
multi-part tariff schedules. Consequently, OLS estimates of demand coefficients tend to
be biased. He suggested that if OLS is used, an errors-in-variables test should be applied
to determine if coefficient estimates are significantly biased. The presence of significant er-
rors requires ones using alternative estimating procedures such as the maximum likeli-
hood method of Burtless and Hausman (1978), in which the likelihood function is
modified to account for the truncation in the error term.

http://ecolife.epa.gov.tw/Cooler/effect/Electricity_Area.aspx
http://info.taipower.com.tw/#


18 Although the government declared that these conservation measures had saved 4.1%
of average electricity consumption per household per month from 2007 to 2011, some
news reported that the total and per household electricity consumptions were in fact in-
creasing and the resulting loss of revenue to Taipower amounted to around NT$30 billion
from 2008 to 2011.
19 Because the data set has been separated into summer and non-summer months and
two policy variableswhich are in essence year dummies have been included in themodel,
we do not further include time dummies (year and monthly dummies) as explanatory
variables to avoid the problem of multicollinearity.
20

Table 3
Instrumental variables for each legal rate structure.

Time span Summer rate
(NT$/kWh)

Non-summer rate
(NT$/kWh)

2007.01–2008.06 PIV = 3.399 PIV = 2.760
DIV = −242.507 DIV = −123.562

2008.07–2008.09 PIV = 3.623 PIV = 2.963
DIV = −280.954 DIV = −158.803

2008.10–2012.05 PIV = 3.851 PIV = 3.159
DIV = −319.387 DIV = −189.834

2012.06–2013.09 PIV = 4.118 PIV = 3.427
DIV = −398.577 DIV = −265.624

2013.10–2013.12 PIV = 4.219 PIV = 3. 527
DIV = −428.579 DIV = −295.627
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The income variable (I) is defined by the monthly virtual income,
which is computed by subtracting the negativeDIV from themonthly dis-
posable income of households. The Nordin difference variable signifies
the difference between the amount a household actually pays for electric-
ity and the amount thehouseholdwould pay if all its electricity consump-

tion were charged at the marginal price (DIV ¼ â ¼ TEB−b̂E). It can be
regarded as a subsidy from the government when the rate structure is
increasing-block pricing.15 From the aspect of the income effect, it is ex-
pected that the higher the income (subsidy), the higher the electricity
consumption will be.

Two climatic variables, the mean temperature (MT) and mean rela-
tive humidity (MRH), are considered to control for the electricity
consumption.16 The climate in Taiwan is marine tropical. The entire is-
land experiences hot, humid weather from June through September
due to the monsoon season and typhoons. The weather is warmer
than that for the South China coastal area because of the effect of the
warm ocean current. Since the weather conditions will affect the elec-
tricity consumption through the electrical appliances, the average num-
bers of air conditioners and dehumidifiers owned per household
(denoted by AC and DH, respectively), are taken into account. Their in-
teractive terms with the climatic variables are included in the estima-
tion equation.17

The price of residential LPG (liquified petroleum gas), PG, is included
as an explanatory variable. Electricity and gas are the twomain energies
consumed in Taiwan's households for cooking, heating water and the
house, and drying clothes. To some extent, they might be substitutes
for each other. The family size (FS) and house size (HS) are taken into
consideration as well. They are expected to have a positive effect on
electricity consumption if no effect of economies of scale exists. We in-
clude the quadratic terms of these two variables to help explain the pos-
sible effect of such scale economies.

