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a b s t r a c t

In the direct boundary element method (BEM), the body-force or its equivalence will reveal itself as a
volume integral that shall destroy the important notion of boundary discretisation. For resolving this
issue, the most elegant approach would be to analytically transform the volume integral to boundary
ones. In the process of such attempt for 3D anisotropic elastostatics, the key lies in analytically
formulating the fundamental solution to a partial differential equation. In this paper, the partial
differential equation is presented in an elliptic form, followed by formulating its analytical solution. In
the BEM analysis, the formulated solution will be a key part to the success of performing exact volume-
to-surface integral transformation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Among all numerical tools, the BEM has been recognized as an
efficient technique due to its distinctive feature that only the
boundary needs to be discretised. This approach has been exten-
sively applied to various disciplines of engineering analysis. How-
ever, when the analysis involves body-force effect, there will
appear a volume integral in the integral equation that will
conventionally require domain discretisation. Undoubtedly, such
mesh discretisation over the whole domain will destroy the
distinctive feature of the BEM. Over the years, a significant amount
of research has been devoted to resolving this issue, for example
the domain fanning approach [1], the particular integral appro-
ach [2], the dual reciprocity method [3], the radial integration
method [4], and the exact transformation method [5]. Among
these approaches, the exact transformation method, abbreviated
as ETM herein, is the most appealing since it is analytically exact.
Although analytically elegant, such approach to deal with 2D
anisotropic elastostatics involving the body-force effect was not
so successful until Zang et al. [6] presented general transformed
boundary integrals. Based on such treatment, Shiah and Tan [7]
further presented the transformed boundary integrals for comput-
ing interior stresses in 2D anisotropic bodies, being subjected to
body forces. Despite the elegance and computational efficiency of

the ETM, such treatment has still remained unexplored for dealing
with body-force in 3D generally anisotropic elasticity ever since it
was proposed decades before. Perhaps, the work by Shiah and
Tan [8] is the only one in the open literature that applies the ETM
to treat the domain integral, albeit for the thermoelastic effect in
3D transversely isotropic bodies.

The main difficulty for applying the ETM to 3D anisotropic
elastostatics involving the body-effect is derived from the math-
ematical complexity of its Green's function. The seminary work for
Green's function of 3D general anisotropic elasticity can be traced
early back to 1947 [9], where it was expressed as a contour integral
around a unit circle on an oblique plane. Since then, lots of
researches have been devoted to deriving more explicit expres-
sions (see e.g. [10–15]). Unlike what the others did previously,
Shiah et al. [16] and Tan et al. [17] implemented the fundamental
solutions presented by Ting and Lee [18] for displacements and
those by Lee [19] for their first-order derivatives to form the
solution of tractions in the BEM analysis for 3D generally aniso-
tropic elasticity. For further simplifying their explicit expressions
and boosting the computational efficiency, Shiah et al. [20]
presented Fourier-series formulations for the fundamental solu-
tions in the BEM analysis. The most appealing advantage of
applying Fourier-series approach principally lies in the simplicity
of the formulations, thus greatly enhancing the efficiency in
computations.

For the present work, the newly introduced fundamental
solution to the partial differential equation, presented in an
elliptical form, is derived to facilitate the ETM. At the end,
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satisfaction of the constrained condition for the new fundamental
solution is demonstrated by numerical tests. As speaks itself, the
fundamental solution formulated plays a crucial role for the ETM,
laying down the cornerstone for treating the body-force effect in
3D anisotropic elasticity.

