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RESET DATES
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This article makes two contributions to the literature. The first contribu-
tion is to provide the closed-form pricing formulas of reset options with
strike resets and predecided reset dates. The exact closed-form pricing for-
mulas of reset options with strike resets and continuous reset period are
also derived. The second contribution is the finding that the reset options
not only have the phenomena of Delta jump and Gamma jump across
reset dates, but also have the properties of Delta waviness and Gamma
waviness, especially near the time before reset dates. Furthermore, Delta
and Gamma can be negative when the stock price is near the strike resets
at times close to the reset dates. © 2003 Wiley Periodicals, Inc. Jrl
Fut Mark 23:87–107, 2003
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INTRODUCTION

Path-dependent options, whose payoffs are influenced by the path of the
prices of underlying assets, have become increasingly popular in recent
years. One of the path-dependent options is the look-back option, whose
payoff depends, in particular, on the minimum or maximum price of the
underlying asset during the option’s lifetime. There is another kind of
path-dependent option known as a reset option. Unlike the look-back
option, the strike price of a reset option will be reset to a new strike price
only on the prespecified reset dates if the price of the underlying asset is
lower than one of the strike resets.

Reset options have been issued in practice for many years. The
Chicago Board Options Exchange (CBOE) and the New York Stock
Exchange (NYSE) both introduced S&P 500 index put warrants with a
3-month reset period in late 1996. Morgan Stanley issued a reset warrant
with an initial strike price of $44.73 in July 1997. The strike price would
be adjusted to $39.76 on August 5, 1997, if the price of its underlying
asset fell below $39.76. A more recent example comes from Taiwan,
where Grand Cathay Securities had six reset options listed on the Taiwan
Stock Exchange (TSE; codes in the TSE are 0517, 0522, 0523, 0527,
0528, and 0538) from 1998 to 1999. Most reset options, including all of
the reset options listed in the TSE, are options with multiple strike resets
and reset dates. For example, the reset condition of 0522 of the TSE is
that the strike price would be adjusted if the 6-day average closing price
of 2323 on the TSE fell below 98%, 96%, 94%, 92%, 90% of the initial
strike price of $81 during the first 3 months after the warrant was issued.

Because the reset warrants are new derivative products in financial
markets, few studies have been done on their pricing problems. Gray and
Whaley (1997) examined the pricing of the put warrant with periodic
reset and the warrant’s risk characteristics. They further provided a
closed-from solution for reset options with a single reset date in a later
paper (Gray & Whaley, 1999). Cheng and Zhang (2000) studied reset
options whose strike price will be reset to the prevailing stock price if the
option is out of money. A closed-form pricing formula in terms of a mul-
tivariate normal distribution is derived under the risk-neutral framework.
However, the reset conditions of reset options investigated by Cheng and
Zhang (2000) are not the general cases of reset products in practice. Let
the underlying asset price at time t be denoted by S(t). The terminal pay-
off of a reset option with n reset dates and initial strike price K0, which
was studied by Cheng and Zhang (2000), is as follows:

(1)C(T) � Max[S(T) � Min[K0, S(t1), . . . , S(tn)], 0]
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In practice, however, the terminal payoff of the reset option is more
often set as

(2)

where

(3)

and are the reset strike prices; are the
strike resets.

Our first contribution in this article is to derive the exact closed-
form solution for reset options with strike resets and predecided reset
dates, as specified in (2) and (3), under the risk-neutral framework.
Furthermore, we also provide the closed-form solution for reset options
with strike resets and continuous reset dates, which is the limiting case
of the former.

Some previous studies, such as Cheng and Zhang (2000), have
pointed out the phenomenon of Delta jump across reset dates. The sec-
ond contribution of this article is the finding that, in addition to Delta
jump, a reset option with strike resets also has the phenomena of
Gamma jump, Delta waviness, and Gamma waviness as well. The wavi-
ness of delta and gamma means that the delta and gamma of reset
options will oscillate when the stock price passes across the strike resets.
When the time is approaching the reset dates and the stock price is near
the strike resets, delta and gamma may change their values from positive
to negative. The phenomena of Delta jump and Gamma jump near reset
time as well as the properties of Delta waviness and Gamma waviness
will make the risk management more difficult.