Finally, two dummy variables for the electricity-conservation policy
(ECP) are included in the analysis. Since July 1, 2008, theMinistry of Eco-
nomic Affairs, Taiwan and Taipower have carried out the “Power Tariff
Discount on Energy Conservation Incentive Measures” (denoted by
ECP1). Those households whose average daily electricity consumption
falls below that in the same period of the previous year are entitled to
have tariff discounts. There are two main purposes of this measure.
The first one is to promote residential electricity conservation. The sec-
ond one is to reduce the impact and resistance of the enforcement of the
increasing rate structure by the government at that time. Another
15 It is worth mentioning that the variable for the monthly disposable income of house-
holds for cities/counties is not available, and only annual data are available. By applying
the proportional relationships of national GDP among quarters, we adjust the annual
household disposable income to quarterlyfigures.We then divide thequarterly household
disposable income by 3 to obtain the monthly figures.
16 In the literature, cooling degree days (CDD) and heating degree days (HDD) are two
commonly applied weather variables. However, these two variables are not available in
the Climatological Data Annual Report published by the Central Weather Bureau, Taiwan.
17 Because of the problem of multicollinearity, other electrical appliances such as com-
puters, refrigerators, and dryers, are not considered.
measure referred to as “Energy Conservation Competitions in Counties
and Cities” (denoted by ECP2) has been in place since July 1, 2010.
Under this measure, customers living in the cities or counties that win
the top 3 prizes in the nationwide electricity-conservation competition
could enjoy an additional discount of 5%, 10% or 15% in addition to the
basic discounts from the ECP1. The government hopes this measure
could further increase households' willingness to engage in electricity
conservation. It is very important to know whether these ECPs work
or not. These policy effects on electricity conservation are controversial
because they have resulted in a huge loss of electricity revenue, which
has further worsened Taipower's financial deficit.18

Table 4 shows the descriptive statistics for all variables,19 where all
nominal variables have been deflated by the consumer price index
(CPI) with 2006 as the base year. On average, the electricity consump-
tion, electricity and LPG prices, income, mean temperature, and mean
relative humidity are all higher in the summer months than during
the non-summer months.

5. Empirical results

Table 5 presents the empirical results. First, by using the entire sam-
ple without considering the seasonality, we estimate Eq. (3) with the FE
estimator and Eq. (4)with the PMGestimator and the results are shown
in the column “Whole”. The estimates of own price elasticity are signif-
icantly positive regardless of whether the FE or the PMG estimator is
used, which violates the law of demand. In Taiwan, the peak period
for electricity consumption occurs in the summer months. To reduce
the possible waste of electricity consumption and to reflect the higher
marginal production costs of electricity in the summermonths, the gov-
ernment sets a higher rate structure in the summer months. This posi-
tive relationship between the electricity price and quantity consumed
seems to result in the significantly positive estimate of the price elastic-
ity. It appears to be necessary to distinguish summermonths from non-
summer months. We then separate the whole data into the summer
(months including June to September) and non-summer (months
consisting of the remaining months) subsets. These two subsets are es-
timated separately and their parameter estimates are shown in the col-
umns for “Summer” and “Non-Summer”.20

Note that the coefficient estimates of the FE model belong to the
short-run results, while those of the PMG model are the long-run esti-
mates. The coefficients of the lagged variable, price, and income are all
significant with the expected signs for both models and both subsets.
The FE estimates of the adjustment speed are 0.395 (=1 − 0.605) for
the summer period and 0.650 (=1− 0.350) for the non-summer peri-
od. These estimates are similar to those of the PMGestimates (|− 0.399|
and | − 0.645|). Both FE and PMG estimates show that the adjustment
speed in the summer months is slower than that in the non-summer
In fact, we have tested the hypothesis that there is no structural change between the
two subsets. Let D be a seasonal dummy (D = 0 for summer months; D = 1, otherwise).
We then estimate the following model:

ln Eit ¼ ς0 þ ς1 lnPIVit þ ς2 ln Iit þ ς3 ln Eit−1 þ ς0 lnXit þ ξ0Dþ ξ1D ln PIVit þ ξ2D ln Iit
þξ3D ln Eit−1 þ ξ0D lnXit þ εit

and test whether all ξ are simultaneously equal to zero. The p-value of the F test statistic is
very close to zero, such that the null hypothesis of no structural change is rejected.We are
led to conclude that the coefficients of the demand for electricity in the summer months
differ from those in the non-summer months. This supports the separation of the entire
sample into summer and non-summer portions.



Table 4
Descriptive statistics of variables.

