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This article derives the closed-form formula for a European option on an
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average process, which is called an MA(1)-type option. The pricing formula
of these options is similar to that of Black and Scholes, except for the total
volatility input. Specifically, the total volatility input of MA(1)-type options
is the conditional standard deviation of continuous-compounded returns
over the option’s remaining life, whereas the total volatility input of Black
and Scholes is indeed the diffusion coefficient of a geometric Brownian
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the result of numerical analyses, the impact of autocorrelation induced by
the MA(1)-type process is significant to option values even when the auto-
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INTRODUCTION

As pointed out in Lo and Wang (1995), there is now a substantial body of
evidence that documents the predictability of financial asset returns. In
addition to the mean-reverting model, the moving-average process is one
popular model to describe predictable financial asset returns. To capture
the autocorrelation of financial asset returns, many empirical studies
extract the autocorrelation from the asset returns’ first moment through
the form of a first-order moving average process [MA(1) process], includ-
ing Hamao, Masulis, and Ng (1990), Bollerslev (1987), and French,
Schwert, and Stambaugh (1987), to name a few.

It is also well known that the value of an option may depend on the
underlying asset’s log-price dynamics. The famous Black-Scholes model
assumes that the stock price process is a geometric Brownian motion,
which implies stock returns are independent. In distinguishing between
the risk-neutral and true distributions of an option’s underlying asset
return process, Grundy (1991, p. 1049) observes that the Black-Scholes
formula still holds even though the underlying asset returns follow an
Ornstein-Uhlenbeck process. Along this line of research, Lo and Wang
(1995) claim that the unconditional variance of returns is usually fixed
for any given set of data irrespective of predictability. Accordingly, when
one implements pricing formulas of options on assets with predictable
returns, the values of the pricing formulas’parameters should be adjusted to
fit the unconditional moments of returns. Based on the preceding assertion
and Grundy (1991), Lo and Wang (1995) further price options on an asset
with the trending Ornstein-Uhlenbeck process (trending O-U process)
by using the Black-Scholes formula with an adjustment for predictability.
Apparently, before implementing an option pricing formula with the
approach of Lo and Wang (1995), the pricing formula for the used model
should be known in advance.

As shown in Lo and Wang (1995), an important result of the
arbitrage-free methods for pricing derivatives is: As long as the underlying
asset’s log-price dynamics are described by an Itô diffusion process with a
constant diffusion coefficient, the Black-Scholes formula yields the cor-
rect option price regardless of the specification and arguments of the drift.
However, no studies exist concerning whether the Black-Scholes formula
still holds when the underlying asset returns are described by an MA(1)
process. Thus, the main objective here is to fill the gap by introducing a
continuous-time MA(1)-type process, which is consistent with the find-
ings in empirical studies, and to price European options on an asset with
the process by using the martingale pricing method.
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The underlying asset’s log-price dynamics in this article are similar
to a special case of the discrete-time model used in Jokivuolle (1998).
Specifically, Jokivuolle (1998) values European options on autocorrelated
indexes, where the observed index returns determining the option’s ter-
minal payoff are modeled as an infinite-order moving average process,
whereas the true index returns are specified to be a random walk with
drift. However, unlike Jokivuolle (1998), this article assumes that the
process of observed returns is an equilibrium price process in continuous
time. This setting is based on the common assumption of the martingale
pricing method and is more in line with Lo and Wang (1995).

One contribution of the article is to price European options on an
asset with continuous-time MA(1)-type dynamics [MA(1)-type options]
by the martingale method. As a result, it is found that the pricing formula
of MA(1)-type options is not identical to that of Black and Scholes.
Accordingly, numerical analyses are conducted herein to gauge the impact
of autocorrelation induced by the MA(1)-type process on option values.

The remaining parts of this article are organized as follows. The
setting of a continuous-time process for autocorrelated asset returns
considered in this article is shown. The pricing formula and the hedge
for the MA(1)-type options are illustrated. Results of numerical analyses
and a conclusion end the article.