PRICING RESET OPTIONS WITH m STRIKE
RESETS AND n RESET DATES

We assume the dynamics of underlying asset price are described by the
following stochastic differential equation:

(4)

where u and s� 0 are constants, and is a one-dimensional standard
Brownian motion defined in a filtered probability space (�, F, P). The

Wt

dS(t) � uS(t)  dt � sS(t)  dWt

Di, i � 1, . . . , m,Ki, i � 1, . . . , m,

K* � •K0 if Min[S(t1), . . . , S(tn)] � D1

Ki if Di � Min[S(t1), . . . , S(tn)] � Di�1,�i � 1, . . . , m � 1
Km if Dm � Min[S(t1), . . . , S(tn)]

C(T) � Max[S(T) � K�, 0] � [S(T) � K�]�
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money market account, B(t), corresponds to the wealth accumulated
from an initial $1 investment at spot interest rate r in each subsequent
period. Therefore,

(5)

or equivalently,

(6)

Let Q be the spot martingale measure with Radon-Nikodym
derivative

(7)

Under the spot martingale measure or risk neutral probability meas-
ure, Q, the dynamics of the underlying asset price, S(t), become

(8)

where the process is defined by

(9)

In view of (2) and (3), the payoff at expiry of the reset option with m
strike resets and n predecided reset dates can be written as

(10)

where I(�) is an indicator function. Under the risk-neutral probability
measure, Q, the arbitrage-free price of reset option C(t) at time t is

 � e�r(T�t) a
m

l�1
EQ5[S(T) � Kl�1]

�I( Min
1� j�n

S(tj) 7 Dl) 0  Ft6 C(t) � e�r(T�t) EQ[C(T) 0  Ft]

 � [S(T) � Km]�51 � I( Min
1� j�n

S(tj) 7 Dm)6 � [S(T) � Km�1]
�5I( Min

1� j�n
S(tj) 7 Dm) � I( Min

1� j�n
S(tj) 7 Dm�1)6 � [S(T) � K1]

� 5I( Min
1� j�n

 S(tj) 7 D2) � I( Min
1� j�n

 S(tj) 7 D1)6 � # # #

 C(T) � [S(T) � K0]
� I( Min

1� j�n
 S(tj) 7 D1)

dWQ
t � dWt �

r � u
	

 dt

WQ
t

dS(t) � rS(t)  dt � sS(t)  dWQ
t

dQ

dP
� exp a r � u

s
 WT �

1
2

 a r � u
s
b2

 Tb
B(T) � B(t)er(T�t)

dB(t) � rB(t)  dt
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(11)

From (11), we know that the key to the solution is to compute the
following expression:

(12)

We present the result in the following theorem.

Theorem: The explicit solution to (12) is as follows:

(13)

where is the cumulative probability of an (n � 1)-dimensional
multivariate normal distribution with mean vector 0 and covariance
matrix For the parameters in (13) are defined as
follows:

(14)

and stands for the jth row of Di,h;

(15)

(16)

(17) yh �

ln aS(t)
Kh
b � ar �

1
2

 s2b (T � t)

s2T � t

 ei, j �

ar �
1
2

 s2b (tj � ti)

s2 0 tj � ti 0
 di, j �

ln aS(t)
Di
b � ar �

1
2

 s2b (tj � t)

s2tj � t

Di,h
j

Di,h � ≥ di,1 e1,2 . . . e1,n yh

e2,1 di,2  . . . e2,n yh

 . . .  . . .  . . .  . . .  . . .
en,1 en,2  . . . di,n yh

¥
i,h � 1, . . . , m,©.

Nn�1( # ; © )

� a
n

g�1
[S(t)Nn�1(Di,h

g ; ©g) � Khe
�r(T�t)Nn�1(D̂i,h

g ; ©g)]

e�r(T�t)EQ5[S(T) � Kh]
�I( Min

1� j�n
 S(tj) 7 Di) | Ft6

e�r(T�t) EQ5[S(T) � Kh]
�I( Min

1� j�n
 S(tj) 7 Di) 0  Ft6

� e�r(T�t)EQ5[S(T) � Km]� 0  Ft6
� e�r(T�t) a

m

l�1
EQ 5[S(T) � Kl]

�I( Min
1� j�n

 S(tj) � Dl) 0  Ft6
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�
1Here we define T � tn+1.

is similarly defined as Di,h with the parameters di,j, ei,j, and yh

replaced by and respectively:

(18)

(19)

(20)

and the correlation matrix

(21)

where is given by1

(22)

We prove the theorem in Appendix A.