Variable Description Unit Mean SD Min. Max. Data source

E Household monthly electricity consumption
(=city monthly residential electricity
consumption/the number of city household
electricity users)

kWh 289.924a 76.099a 157.000a 645.000a City monthly electricity consumption: Taiwan
EPA website, http://ecolife.epa.gov.tw/Cooler/
effect/Electricity_Area.aspx.
Number of city household electricity users:
provided by Taipower

335.754b 84.962b 189.000b 645.000b

267.009c 59.216c 157.000c 546.000c

PIV Instrumental variable for marginal price of
electricity

NT$/kWh 3.166a 0.342a 2.619a 3.798a Derived from the legal rate structures of
electricity3.590b 0.171b 3.189b 3.798b

2.955c 0.164c 2.619c 3.225c

I Monthly household disposable income NT$ 67,147.9a 13,683.9a 44,010.3a 111,520.5a Report on the Survey of Family, Income and
Expenditure, 2007–2013, Directorate-General
of Budget, Accounting and Statistics, Taiwan

67,156.1b 13,673.6b 44,435.3b 109,412.8b

67,143.8c 13,695.4c 44,010.3c 111,520.5c

FS Family size Person 3.233a 0.256a 2.540a 3.750a Same as the above
HS House size Ping 46.513a 7.593a 30.620a 59.247a Same as the above
AC Annual average number of air conditioners

owned per household
One 1.927a 0.363a 1.088a 2.982a Same as the above

DH Annual average number of dehumidifiers
owned per household

One 0.364a 0.284a 0.028a 1.054a Same as the above

MT Monthly mean temperature °C 23.351a 4.522a 12.500a 30.600a Climatological Data Annual Report,
2007–2013, Central Weather Bureau, Taiwan28.095b 1.556b 21.600b 30.600b

20.979c 3.546c 12.500c 28.000c

MRH Monthly mean relative humidity % 75.961a 4.655a 60.000a 93.000a Same as the above
76.571b 4.458b 65.000b 89.000b

75.656c 4.723c 60.000c 93.000c

PG Monthly average price of residential LPG NT$/20 kg 731.949a 73.877a 522.945a 939.843a Bureau of Energy, Taiwan:
http://web3.moeaboe.gov.tw/oil102/733.480b 65.760b 535.766b 918.164b

731.184c 77.637c 522.945c 939.843c

ECP1 Dummy for the first electricity-conservation policy. ECP1 = 1 for the time period of July, 2008 to June, 2010; =0 otherwise
ECP2 Dummy for the second electricity-conservation policy. ECP2 = 1 for the time period since July, 2010; =0 otherwise

Notes: 1. a, b, and c denote figures for the whole sample, summer months (June, July, August, and September), and non-summer months (other remaining months), respectively.
2. For the unit of house size (HS), one ping = 3.3058 square meters.
3. All nominal variables have been deflated by the CPI to be real terms (base year = 2006).

Table 5
Parameter estimates of the electricity demand function.

Whole Summer Non-Summer

Variables FE PMG FE PMG FE PMG

lnEt − 1 0.453⁎⁎⁎ −0.496⁎⁎⁎a 0.605⁎⁎⁎ −0.399⁎⁎⁎a 0.350⁎⁎⁎ −0.645⁎⁎⁎a

(7.31) (−18.35) (6.42) (−6.35) (5.43) (−12.44)
lnPIV 0.451⁎⁎⁎ 0.992⁎⁎⁎ −0.454⁎⁎⁎ −1.130⁎⁎ −0.857⁎⁎⁎ −1.270⁎⁎⁎

(11.57) (12.18) (−3.01) (−2.43) (−8.81) (−7.65)
lnI 0.150 0.156⁎ 0.291⁎⁎ 0.890⁎⁎⁎ 0.205⁎ 0.161⁎⁎

(1.70) (1.67) (2.21) (3.83) (1.84) (2.15)
ECP1 −0.047⁎⁎⁎ −0.113⁎⁎⁎ 0.026 0.061 0.106⁎⁎⁎ 0.144⁎⁎⁎

(−4.80) (−6.20) (1.34) (1.28) (5.81) (6.32)
ECP2 −0.041⁎⁎⁎ −0.106⁎⁎⁎ 0.041 0.099 0.112⁎⁎⁎ 0.146⁎⁎⁎

(−3.46) (−4.81) (1.70) (1.52) (4.91) (6.04)
lnPG 0.016 0.028 −0.024 −0.124 0.039 0.086

(0.72) (0.40) (−0.57) (−0.72) (1.55) (1.34)
lnMT 0.311⁎⁎⁎ 0.657⁎⁎⁎ 1.089⁎⁎⁎ 3.159⁎⁎⁎ 0.270⁎⁎⁎ 0.420⁎⁎⁎