2. BEM for 3D anisotropic elasticity

Before presenting the fundamental derivations, a brief review
of the direct formulation of the BEM for treating 3D anisotropic
elasticity is outlined first. The boundary integral equation, often
abbreviated as BIE, to relate the nodal displacements uj and
tractions tj on the boundary S is expressed in indicial notation as

Cij uiðPÞþ
Z
S

uiðQ ÞTijðP;Q ÞdS ¼
Z
S

tiðQÞ UijðP;Q ÞdS þ
Z
Ω

XiðqÞ UijðP; qÞdΩ;

ð1Þ
where CijðPÞ is the geometrical coefficient at the source point P on
boundary, Xi denotes the components of the equivalent body-
force, UijðP;Q Þ �U represents the fundamental solutions of dis-
placements, and TijðP;Q Þ stands for the fundamental solutions of
tractions. In Eq. (1), the last term is a volume integral for an
arbitrary field point q in the domain Ω, and direct integration of
the volume integral by any conventional schemes shall require
domain discretisation. Thus, the obvious goal is to transform it into
boundary integrals that will restore the BEM feature of boundary
discretisation. For simplicity, it is denoted by Vj as follows:

Vj ¼
Z
Ω
XiUijðP; qÞdΩ ð2Þ

Computations of U proposed by Ting and Lee [18] have been
discussed in Shiah et al. [16] and thus, only a brief review is
provided herein for completeness. As presented by Ting and
Lee [18], the explicit form of Green's function can be expressed as

UðxÞ ¼ 1
4πr

1
κj j

X4
n ¼ 0

qnΓ̂
ðnÞ
; ð3Þ

where r represents the radial distance between the source point P
and the field point Q; qn, Γ̂

ðnÞ
, and κ are given by

qn ¼

�1
2β1β2β3

Re
X3
t ¼ 1

pnt
pt�ptþ1
� �

pt�ptþ2
� �

( )
�δn2

" #
f or n¼ 0;1;2;

1
2β1β2β3

Re
X3
t ¼ 1

pn�2
t ptþ1ptþ2

pt�ptþ1
� �

pt�ptþ2
� �

( )
f or n¼ 3;4;

8>>>>><
>>>>>:

ð4aÞ

Γ̂
ðnÞ
ij ¼ ~Γ

ðnÞ
ðiþ1Þðjþ1Þðiþ2Þðjþ2Þ � ~Γ

ðnÞ
ðiþ1Þðjþ2Þðiþ2Þðjþ1Þ ði; j¼ 1;2;3Þ; ð4bÞ

κik ¼ Cijksmjms; m¼ ð� sin θ; cos θ;0Þ: ð4cÞ
In Eq. (4c), the spherical angle θ is as defined in Fig. 1; the Stroh

eigenvalues, pi, in Eq. (4a) appear as three pairs of complex
conjugates. These quantities are expressed as

pv ¼ αvþ i βv; βv40 ðν¼ 1; 2; 3Þ ð5Þ
with an over-bar on it denoting the corresponding conjugate. Also,
in Eq. (4c), Cijks are the stiffness coefficients of material. In terms of
the spherical coordinates as shown in Fig. 1, Green's function can
be re-expressed as

Uðr;θ;ϕÞ ¼Hðθ;ϕÞ
4πr

; ð6Þ

where Hðθ;ϕÞ, referred to as the Barnett–Lothe tensor, only
depends on the spherical angles ðθ;ϕÞ as defined in Fig. 1.

Instead of computing the Bartnett–Lothe tensor directly, Shiah
et al. [20] have very recently proposed to rewrite it as a double
Fourier-series as follows:

Huvðθ;ϕÞ ¼
Xα

m ¼ �α

Xα
n ¼ �α

λðm;nÞ
uv ei mθþnϕð Þ u; v¼ 1; 2; 3ð Þ; ð7Þ

where α is an integer large enough to ensure convergence of the
series; λðm;nÞ

uv are unknown coefficients determined, from the theory
of Fourier series, by

λðm;nÞ
uv ¼ 1

4π2

Z π

�π

Z π

�π
Huv θ;ϕ

� �
e� i mθþnϕð Þdθ dϕ: ð8Þ

The integral in Eq. (8) can be numerically evaluated, for
example, by the Gaussian quadrature scheme to give