THE SETTING: A CONTINUOUS-TIME
PROCESS OF AUTOCORRELATED 
ASSET RETURNS

Without loss of generality, this article considers the underlying asset to
be a stock and denotes the underlying stock price including dividends
as S. The current time is t0, the expiration date of the options considered
here is T, and the time to maturity is t, where t � T � t0 and t � 0. As
the stock returns of a first-order moving average process are a common
finding in empirical research studies, this article introduces a continuous-
time MA(1) process [MA(1)-type process] and assumes the dynamics of the
stock price for all t0 � t � T as follows:

(1)

where m is a constant expected appreciation rate of the stock price, s� 0
is a constant volatility coefficient, dt � 0 is an infinitesimal time interval,
and h � 0 is a fixed, but arbitrary, small constant. The coefficient b rep-
resents the impact of the past shock, which is assumed to satisfy ƒ b ƒ � 1.

dSt

St
� m  dt � s dWt � bs dWt�h
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As the condition of is a standard assumption for a discrete-time
invertible MA(1) representation, there is no loss of generality when
imposing the assumption here. In addition, Wt is a one-dimensional stan-
dard Brownian motion defined on a naturally filtered probability space

and dWt�i, i � 0, h, are the increments of the stan-
dard Brownian motion at time t � i. In empirical works, h is restricted by
the frequency of historical data.

The dynamics of stock prices in (1) are equivalent to the following
Itô integral equation:

(2)

where denotes the set of all strictly positive real numbers) is
the current stock price. In addition, the conditional variance of stock
returns at time t conditional on the information set up to time t0 is

and the conditional autocorrelation coefficient is given by

where denotes the stock return at time t; that is, . Based
on the conditional variance and autocorrelation coefficient, the main
properties of stock returns specified as in (1) can be clearly observed.
Obviously, the stock returns are independent and (1) reduces to a geo-
metric Brownian motion when . For the case of , the stock
returns specified in (1) exhibit nonzero autocorrelation, which can be
positive or negative depending upon the sign of . Consequently, this
process is more flexible than the usual geometric Brownian motion.

It is worth noting that Lo and Wang (1995) assume the log-price
dynamics of the underlying stock to be a trending O-U process and
hence the autocorrelations in the stock returns are caused by the drift
term. In contrast, as shown in Equation (1), the current article proposes
a different model for autocorrelated returns, where the autocorrelated
behavior comes from the diffusion term.

b

b � 0b � 0

Rt � dSt�StRt

 Corrt0
(Rt, Rt�h) �

b

1 � b2,     5t � [t0 � h, T]

 Corrt0
(Rt, Rt�h) �

b

21 � b2
,�� 5t � [t0, t0 � h)

 Vart0
(Rt) � (1 � b2)s2 dt,�� 5t � [t0 � h, T]

 Vart0
(Rt) � s2 dt,��  5t � [t0, t0 � h)

St0
� R� (R�

St � St0
� �

t

t0

 mSu du � �
t

t0

 sSu dWu � �
t

t0

 sbSu dWu�h,��5t � [t0, T ]

(�, F, P, (Ft)t�[0,T])

ƒ b ƒ � 1
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OPTION PRICING WHEN ASSET RETURNS
FOLLOW AN MA(1)-TYPE PROCESS

Consider the problem of pricing a European call option on a specified
stock as in Equation (1). Because the underlying stock returns are auto-
correlated, it is not easy to value the call by tree methods. This article
develops a pricing formula by the martingale methodology.

To price the derivatives, it is more convenient to have a risk-free
security. Suppose the short-term interest rate r is constant over the time
interval , and the value of a riskless bond denoted by B is assumed
to be continuously compounded at the rate r; that is,

(3)

or equivalently , with .
Based on the risk-neutral pricing theory, the current value of a

European call option is

(4)

Here, Q is a martingale measure corresponding to the use of the risk-
less bond B as the numeraire, denotes the expectation
under measure Q conditional on , K is the strike price of the
European call option, is the notation for , and

denotes the probability that the call is in-the-money
at the maturity date under measure Q. In addition, is an indicator
function that takes a value of 1 as , and 0 otherwise.

According to the martingale pricing method and (4), pricing the
MA(1)-type option is done under the martingale probability measure Q
that makes the discounted stock price into a martingale,
which can be represented as

(5)

According to (3), Equation (5) can be rewritten as:

(6)

which shows that the expected stock returns equal the riskless rate r
under martingale measure Q. Based on the dynamics of the stock price

EQ e St

St0

 `  Ft0
f � er(t�t0),��5t � [t0, T]

EQ e St

Bt
 `  Ft0

f �
St0

Bt0

,��5t � [t0, T]

S
~

t � St�Bt

ST � K
15ST�K6

ProbQ(ST � K 0  Ft0
)

max(ST � K, 0)(ST � K)�

Ft0

EQ 5 	 0  Ft0
6

 � e�r(T�t0)EQ 5ST
# 15ST�K6 0  Ft0

6 � e�r(T�t0)K # ProbQ (ST � K 0  Ft0
)

 Ct0
� e�r(T�t0)EQ 5(ST � K)�

 0  Ft0
6

Ct0

B0 � 1Bt � ert

dBt

Bt
� r dt,��5t � [t0, T ]

[t0, T]
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in (1) and the definition of probability measure Q, the transformation
from measure P to Q is shown in the following lemma.