Accordingly, the closed-form solution for a reset option with m
strike resets and n predecided reset dates C(t) is

 C(t) � S(t) eN(ym) � a
m

l�1
a
n

g�1
[Nn�1(Dl,l�1

g ; g g) � Nn�1(Dl,l
g ; g g)] f

rg
ij � rg

ji � �

               
1, i � j

B ` tg � tj

tg � ti
` , 1 � i 
 j � g � 1 or g � 1 � i 
 j � n

�B
tg � ti

tg � t
, 1 � i � g � 1, j � g

�B
tg � ti

T � t
, 1 � i � g � 1, j � n � 1

B
ti � tg

T � t
, g � 1 � i � n, j � n � 1

B
tg � t

T � t
, i � g, j � n � 1

           0, otherwise

rg
ij

©g � 8rg
ij 9(n�1)� (n�1)�i, j � 1, . . . , n � 1

 ̂yh � yh � s2T � t

 ̂ei, j �

ar �
1
2

 s2b (tj � ti)

s2 0 tj � ti 0
 d̂i, j � di, j � s2tj � t

ŷh,d̂i, j, êi, j,
D̂i,h
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(23)

where N(�) is the cumulative probability of the standard normal
distribution.

In view of (23), we can replicate the reset option by borrowing M
dollars and purchasing A shares of stock at price S(t). The amount � and
M are as follows:

(24)

(25)

Similar to the closed-form valuations of exotic options, such as
options on the maximum or minimum of several assets (Johnson, 1987),
discrete partial barrier options (Heynen & Kat, 1996), reset options
(Cheng & Zhang, 2000), or economic models with limited dependent
variables, including multinomial probit, panel studies, spatial analysis,
and time series analysis, the closed-form solutions for reset options
involve the multivariate normal distribution functions.

Among the methods of evaluating multivariate normal cumulative
probabilities, as pointed out by Gollwitzer and Rackwitz (1987), Deàk
(1988), and Vijverberg (1997), Monte Carlo simulator methods seem to
be the most promising for higher order probabilities, preferable over
analytical approximations or numerical integration methods.
Hajivassiliou, McFadden, and Ruud (1996) surveyed eleven Monte
Carlo techniques of evaluating multivariate normal probabilities; they
found that the Geweke-Hajivassiliou-Keane (GHK) simulator is the
most reliable method overall. Consequently, for the closed-form solu-
tion for reset options with a large number of reset dates, we suggest

� Kme�r(T�t) cN(ŷm) � a
n

g�1
Nn�1(D̂m,m

g , g g) d
� K0e�r(T�t)

a
n

g�1
Nn�1(D̂1,0

g , g g)

 M � a
m�1

l�1
Kle

�r(T�t) e an
g�1

[Nn�1(D̂l,l�1
g , g g) � Nn�1(D̂l,l

g , g g)] f
¢ � N(ym) � a

m

l�1
a
n

g�1
[Nn�1(Dl,l�1

g , g g) � Nn�1(Dl,l
g , g g)]

 � Kme�r(T�t) cN(ŷm) � a
n

g�1
Nn�1(D̂m,m

g ; g g) d
 � K0e

�r(T�t)
a
n

g�1
Nn�1(D̂1,0

g ; g g)

 �a
m�1

l�1
Kle

�r(T�t) e an
g�1

[Nn�1(D̂l�1,l
g ; g g) � Nn�1(D̂l,l

g ; g g)] f
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2The approximated closed-form formulas of arithmetic average reset options are available upon
request.

using the GHK simulator to compute the multivariate normal cumula-
tive probabilities.

In practice, reset derivatives are usually related to the arithmetic
averages of stock prices in most financial markets. Consequently, we
denote as the arithmetic average of stock prices at time tj. Then, for an
arithmetic average reset option with strike resets and predecided reset
dates, the terminal payoff becomes

(26)

where

(27)

Because the sum of lognormal variables is not lognormal, and there
is no recognizable probability distribution for it, there are no closed-form
pricing formulas for the options based on the arithmetic average of asset
values.

However, we can derive an approximated closed-form formula for
the arithmetic average reset options by assuming that the arithmetic
averages, A(tj), are approximately lognormally distributed. Using
Wilkinson approximation, which is also used by Levy (1992) in pricing
Asian options, we may estimate the mean and standard deviation of log
A(tj) through the true first 2 moments of A(tj). Then, following the simi-
lar procedure in Appendix A, we can derive the closed-form formulas
straightforwardly.2

ANALYSES OF RESET OPTIONS

Characteristics of Reset Options

First, we discuss some properties of reset options. Consider a 1-year
maturity reset option with an initial strike price at 100. The strike price
will be adjusted if the closing price of the underlying stock falls below
90% or 80% of the initial strike price. We will compare the prices of the

K* � •K0 if Min [A(t1), . . . , A(tn)] � D1

Ki if Di � Min [A(t1), . . . , A(tn)] � Di�1, i � 1, . . . , m � 1�
Km if Dm � Min [A(t1), . . . , A(tn)]