λðm;nÞ
uv ¼ 1

4

Xk
p ¼ 1

Xk
q ¼ 1

wpwqf
ðm;nÞ
uv πξp;πξq

� �
; ð9Þ

where k is the number of the Gauss abscissa ξp, and wp is the
corresponding weight; f ðm;nÞ

uv θ; ϕ
� �

represents the integrand in
Eq. (8). Each computation of λðm;nÞ

uv requires the evaluation of
Huv θ;ϕ

� �
at points ðπ ξp; π ξqÞ using Eqs. (3)–(5). For large values

of m and n, the rapid fluctuations of f ðm;nÞ
uv θ; ϕ

� �
as shown in Shiah

et al. [20] makes it usually necessary to use a relatively large number
of Gauss points to accurately perform the numerical integrations.
Generally, k¼64 is sufficiently large to guarantee accurate integra-
tions for obtaining convergent Hðθ;ϕÞ of a very generally anisotropic
material. Since the computation of the Fourier coefficients by Eq. (9)
is carried out only once irrespective of the number of field points in
an engineering analysis, the CPU-time for this process is indeed very
trivial in a complete BEM analysis of a problem.

For the first order derivatives of U, denoted by U', the exact
explicit algebraic expressions have been presented by Lee [19].
Instead, U' may be directly formulated by

U0 � Uuv;l ¼
∂Uuv

∂r
∂r
∂xl

þ∂Uuv

∂θ
∂θ
∂xl

þ∂Uuv

∂ϕ
∂ϕ
∂xl

: ð10Þ

By direct differentiations using Eq. (13), the first order deriva-
tives may be readily shown to have the following Fourier-series
forms [20]:

Uuv;l ¼
1

4πr2
Xα

m ¼ �α

Xα
n ¼ �α

λðm;nÞ
uv ei mθþnϕð Þ � cos θ sin ϕ� in cos ϕ

� �
� im sin θ= sin ϕ

" #(

for l¼ 1
Xα

m ¼ �α

Xα
n ¼ �α

λðm;nÞ
uv ei mθþnϕð Þ � sin θ sin ϕ� in cos ϕ

� �
þ im cos θ= sin ϕ

" #

for l¼ 2
Xα

m ¼ �α

Xα
n ¼ �α

λðm;nÞ
uv ei mθþnϕð Þ½� cos ϕþ in sin ϕ

� ��
for l¼ 3: ð11Þ

As explained by Shiah et al. [20], the singularity issue at ϕ¼0
or π in Eq. (11) may be resolved by simply using coordinate

x1

φ

θ

r 

x2

x3 m 

n 
Field

Source

Fig. 1. Unit circle on the oblique plane at the field point.
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transformation and thus, no further discussions are provided on
this. As described in [20], the use of α¼16 will be sufficient to
yield results with great accuracy. By the foregoing Fourier-series
representations, the process of the exact transformation of the
volume integral will be elaborated next.

3. Exact transformation of the volume integral

As has been well known, thermal effect can be treated as
equivalent body-force in the BEM, resulting in an additional
volume integral

Vj ¼ �
Z
Ω
γikΘ;kðqÞUijðP; qÞdΩ; ð12Þ

where γik are the thermal moduli; Θ stands for the temperature
change in anisotropic media. By a very similar treatment as
proposed by Shiah and Tan [7], Eq. (12) may be rewritten as

Vj ¼ �
Z
Ω
ΓikΘ;k ðqÞUij ðP; qÞdΩ; ð13Þ

where the symbol of underline is used to denote definitions in the
new coordinates; Γik are defined by

Γik ¼ K11

ffiffiffiffiffiffi
ω

Δ3

r γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

0
B@

1
CA

ffiffiffiffi
Δ

p
=K11 �K12=K11 α
0 1 β
0 0 γ

0
B@

1
CA:

ð14Þ
In Eq. (14), Kij denote the thermal conductivity coefficients of

the anisotropic medium and the other coefficients are defined as
follows:

Δ¼ K11K22�K12
240; ð15aÞ

α¼ ðK12K13�K23K11Þ=
ffiffiffiffi
ω

p
; ð15bÞ

β¼ ðK12K23�K13K22Þ=
ffiffiffiffi
ω

p
; ð15cÞ

γ ¼Δ=
ffiffiffiffi
ω

p
; ð15dÞ

ω¼ K11K13Δ�K11K12K13
2þK11K12K13K23�K23

2K11
240: ð15eÞ

As has been shown by Shiah and Tan [7] for 2D cases, the
volume integral for problems without heat sources can be analy-
tically transformed to surface ones, expressed as

Vj ¼
Z
S
Γik ΘWijk;t �WijkΘ;t

� �
nt �ΘUijnk

h i
dS; ð16Þ

where Wijk is the new fundamental solution introduced according
to

Wijk;tt ¼Uij;k : ð17Þ

Still, this transformation holds true for 3D cases if the above
condition can be satisfied for the Uij;k , given by Eq. (11). Now, this
brings forth the key part of the ETM process, viz Eq. (17) with the
definition of Eq. (11), whose solution will be derived next.

4. Fundamental solution

As explicated previously, the crucial part to facilitate the
transformation process lies in the solution to the partial differ-
ential equation in Eq. (17). Perhaps, this task seems very unlikely
to achieve when Green's function is expressed as its original
integral form [9]. However, with the recent development for
expressing it as a simple Fourier-series representation [20],
achieving this goal is no more that far away. The first step starts

with expressing Eq. (11) as

Uij;k ¼
1
r2
κijk ðθ;ϕÞ; ð18Þ

where κijk ðθ;ϕÞ is given accordingly by the equation itself. For the
mathematical complexity of Uij;k , the challenge to seek the solu-
tion of Wijk in Eq. (17) is obvious. For solving this partial
differential equation, it is rewritten in the spherical coordinate
system as

∂2Wijk

∂r2
þ2
r

∂Wijk

∂r
þ 1
r2

∂2Wijk

∂ϕ2 þcot ϕ
r2

∂Wijk

∂ϕ
þ 1

r2 sin 2ϕ

∂2Wijk

∂θ2 ¼
κijk ðθ;ϕÞ

r2
;

ð19Þ

where

κijk ðθ;ϕÞ ¼
1
4π

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ei mθþnϕð Þ � cos θ sin ϕ� in cos ϕ

� �
� im sin θ= sin ϕ

" #(

f or k¼ 1;
Xα

m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ei mθþnϕð Þ � sin θ sin ϕ� in cos ϕ

� �
þ im cos θ= sin ϕ

" #

f or k¼ 2;
Xα

m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ei mθþnϕð Þ � cos ϕþ in sin ϕ

� �� �
f or k¼ 3: ð20Þ

From Eq. (19), the Wijk can be written simply as Wijkðθ;ϕÞ,
implying its independence of the radial distance r. Under the
general condition when ϕa0 or π, the factor sin 2ϕ can be
multiplied to the both sides of Eq. (19) to give

sin 2ϕ
∂2Wijk ðθ;ϕÞ

∂ϕ2 þ sin 2ϕ
2

∂Wijk ðθ;ϕÞ
∂ϕ

þ
∂2Wijk ðθ;ϕÞ

∂θ2 ¼ κijk ðθ;ϕÞ sin 2ϕ:

ð21Þ

By making the following change of variables:

η¼ � ln cscϕþ cot ϕ
		 		� � ð22Þ

and assuming

Λðm;nÞ
1 ðθ;ηÞ ¼ 2eη

1þe2η
� �2 2eη� in〈1�e2η〉

� �
cos θþ im sin θ; ð23aÞ

Λðm;nÞ
2 ðθ;ηÞ ¼ 2eη

1þe2η
� �2 2eη� in〈1�e2η〉

� �
sin θ� im cos θ; ð23bÞ

ΛðnÞ
3 ðηÞ ¼ 2

1þe2η
1�e2ηþ in〈2eη〉
� �

; ð23cÞ

ΛðnÞ
4 ðηÞ ¼ 1�e2η

1þe2η
þ i

2eη

1þe2η


 �n

; ð23dÞ

one may re-express Eq. (21) as

∂2Wijk ðθ;ηÞ
∂θ2 þ

∂2Wijk ðθ;ηÞ
∂η2

¼ κijk ðθ;ϕÞ; ð24Þ

where κijk ðθ;ηÞ is defined by

κijk ðθ; ηÞ ¼
�1
4π

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij

2eηþ imθ

1þe2η
ΛðnÞ

4 ðηÞΛðm;nÞ
1 ðθ; ηÞ for k¼ 1;