(10.95) (15.80) (5.06) (5.59) (7.62) (13.72)
lnMT × lnAC −0.033⁎⁎ −0.061⁎ −0.016 −0.056 −0.042⁎⁎ −0.032

(−2.43) (−1.75) (−0.71) (−0.72) (−2.24) (−1.13)
lnMRH 0.027 −0.060 0.089 0.443 −0.047 −0.097

(0.48) (−0.61) (0.50) (1.55) (−0.94) (−1.16)
lnMRH × lnDH −0.015⁎⁎⁎ −0.023⁎⁎⁎ −0.007 −0.020 −0.005 −0.003

(−3.57) (−2.70) (−1.60) (−1.00) (−1.20) (−0.43)
lnFS −2.006⁎⁎⁎ −3.518⁎ −0.832 −2.792 −1.362⁎⁎⁎ −2.090

(−3.76) (−1.73) (−1.55) (−0.78) (−3.07) (−1.21)
(lnFS)2 0.979⁎⁎⁎ 1.728⁎ 0.300 1.043 0.613⁎⁎⁎ 0.962

(4.11) (1.91) (1.31) (0.66) (3.31) (1.26)
lnHS −1.389 −0.010 −0.946 4.922 −0.135 1.436

(−0.53) (−0.00) (−0.72) (0.35) (−0.10) (0.28)
(lnHS)2 0.162 −0.019 0.110 −0.660 0.001 −0.212

(0.47) (−0.02) (0.63) (−0.36) (0.01) (−0.32)
Intercept 3.645 1.443⁎⁎⁎ −1.627 −8.577⁎⁎⁎ 2.600 1.525⁎⁎⁎

(0.71) (18.61) (−0.54) (−6.35) (0.91) (11.96)

Notes: 1. ⁎⁎⁎, ⁎⁎, and ⁎ denote significance at the 1%, 5%, and 10% levels, respectively.
2. For the FE estimator, the figures in parentheses are t values; for the PMG estimator, they are z values.
3. a indicates that the figure is the estimate of the adjustment coefficient (ϕ).
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Table 6
Short-run and long-run elasticities.

FE PMG

Short-run Long-run Short-run Long-run

Own price elasticity Summer −0.454 −1.149 −0.451 −1.130
Non-summer −0.857 −1.318 −0.819 −1.270

Income elasticity Summer 0.291 0.737 0.355 0.890
Non-summer 0.205 0.315 0.104 0.161
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months. This difference implies that during summermonths experienc-
inghigh temperatures, theuse of air conditioners is necessary,which re-
quires the consumption of a large amount of electricity. It is difficult for
households to adjust their electricity consumption habits. Conversely,
the weather is relatively cool in the non-summer months. It is thus eas-
ier for people to adjust their electricity consumption habits during those
months. For example, people can increase the pre-set temperatures of
their refrigerators, choose to wear more clothes and stay inside the
house to keep themselves warmwithout relying on heating equipment.
The foregoing measures help save electricity.

Table 6 shows that the estimated FE short-run and long-run own
price elasticities are −0.454 and −1.149 (=−0.454/(1 − 0.605)) re-
spectively for the summer months. For the non-summer months, they
are −0.857 and −1.318 (=−0.857/(1 − 0.350)) respectively. The
PMG estimates of the short-run and long-run own price elasticity are
−0.451 (=− 1.130 × |− 0.399|) and−1.130 respectively for the sum-
mer months; −0.819 (− 1.270 × | − 0.645|) and −1.270 respectively
for the non-summermonths. It is shown that the estimates of price elas-
ticities from the FE and PMG are similar. Although the FE estimator is
hampered by the problem of endogeneity bias under the specification
of dynamic panel data model, this bias seems not a serious problem
for our sample whose number of time periods is quite large. The
endogeneity bias vanishes as T grows.

The estimated price elasticities are higher for the non-summer
months than for the summer months. This result is similar to those of
Su et al. (2011) and Hsueh (1988) for the case of Taiwan and Filippini
and Pachauri (2004) for the case of India. For the summer months, be-
cause of the higher temperatures that require the intense use of air con-
ditioners and air ventilators, the own price elasticity is less than that for
the non-summermonths. However, it is interesting to see that the long-
run difference between the magnitudes of non-summer and summer
price elasticities is less than that exhibited in the short run. This indi-
cates that although it is harder to reduce electricity consumption in re-
sponse to a price increase in summer in the short run, the electricity
conservation can be elastic as the equipment stock and electricity-
using habits can adjust in the long run.