Lemma 1. Assume that the underlying asset’s price process S satisfies
Equation (1). Specifically, W is a P-Brownian motion. The transformation
from a P-Brownian motion to a Q-Brownian motion WQ is then

where , and is the integer part of .

Proof: See Appendix 1. ❑

Let which in fact are the realized past incre-
ments of the Brownian motion. The result of Lemma 1 can be repre-
sented as:

where

Specifically, is predictable and can be displayed according to time
intervals as follows:

Because the existence of measure Q is assured by Girsanov’s theorem,1

the prerequisite for Girsanov’s theorem that is a predictable processHz

5z � [t0 � iTh, T]

Hz �
[(1 � b � b2 � p � (�b)iT)](m � r)

s
� (�1)i Tbi T�1uz,

oo

 Hz �
(1 � b � b2)(m � r)

s
� b3uz,�� 5z � [t0 � 2h, t0 � 3h)

 Hz �
(1 � b)(m � r)

s
� (�1)b2uz,�� 5z � [t0 � h, t0 � 2h)

 Hz �
(m � r)
s

� buz,��  5z � [t0, t0 � h)

Hz

Hz �
a

iz

j�0
(�b) j(m � r)

s
� (�1)izbiz�1uz,��5z � [t0, T]

dWz
Q � dWz � Hz  dz

uz denote dwz�(iz�1)h,

(z � t0)�hizz � t, t � h

dWQ
z � dWz �

a
iz

j�0
(�b)j(m � r)  dz

s
� (�1)izbiz�1 

dwz�(iz�1)h,�5z � [t0, T]

1Please refer to Klebaner (1998, p. 242) for details.
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2Please refer to Harrison and Pliska (1981, p. 222) for details.

with should be checked. As the path of a Brownian motion 
before the current time is known, the values of 
for all z are bounded under the condition . In addition, because
h, , r, , and in (1) are all assumed to be constant, the values of

and are also bounded for all z.
Accordingly, the assumption of Girsanov’s theorem, , is sat-
isfied, and thus the existence of measure Q can be assured.

One modeling issue concerning Equation (1) has not been discussed
until now: Does the price process specified in (1) admit arbitrage oppor-
tunities? The existence of measure Q provides enough information to
answer the preceding question. As shown in Klebaner (1998, p. 258), the
sufficient condition for no arbitrage can be stated as follows: “Suppose
there exists a probability measure Q, equivalent to P, such that the dis-
counted stock price process is a martingale under Q. There are then no
arbitrage opportunities.” Accordingly, an asset with a process specified in
(1) allows no arbitrage opportunities, because the existence of measure Q
is assured. It also implies that the process defined in (1) can conceivably
be used to represent security price fluctuations.2

After recognizing that the log-price dynamics defined in (1) allow no
arbitrage opportunities, the MA(1)-type options can be valued by the
martingale pricing method, which is done under the martingale proba-
bility measure Q. By Lemma 1, the process defined in Equation (1) can
be transformed to the dynamics of the stock price under measure Q,
denoted as SQ, as follows:

(7)

where . Note that the time to maturity can be dis-
tinguished into two cases: and . Trivially, for
the case of , the stock price process SQ under measure Q
reduces to a geometric Brownian motion. Accordingly, the Black-Scholes
formula is still applicable to the MA(1)-type call option with maturity
shorter than h.

For the case of , the price process SQ is not a geometric
Brownian motion. To value the term in (4), the
solution for the stock price at time t under measure Q, denoted as ,
should be at hand. To solve , the dynamics of stock prices under Q dis-
played in (7) can be viewed as being driven by two Brownian motions,

SQ
t

SQ
t

ProbQ(ST � K | Ft0
)

T 
 t0 � h

t0 � T � t0 � h
T � t0 
 h0 � T � t0 � h

T � t01A � 15t0�h�t�T6

dSQ
t

SQ
t

� r dt � s dW Q
t � 1Asb dWQ

t�h,��5t � [t0, T]

S
~

�T
t0  

 H2
u du � �

[giz
j�0(�b)j(m � r)]�s(z � t0)�h

bsm

| b | � 1
(�1)izbiz�1 dwz�(iz�1)ht0

�T
t0  H

2
u du � �
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and , where . The two
Brownian motions have the following properties:

(i) and are both one-dimensional Brownian motions.