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij

2eηþ imθ

1þe2η
ΛðnÞ

4 ðηÞΛðm;nÞ
2 ðθ; ηÞ for k¼ 2;

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij

2e2ηþ imθ

1þe2η
� �2ΛðnÞ

4 ðηÞΛðm;nÞ
3 ðηÞ for k¼ 3:

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ
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Taking advantage of the characteristic solution of a linear
elliptic equation, one may give

Wij1 ðθ;ηÞ ¼
1
2π

∬ðs�θÞ2 þðr�ηÞ2 rπ2κij1 ðr; sÞln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�θÞ2þðr�ηÞ2

q
dr ds

¼ �1
8π2

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þe

imðθþ sÞΛðnÞ
4 ðηþrÞI1ðθ;η; r; sÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds; ð26Þ

where

I1ðθ;η; r; sÞ ¼
4e2ðηþ rÞ

1þe2ðηþ rÞ� �3 2eðηþ rÞ � in〈1�e2ðηþ rÞ〉
� �

cos ðθþsÞ

þ im
2eðηþ rÞ

1þe2ðηþ rÞ sin ðθþsÞ ð27aÞ

Bπðθ;ηÞ ¼ ðr; sÞ : ðs�θÞ2þðr�ηÞ2rπ2
n o

: ð27bÞ

As a result, one may obtain

Wij1 ðθ;ϕÞ ¼
�1
8π2

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þe

imðθþ sÞΓnðϕ; rÞJ1 ðθ;ϕ; r; sÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds; ð28Þ

where

Γnðϕ; rÞ ¼
1�ð sin ϕ=ð1þ cos ϕÞÞ2e2r
1þð sin ϕ=ð1þ cos ϕÞÞ2e2r

þ i
2j sin ϕ=ð1þ cos ϕÞjer

1þð sin ϕ=ð1þ cos ϕÞÞ2e2r

" #n

;

ð29aÞ

J1 ðθ;ϕ; r; sÞ ¼
4ð sin ϕ=ð1þ cos ϕÞÞ2e2r

½1þð sin ϕ=ð1þ cos ϕÞÞ2e2r�3
2

sin ϕ
1þ cos ϕ

				
				er

�

� in 1� sin ϕ
1þ cos ϕ


 �2

e2r
* +#

cos ðθþsÞ

þ im
2j sin ϕ=ð1þ cos ϕÞjer

1þð sin ϕ=ð1þ cos ϕÞÞ2e2r
sin ðθþsÞ: ð29bÞ

By the similar treatment, Ŵij2 ðθ;ηÞ is given by

Wij2 ðθ;ηÞ ¼
1
2π

∬ðs�θÞ2 þðr�ηÞ2 rπ2κij2 ðr; sÞln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�θÞ2þðr�ηÞ2

q
dr ds

¼ �1
8π2

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þe

imðθþ sÞΛðnÞ
4 ðηþrÞI2ðηþr;θþsÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds; ð30Þ

where

I2ðη;θÞ ¼
4e2r

1þe2r
� �3 2er� in〈1�e2r〉

� �
sin s� im

2er

1þe2r
cos s: ð31Þ

Thus, with the formulation given in Eq. (30), one has

Wij2 ðθ;ϕÞ ¼
�1
8π2

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þe

imðθþ sÞΓnðϕ; rÞJ2 ðθ;ϕ; r; sÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds; ð32Þ