On the other hand, the estimates of price elasticities are inelastic for
the short run and elastic for the long run. Although these estimates look
higher than those in most previous studies on the residential demand
for electricity, they are similar to the findings in Hsueh (1988), Bernard
et al. (2011), and Nakajima (2010) (see the review in Table 2).21 The
higher estimates of the own price elasticity may be attributed to the fre-
quent upward adjustments in rates in the past fewyears. During our sam-
ple period, the first rate structure, which was applied for the period
2007:01 to 2008:06, was initiated on July 1, 2006. Before the rates were
raised, people had become used to the low rates. Later, the rateswere ad-
justed twice within a very short time span (2008:07–2008:10) in addi-
tion to the new specification of higher-priced blocks. Households
expected that the rates would possibly be further increased in response
to the soaring oil price and the huge loss faced by Taipower. In addition,
the electricity pricewill be allowed to float in the very near future. Facing
these changes, peoplewill bemorewilling to change their habits in terms
of electricity usage and switch to electricity-saving appliances. Hence, in
the long run, the effect of price on the electricity consumptionmay there-
fore be large. However, we cannot exclude that this result may be due to
the low between variation of the price variable and the IV approach used
in the empirical analysis. Therefore, these values of price elasticities
should be considered carefully.22
21 In Table 2, the estimates of price elasticity in Filippini (2011) are large. Nonetheless,
his elasticity estimates are not suitable for comparison with our own due to the fact that
what Filippini (2011) estimated was the daily time-of-use price elasticity. Households
can substitute between peak and off-peak electricity consumption in a daywithout reduc-
ing the total electricity demand. We thank an anonymous referee for emphasizing this
point.
22 We thank an anonymous referee for pointing out this problem.
The estimated FE short-run and long-run incomeelasticities are found
to be 0.291 and 0.737 (=0.291/(1− 0.605)) respectively for the summer
months and 0.205 and 0.315 (=0.205/(1− 0.350)) respectively for the
non-summer months. The PMG estimates of the short-run and long-run
income elasticity are 0.355 (=0.890 × |− 0.399|) and 0.890 respectively
for the summermonths; 0.104 (0.161× |− 0.645|) and 0.161 respective-
ly for the non-summermonths (see Table 6). These estimates are consis-
tent with the previous literature. The estimated inelastic short-run and
long-run income effects indicate that electricity is a necessity in people's
everyday lives. It is worth mentioning that there is a seasonal difference
in the income effects. The income effect in summer months is higher
compared to that in the non-summermonths, implying that the increase
in income is likely to result in greater electricity consumption in the sum-
mer months.

As mentioned previously, the performance of the two electricity-
conservation policies (ECP1 and ECP2) is controversial. After controlling
for other factors, our estimates show that the electricity consumptions
are higher during the two periods of time in which the ECPs are imple-
mented, although the effect in the summer months is not significant.

It is worth noting that these ECPs do not provide any electricity-
conservation incentive for new household electricity users. Thus, if the
increase in the electricity consumption of the new as well as some old
users outweighs the reduction resulting from some old users, the elec-
tricity consumption increases overall. In the summer months, because
the electricity is more expensive, the policies are likely to provide
more incentives to households to save electricity. However, in the
non-summermonths, the incentive becomesweaker due to the cheaper
price of electricity so that the ECPs fail to have the expected effects in
terms of reducing average household electricity consumption. In addi-
tion, due to the fact that it is harder and harder for households to con-
serve electricity year after year, the electricity consumed in the period
for ECP2 is a little higher than that in the period for ECP1 (although the
difference is tested to be insignificant). In sum, the ECPs are found to
be ineffective in reducing household electricity consumption and
there are seasonal differences between the summer and non-summer
months.