C(T) � [S(T) � K�]�
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3The computer codes in Matlab for computing the values of reset options in Table I and drawing
Figures 1 and 2 are available on our Web site (http://140.119.79.103/liaosl/index.htm) under the
filenames reset_p_new.m, Dleta_fig1.m, and Gamma_fig2.m, respectively.

reset options with two strike resets and one, two, and three reset dates to
the plain vanilla call option. The results are presented in Table I.3

From Table I, we can see that some characteristics of reset options
are similar to the standard European call option. For example, the values
of reset options are increasing functions of stock price, risk-free interest
rate, and the volatility of stock returns. In addition, there are four prop-
erties that uniquely exist in reset options. First, the values of reset
options increase with the number of reset dates. Second, under the same
strike resets, Dj, lower reset strike prices, Kj , will result in higher values
of reset options. Third, due to more protection toward the holders of
reset options, the values of reset options are always greater than that of
standard European call option. Finally, in the case of higher values of
stock prices than strike resets, and smaller volatility of stock returns, the
difference between the prices of reset options and plain vanilla call
options is insignificant. Take a stock price of 115 and a volatility of stock
returns of 10% as an example. In this case, the price of the reset option
and the plain vanilla call option are almost the same.

Reset Options with Continuous Reset Dates

When n approaches infinity with a remaining time to maturity T � t, the
set of discrete reset dates becomes a continuous reset period. The termi-
nal payoff of a reset option with continuous reset period is as follows:

(28)

where

In view of (28), we can replicate the reset option with the following
strategy:

1. Purchase one European call option with strike price Km.

2. Purchase one European down-and-out call option with strike price
Ki�1 and barrier Di, for each 

3. Short sell one European down-and-out call option with strike price Ki

and barrier Di, for each i � 1, . . . , m.

i � 1, . . . , m.

Ci
T � (S(T) � Ki)

�

C(T) � Cm
T � a

m

l�1
Cl�1

T I( Min
o�t�T

S(t) 7 Dl) � a
m

l�1
Cl

T I( Min
o�t�T

S(t) 7 Dl)
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4See also Musiela and Rutkowski (1997), pp. 211–214.

Consequently, we can derive the pricing formulas of reset options
with a continuous reset period by discovering the prices of down-and-out
call options. Based on the closed-form solutions of European single-
barrier options provided by Rubinstein and Reiner (1991),4 we have

(29)

where

(30)

Therefore, the price of a reset option with a continuous reset period
is

(31)

Delta Jump and Gamma Jump

We now consider some important properties of reset options, such as
Delta jump and Gamma jump. When reset options are issued, the issuers
must hedge the risk exposure induced by the reset options. We provide
the delta and gamma of reset options in Appendix B.
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To describe the phenomena of Delta jump and Gamma jump, with-
out loss of generality, we simplify the reset options with only one reset
date. Let us define the following expressions:

(32)

(33)

(34)

(35)

where

are the expressions with di,j and yi replaced by and respectively.
Thus, the Delta and Gamma of reset options with one reset date are as
follows:
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(37)

where t1 is the reset date.
When then

and

Consequently, the Delta and Gamma at time t1 are as follows:
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However, the delta and gamma at t � t1 are given by the following
expressions:

(40)

(41)

From (38) to (41), we can see that the Delta and Gamma at t1 are
continuous only when the condition S(t1) � D1 holds. Therefore, Delta
jump and Gamma jump exist when the stock price at t1 is below D1. In
other words, we should carefully implement the Delta and Gamma
hedges on the reset dates when the stock price is below the highest strike
reset.

Delta Waviness and Gamma Waviness

In addition to the properties of Delta jump and Gamma jump on the reset
dates, there exist the phenomena of Delta waviness and Gamma waviness
before the reset dates, especially near the reset dates. Consider the fol-
lowing example. The stock price is currently $100, and the strike price of
the reset option will be adjusted if the stock price falls below 80%, 70%,
60%, 50%, and 40% of the initial strike price of $100 three months later.
Assume the risk-free interest rate is 5% and the volatility of stock returns
is 30%. We illustrate the properties of Delta waviness and Gamma wavi-
ness in Figures 1 and 2, respectively. As shown in the figures, unlike the
Delta and Gamma of the plain vanilla call options, which are definitely
non-negative, the Delta and Gamma of reset options will fluctuate dra-
matically, and can be negative as the time approaches the reset dates.
When the stock prices are away from the neighborhoods of strike resets,
the behaviors of Delta and Gamma are the same as that of plain vanilla
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FIGURE 1
Delta of reset option with five strike resets. Here, S(t) � 100, K0 � 100, 

[80, 70, 60, 50, 40], [D1 , . . .D5] � [80, 70, 60, 50, 40], r � 0.05, and 
n� 0.03. Unlike the Delta of the plain vanilla call option, which is definitely 

non-negative, the Delta of the reset call option will fluctuate dramatically and may
be negative as time approaches the reset dates. The Deltas are local minimums when the
stock price touches strike resets, but the Deltas are local maximums when the stock price
is at about the middle of two adjacent strike resets. The phenomenon of Delta waviness is

more significant as time approaches the reset dates.