where

J2 ðθ;ϕ; r; sÞ ¼
4ð sin ϕ=ð1þ cos ϕÞÞ2e2r

½1þð sin ϕ=ð1þ cos ϕÞÞ2e2r�3
2

sin ϕ
1þ cos ϕ

				
				er

�

� in 1� sin ϕ
1þ cos ϕ


 �2

e2r
* +#

sin ðθþsÞ

� im
2j sin ϕ=ð1þ cos ϕÞjer

1þð sin ϕ=ð1þ cos ϕÞÞ2e2r
cos ðθþsÞ: ð33Þ

Also, Wij3 ðθ;ηÞ is given in a similar manner by

Wij3 ðθ;ηÞ ¼
1
2π

∬ðs�θÞ2 þðr�ηÞ2 rπ2κij3 ðr; sÞln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�θÞ2þðr�ηÞ2

q
dr ds

¼ �1
4π2

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þ

e2ðηþ rÞþ imðθþ sÞ

ð1þe2rÞ2
ΛðnÞ

3 ðηþrÞΛðnÞ
4 ðηþrÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds: ð34Þ

In the sequel, the formulation in Eq. (34) gives

Wij3 ðθ;ϕÞ ¼
�1
2π2

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þe

imðθþ sÞΓnðϕ; rÞJ3 ðϕ; rÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds; ð35Þ

where

J3 ðϕ; rÞ ¼
ð sin ϕ=ð1þ cos ϕÞÞ2e2r

½1þð sin ϕ=ð1þ cos ϕÞÞ2e2r �3
1� sin ϕ

1þ cos ϕ


 �2

e2r
"

þ in
sin ϕ

1þ cos ϕ


 �2

e2r
#
: ð36Þ

For brevity, the formulations derived above can be summarised
as follows:

Wijk ðθ;ϕÞ ¼ Ck

Xα
m ¼ �α

Xα
n ¼ �α

λðm;nÞ
ij ∬Bπ ð0;0Þe

imðθþ sÞΓnðϕ; rÞĴk ðθ=ϕ; r=sÞ

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr2

p
dr ds; ð37Þ

where Γnðϕ; rÞ is given by Eq. (29a); C k , Ĵk ðϕ; rÞ are defined by

Ck ¼
�1=8π2 for k¼ 1; 2
�1=2π2 for k¼ 3

;

(
ð38aÞ

Ĵk ðθ=ϕ; r=sÞ ¼
J1 ðθ;ϕ; r; sÞ definedinEq: ð29bÞ;
J2 ðθ;ϕ; r; sÞ definedinEq: ð33Þ;
J3 ðϕ; rÞ definedinEq: ð36Þ:

8>>><
>>>:

ð38bÞ

Up to this point, the newly constructed fundamental solution
has been completed provided with very explicit expressions;
however, there is another issue regarding its numerical computa-
tions needed to be addressed. For numerical implementation in
the BEM, evaluations of the fundamental solutions for millions of
field points may be required and thus, direct computations using
Eq. (37) may incur heavy computation burdens due to the
integration. In principal, the periodic nature of the spherical angles
still holds true for Wijk ðθ;ϕÞ, implying the existence of its Fourier-
series form. For this, one may express it as the following Fourier-
series:

Wijk ðθ;ϕÞ ¼
Xβ

n ¼ �β

Xβ
m ¼ �β

ϖðm;nÞ
ijk eiðmθþnϕÞ; ð39Þ

where

ϖðm;nÞ
ijk ¼ 1

4π2

Z π

�π

Z π

�π
Wijk ðθ;ϕÞe� iðmθþnϕÞ dθ dϕ: ð40Þ

The above integration can be performed using any numerical
scheme, for example the β-point Gauss quadrature rule as follows:

ϖðm;nÞ
ijk ¼ 1

4

Xβ
q ¼ 1

Xβ
p ¼ 1

wpwqf
ðm;nÞ
ijk ðπξp;πξqÞ; ð41Þ

where f ðm;nÞ
ijk represents the integrand in Eq. (40), namely

f ðm;nÞ
ijk ðθ;ϕÞ ¼Wijk ðθ;ϕÞe� iðmθþnϕÞ: ð42Þ

It is worth noting that this process of taking Fourier-series is
performed only once, irrespective of the number of field points
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involved in the BEM analysis. In other words, having determined
its coefficients via Eq. (41), one may directly compute Wijk ðθ;ϕÞ
for arbitrary field points by Eq. (39).