Turning to the effects of climatic variables on electricity consump-
tion, it is shown that the higher the temperature, the higher the electric-
ity consumption, while the significantly positive effects are relatively
small in the non-summer months. The weather in Taiwan is hot even
in some of the non-summer months, where the mean temperature is
as high as 21 °C.23 Such a high temperature drives people to switch on
their air conditioners, air ventilators, and other electrical appliances to
lower the temperature, which stimulates electricity consumption. The
relative humidity, however, does not have a significant effect on the
electricity consumption. The interactive terms of temperature and the
number of air conditioners owned per household and humidity and
the number of dehumidifiers owned per household are each insignifi-
cant in both the summer and non-summermonths aswell. Thismay in-
dicate that these two variables fail to be good proxies for explaining
electrical appliance usage. The number of appliances neither reflects
23 Note that the non-summer period covers eight months, including different weather
patterns. During months close to the summer months, the average temperature is high.
In the winter time, although the average temperature is lower, the minimummean tem-
perature is as high as 12.5 °C (see Table 4).
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their performance, nor the amount of time that they are used. Unfortu-
nately, these characteristics are not available for the aggregate-level
data.

The effect of family size on electricity consumption is mixed in the
literature. Yoo et al. (2007) and Jung (1993) find evidence of a signifi-
cantly positive effect, Blázquez et al. (2013) and Filippini and Pachauri
(2004) arrive at a significantly negative effect, and Filippini (2011) indi-
cates that the effect is indeterminate. We therefore conjecture that the
relationship between electricity consumption and family size may not
be linear and hence specify a quadratic form of family size. The out-
comes support the view that there is indeed aU-shaped relationship be-
tween the two variables, but it is only significant during the non-
summer months. The turning point occurs at 3 persons per family,
which is a little lower than the average family size in the sample. This
result indicates that the economies of scale merely apply to small fami-
lies of up to 3 persons. The variable for house size has no significant ef-
fect on the consumption of electricity.

Finally, the price of residential LPG, PG, does not have a significant ef-
fect on electricity consumption, irrespective of the summer and non-
summer months. In Taiwan, gas is mainly used for cooking and heating
water for baths. Because the price of electricity is much higher than the
price of gas, the substitution effect of electricity for gaswhen the price of
gas is increasing tends to be weak.

6. Conclusion

In this empirical study, we have examined the residential demand
for electricity in Taiwan, where 98% of the energy supply is imported
and electricity-related policies and regulations are experiencing a tran-
sition. A number of controversies and conflicts have arisen in the past
few years as to whether the building of the fourth nuclear power
plant should be continued, or whether electricity and petroleum prices
should be further increased, as well as how effective the electricity-
conservation measures that have been introduced in fact are. This re-
search may provide important and useful information to policy-
makers with regard to the price and income elasticities of demand for
electricity.

This paper employs a panel data set composed of 19 county-level
aggregate monthly data sets spanning the period from January 2007 to
December 2013. We specify a partial adjustment model with an endoge-
nous electricity price that results from the implementation of increasing-
block pricing. The use of monthly data and instrumental variables for dif-
ferent electricity rate structures (rather than the commonly-used annual
average electricity price) allowsus to study the seasonal effects of electric-
ity demand.

Our empirical results confirm that there are significant seasonal dif-
ferences in the demand for residential electricity between the summer
and non-summer months. Both the speed of adjustment and own
price elasticity during the summer time are found to be lower than
those in thenon-summer timedue to thehigh temperatures. The results
suggest that if the carbon tax is considered in combination with the
electricity price, the government might impose a higher carbon tax in
the non-summer months to effectively reduce electricity consumption
and curb CO2 emissions since CO2 is a pollutant that accumulates.Mean-
while, by doing so the government is able to smooth the electricity ex-
penditure of households over the course of a year because the electricity
price is lower (higher) in the non-summer (summer) months. In addi-
tion, the estimated elastic long-run own price elasticities indicate that
it is possible for governments to effectively reduce residential electricity
consumption by increasing electricity prices in the long run. The esti-
mated inelastic income effects imply that electricity is a necessity for
households. However, the income effect in the summer months is
higher than that in the non-summer months.

Finally, it would be well worth building a large household-level
panel data set on the consumption of electricity in order to generate
more accurate empirical results that help in enhancing the allocative
efficiency of electricity consumption. Specifically, the collection of data
related to electricity-using habits, electrical appliances, conservation
measures, and perceptions of the electricity price, etc. is recommended
due to their being intimately associated with electricity consumption.
Other IV variables, IV approaches, and more advanced econometric
methods could also be employed to deal with the endogeneity of the
price variable under the increasing-block pricing framework.
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