(ii) , for , and 
for .

(iii) and are uncorrelated, that is, .

Apparently, in (7) can also be represented as

To solve , the quadratic variation of , which is
denoted as , is needed and can be represented as

(8)

where . Based on (7) and (8), can be solved by using
Itô’s lemma as follows:

(9)

It is easy to check that in (9) is the solution such that the discounted stock
price is a martingale under measure Q. The term 
in (4) is then obtained as

(10)

To value the term in (4), it is convenient to find
the probability measure R equivalent to Q such that the following equa-
tion is satisfied:

(11)

Define the process as

(12)dWR
z � edWQ

z � s(1 � b) dz,��5z � [t0, T � h]
dWQ

z � s dz,                     5z � (T � h, T]

WR
z

EQ5ST
# 15ST�K6 0  Ft0

6 � St0
er(T�t0) ProbR(ST � K 0  Ft0

)
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6
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 � N a ln(St0
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2s
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3Denote as follows:

Because is bounded, the prerequisite for Girsanov’s theorem that is a predictable process with
the condition is satisfied.
4Please refer to the Appendix for details.

�T
t0
£2

u du � �

£z£z

£z � e�s(1 � b),    5z � [t0, T � h]
�s,                 5z � (T � h, T]

£z

where . Term is then an R-Brownian motion satisfying
Equation (11). The existence of such a measure R can be assured by
Girsanov’s theorem.3 With the use of (12) and (7), the solution for the
stock price at time t under measure R, denoted as , can be solved by
using Itô’s lemma as follows:4

(13)

The probability that the call is in-the-money at the maturity date under
measures R can accordingly be obtained from the solutions as

(14)

Therefore, based on (4), (10), (11), and (14), the current value of the
MA(1)-type option, , is priced by the following:

This result is summarized in Proposition 1.

Proposition 1. Assume that the dynamics of the underlying stock prices
are given by (1). The value of a European call option on the preceding
underlying stock, which is named as an MA(1)-type option, can be priced
by the following:

(i) When the time to maturity satisfies , that is, the call option
will mature immediately, the Black-Scholes formula still holds for the
MA(1)-type option.

(ii) When the expiration date satisfies , that is, the call will not
mature immediately, the value of the MA(1)-type option is priced by

Ct0
� St0

N(d�1) � Ke�r(T�t0)N(d�2)
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T 
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 � N a ln(St0
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)

SR
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 � s(1 � b)W(t�h)�t0
� sWt�(t�h)

 ln SR
t � ln St0

� [r � 1
2s
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2s

2)h
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t

WRz � t, t � h
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where

and is the distribution function of the standard normal distribution.

The formula in Proposition 1 obviously indicates that the MA(1)-type
option price will eventually converge to the Black-Scholes price when
the call closes to maturity. This result is consistent with the assumption
of Roll (1977), Duan (1995), and Heston and Nandi (2000), where they
assume that the value of an option with one period to expiration obeys
the Black-Scholes formula in discrete-time models. Furthermore, the
pricing formula in Proposition 1 does not violate the Black-Scholes for-
mula. Apparently, converges to the Black-Scholes formula when h
closes to zero, and it is fully identical to the Black-Scholes formula as

.
The pricing formula for the MA(1)-type option is analogous to Black

and Scholes except for the total volatility input. Denote the continuously
compounded -period returns as , where represents the option’s
time to maturity. When the stock prices satisfy an MA(1)-type process
specified as in (1), the conditional variance of , conditional on the
information up to time , is

(15)

and the conditional standard deviation of is the square root of
, which is an important term of and as shown in

Proposition 1. As the total volatility input in the standard Black-Scholes
formula is indeed the diffusion coefficient of a geometric Brownian
motion multiplied by the square root of an option’s time to maturity, that
is, , Proposition 1 shows that the total volatility input for an MA(1)-
type option is the conditional standard deviation of , that is,

, where is displayed in (15). According to
Grundy (1991, p. 1049), the Black-Scholes formula still holds under the
trending O-U specification, Proposition 1 implies that the pricing formula
for options on an asset with autocorrelated returns depends on the
source of the autocorrelation.