5. Numerical tests

For the test, the quartz with the following stiffness coefficients
[21] defined in its principal directions, denoted by Cn, is selected as
the material:

Cn ¼

87:6 6:07 13:3 17:3 0 0
6:07 87:6 13:3 �17:3 0 0
13:3 13:3 106:8 0 0 0
17:3 �17:3 0 57:2 0 0
0 0 0 0 57:2 17:3
0 0 0 0 17:3 40:765

2
666666664

3
777777775
GPa: ð43Þ

As a result of successively rotating the principal axes by 301, 451,
601 around the x1-, x2-, x3-axis clockwise, the corresponding stiffness
coefficients in the global coordinate system turn out to have a fully
populated matrix form

C¼

111:8 14:8 �5:2 �0:3 11:0 �14:0
14:8 101:8 �7:6 0:4 �0:6 18:9
�5:2 �7:6 129:7 4:4 1:6 0:6
�0:3 0:4 4:4 31:3 2:5 3:6
11:0 �0:6 1:6 2:5 37:9 1:3
�14:0 18:9 0:6 3:6 1:3 55:2

2
666666664

3
777777775
GPa: ð44Þ

For verifying the validity of computations for different materi-
als, the alumina (Al2O3) is selected as the second material for the
check. In the principal directions, it has the stiffness coefficients:

Cn ¼

465 124 117 0 0 0
124 465 117 0 0 0
117 117 563 0 0 0
0 0 0 233 0 0
0 0 0 0 233 0
0 0 0 0 0 170:5

2
666666664

3
777777775
GPa: ð45Þ

The principal axes are rotated by 201, 801, 1501 counterclock-
wise to yield the following generally anisotropic coefficients:

C¼

564:8 113:6 113:7 �3:7 �2:0 �2:0
113:6 471:4 123:5 3:1 �1:7 18:5
113:7 123:5 471:2 3:1 18:4 �1:7
�3:7 3:1 3:1 173:8 9:5 9:3
�2:0 �1:7 18:4 9:5 227:8 �1:8
�2:0 18:5 �1:7 9:3 �1:8 227:8

2
666666664

3
777777775
GPa: ð46Þ

Going through the processes using α¼22, the coefficients of
Wijk ðθ;ϕÞ were computed. Now, the experiment is to check whether
Eq. (17) may be satisfied by the computed coefficients for a few
sample field points. This test was carried out for all 18 independent
sets of Wijk ðθ;ϕÞ with different i, j, k values. The left-hand-side of
Eq. (17) was computed using the central difference scheme based on
Eq. (37), while the right-hand-side was directly by Eq. (11); all
computations are assumed to be performed in the new (underlined)
coordinate system. Table 1 lists the comparison of the W122 ðθ;ϕÞ
computed for a few sample field points using the RHS and LHS of Eq.
(17). Since all the other components of Wijk ðθ;ϕÞ have similar
percentages of difference, only the results for W122 ðθ;ϕÞ are shown
here. As can be seen from the comparison, the percentages of
difference between the both results are insignificant indeed.