[K1, . . .  K5] �

FIGURE 2
Gamma of reset option with five strike resets. Here, S(t) � 100, K0 � 100,

[80, 70, 60, 50, 40], [D1 , . . .D5] � [80, 70, 60, 50, 40], r � 0.05, and
n� 0.03. When the stock price is away from the neighborhoods of strike resets, the

behavior of Gamma is the same as that of plain vanilla call options. However, if the stock
price is near strike resets, the Gamma oscillates across the strike resets. The phenomenon

of Gamma waviness is more significant when time approaches the reset dates.

[K1, . . .  K5] �
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5We can represent the minimum of several assets with the expression in (A.2). For details, see
Johnson (1987).

call options. However, if the stock prices are near strike resets, the Delta
and Gamma will oscillate. The phenomena are more significant when the
time approaches the reset dates. From Figure 1, if the time approaches
the reset dates, the Delta is a local minimum when the stock price
touches strike reset, but the Delta is a local maximum when the stock
price is at about the middle of two adjacent strike resets. The dramatic
change of Delta between two adjacent strike resets also increases the dif-
ficulty of risk management. The wavinesses of Delta and Gamma are as
important as Delta jump and Gamma jump in hedging reset options.

CONCLUSION

We have provided the closed-form pricing formula for reset options with
strike resets and predecided reset dates. In addition to Delta jump and
Gamma jump across the reset dates, we have also discovered the phe-
nomena of Delta waviness and Gamma waviness near the reset dates.
For future research, it would be interesting to investigate the hedging
strategies of reset options due to the phenomena of Delta jump and
Delta waviness across reset dates.

APPENDIX A

Proof of the Theorem

To carry out the proof of Theorem 1, we divide (12) into two parts:

(A.1)

where5
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(A.3)
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It is convenient to introduce an auxiliary probability measure, PR, on
(�, F) by setting its Radon-Nikodym derivative as follows:

(A.5)

By Girsanov’s theorem, defined by

(A.6)

is a standard Brownian motion under the measure PR. Then we can
rewrite (A.2) as follows:
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We can repeat the above method to obtain covariance matrix as
in (22). Therefore, the solution for A is

(A.11)

Similarly, (A.3) can be computed by the same technique. This com-
pletes the proof of the theorem.

APPENDIX B

Delta and Gamma of Reset Options

To derive the Delta and Gamma of reset options, we apply the chain rule
of differentiation:
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0ŷl
d f

� a
m�1

l�1
a
n

g�1

Kl e
�r(T�t)

S(t)2 e 1

s2tg � t
 c 0Nn�1(D̂l�1,l

g ,gg)

0d̂l�1,g
�
0Nn�1(D̂l,l

g ,gg)

0d̂l,g
d

�
1

2T � t
 c 02Nn�1(D̂m,m

g ,gg)

0d̂m,g 0ŷm
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6A similar technique is also used to study the hedge ratio of discrete barrier options by Wei (1998).

(B.4)

where

(B.5)

(B.6)

and and are similar to A(i, j, k) and B(i, k, j) with the
parameters di,j and yi replaced by and respectively.

By observing (B.3) and (B.4), we see the key elements for comput-
ing the hedge ratio are 
and To derive the derivatives, as Curnow and
Dunnett (1961) pointed out,6 we have

(B.7)
where

(B.8)rg
qk�g �

rg
qk � rg

qg r
g
kg

21 � (rg
qg)

2 21 � (rg
kg)

2
, 1 � q, k � n � 1, q, k � g

� �
di,g

��

 Nn c eg, j � rg
jg x

21 � (rg
jg)

2
, 1 � j � n, j � g, 

yh � rg
n�1g x

21 � (rg
n�1g)

2
, 8rg

qk�g 9n�n d  f(x)  dx

Nn�1(Di,h
g , g g)

02Nn�1(Di,h
g ,g g)�0d2

i,g.
0Nn�1(Di,h

g ,g g)�0di,g, 02Nn�1(Di,h
g ,g g)�0di,g0yh
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and f(�) is the standard normal probability density function. Hence,
can be calculated as follows:

(B.9)

Then, following a similar procedure, we can straightforwardly obtain
the derivatives
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