For further verifying the validity of the volume-to-surface
integral transformation, the next example considers a 2 (units)�
2 (units)�2 (units) cube as schematically shown in Fig. 2. The
material is arbitrarily assumed to have the following properties:

C¼

468:76 118:27 120:43 �4:41 8:99 11:46
118:27 557:54 85:60 16:23 �7:07 3:36
120:43 85:60 534:09 31:66 5:15 �5:81
�4:41 16:23 31:66 200:48 1:06 �1:67
8:99 �7:07 5:15 1:06 194:11 28:81
11:46 3:36 �5:81 �1:67 28:81 208:21

2
666666664

3
777777775
ðUnitsÞ;

ð47aÞ

γ¼
18:08 1:16 3:02
1:16 16:50 2:81
3:02 2:81 17:67

2
64

3
75ðUnitsÞ;

K¼
25:23 6:67 6:76
6:67 18:15 �1:08
6:76 �1:08 25:69

2
64

3
75ðUnitsÞ: ð47bÞ

Table 1
Comparison between ∇2W122 ðθ;ϕÞ and U12;2 ðθ;ϕÞ for quartz and alumina.

(θ, ϕ) Quartz Al2O3

LHS ð∇2W122Þ RHSðU12;2Þ LHSð∇2W122Þ RHSðU12;2Þ

(1.249046, 0.546376) 1.446653E�04 (0.015%) 1.446434E�04 4.955505E�05 (0.001%) 4.955552E�05
(1.892547, 0.546376) 5.071006E�05 (0.005%) 5.070744E�05 �3.681205E�05 (0.001%) �3.681182E�05
(4.390639, 0.546376) �1.827800E�04 (0.009%) �1.827643E�04 �5.365682E�05 (0.001%) �5.365728E�05
(5.034139, 0.546376) �9.705379E�05 (0.001%) �9.705292E�05 2.318588E�05 (0.002%) 2.318625E�05
(1.249046, �0.546376) 1.827800E�04 (0.009%) 1.827643E�04 5.365635E�05 (0.001%) 5.365682E�05
(1.892547, �0.546376) 9.705292E�05 (0.000%) 9.705292E�05 �2.318550E�05 (0.004%) �2.318643E�05
(4.390639, �0.546376) �1.446644E�04 (0.015%) �1.446425E�04 �4.955459E�05 (0.001%) �4.955505E�05
(5.034139, �0.546376) �5.070936E�05 (0.005%) �5.070682E�05 3.681214E�05 (0.001%) 3.681242E�05
(0.000000, 0.000000) �3.368772E�03 (0.007%) �3.369008E�03 �4.159871E�03 (0.000%) �4.159881E�03
(0.000000, 3.141593) 3.368772E�03 (0.007%) 3.369017E�03 4.159876E�03 (0.000%) 4.159881E�03

x1 

x2 

x3 

2

Fig. 2. A cubic domain defined in the global Cartesian coordinate.
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Temperature field is assumed to be distributed as follows:

Θðx1; x2; x3Þ ¼ ðx1þ3Þðx2�2Þðx3þ5Þ: ð48Þ
Thus, the original volume integral defined in Eq. (12) was

directly integrated using the 100-point Gauss quadrature scheme
to acquire numerical accuracy for comparison. Also, the trans-
formed boundary integrals in Eq. (16) were also computed using
the 8-point Gauss quadrature scheme and the boundary discreti-
sation (24 elements) as shown in Fig. 2. Table 2 lists the results
computed using Eqs. (12) and (16). As can be seen from the
comparison in Table 2, the discrepancies between the both are
indeed very minor, which are mostly due to errors from numerical
integrations.

6. Conclusive remarks

In the BEM analysis, the exact transformation of the additional
volume integral arising from the body-force effect cannot be
achieved unless the new fundamental solution, according to
Green's 2nd-theorem, can be determined. In this paper, the new
fundamental solution for 3D anisotropic elasticity is analytically
derived by solving the partial differential equation obtained from
Green's 2nd-theorem in the spherical coordinate system. The
fundamental solution is formulated in a form of double integral.
For facilitating its computations in the BEM implementation, the
fundamental is further expressed as a Fourier-series, whose
coefficients can be calculated only once, regardless of the number
of field points involved for the computation. The formulations
presented here can be regarded as a cornerstone for completing
the process of the ETM for 3D anisotropic elasticity, and this is still
under development as the future work.
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