Vart0
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To hedge the European call options under a stock-price process
specified as in (1), at the current time one may consider
a portfolio that consists of shares of stock and units of riskless
bonds; that is,

Note that the number of shares in , that is, , is also called the hedge
ratio. Assume that the portfolio replicates the MA(1)-type call option.
The changes in the values of the portfolio and the option, denoted,
respectively, as and , should then be equal. This implies

where . Note that based on the information up to time 
the term is known.

In view of the preceding equation and Proposition 1, it is observed
that

and the number of bonds in the portfolio , that is, , can be decided
accordingly. Because portfolio replicates the value of the MA(1)-type
option, it is apparent that hedging the MA(1)-type option can be per-
formed just by holding portfolio in the opposite position. Thus, hedg-
ing the MA(1)-type option is identical to that of the Black-Scholes model
in functional form and is easy to operate.

NUMERICAL ANALYSES

To gauge the impact of autocorrelated stock returns on the option’s
price, Tables I and II compare the theoretical values of options under an
MA(1)-type process to the Black-Scholes prices for various times to
maturity , strike prices K, and autocorrelated parameters for a
hypothetical $40 stock. The theoretical values of MA(1)-type options are
calculated by the result of Proposition 1, and the Black-Scholes values
are based on the Black-Scholes formula. It is worth noting that the design
of numerical analyses in this article is similar to that of Jokivuolle (1998),

bT � t0
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Vt

ftVt
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0Ct
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dwt�h

t0,t � [t0, t0 � dt)
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TABLE I

Option Prices Under Negative Autocorrelated Stock Returns
(Daily Frequency)

Strike Black-Scholes
Option price under negative autocorrelated returns, with 

price price �0.025 �0.050 �0.075 �0.100 �0.250 �0.500 �0.750

Panel A. Time-to-maturity T � t0 � 7 days

30 10.014 10.014 10.014 10.014 10.014 10.014 10.014 10.014
35 5.018 5.017 5.017 5.017 5.017 5.017 5.017 5.017
40 0.748 0.732 0.717 0.701 0.685 0.593 0.451 0.337
45 0.004 0.003 0.002 0.002 0.002 0.000 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel B. Time-to-maturity T � t0 � 91 days

30 10.275 10.264 10.253 10.243 10.234 10.199 10.185 10.185
35 5.915 5.872 5.830 5.789 5.749 5.530 5.281 5.216
40 2.778 2.712 2.647 2.581 2.516 2.124 1.476 0.846
45 1.062 1.006 0.952 0.898 0.845 0.546 0.158 0.004
50 0.338 0.307 0.278 0.250 0.223 0.096 0.006 0.000

Panel C. Time-to-maturity T � t0 � 182 days

30 10.760 10.725 10.691 10.659 10.629 10.482 10.376 10.368
35 6.862 6.791 6.721 6.651 6.582 6.190 5.665 5.436
40 3.986 3.894 3.801 3.709 3.617 3.063 2.142 1.239
45 2.131 2.042 1.954 1.867 1.779 1.271 0.517 0.045
50 1.063 0.994 0.927 0.861 0.797 0.452 0.081 0.000

Panel D. Time-to-maturity T � t0 � 273 days

30 11.284 11.229 11.175 11.124 11.074 10.817 10.582 10.550
35 7.667 7.576 7.485 7.395 7.305 6.788 6.053 5.663
40 4.932 4.820 4.707 4.595 4.482 3.806 2.682 1.577
45 3.031 2.918 2.806 2.694 2.583 1.924 0.897 0.131
50 1.796 1.699 1.603 1.508 1.414 0.891 0.232 0.003

Panel E. Time-to-maturity T � t0 � 364 days

30 11.797 11.725 11.655 11.587 11.521 11.167 10.801 10.732
35 8.377 8.270 8.162 8.056 7.950 7.332 6.426 5.892
40 5.741 5.612 5.482 5.353 5.224 4.448 3.156 1.886
45 3.823 3.691 3.560 3.428 3.297 2.517 1.271 0.248
50 2.492 2.371 2.251 2.133 2.016 1.345 0.428 0.013

Note. This table compares call option prices on a hypothetical $40 stock under a geometric Brownian motion versus auto-
correlated MA(1)-type stock returns. The parameter used for the coefficient of dWt , that is, s, is 1.75% for daily returns, and
the daily continuously compounded risk-free rate is ln(1.025)�364.

b�

in that both articles compare the MA option values to the Black-Scholes
prices based on the same value of . For both Tables I and II, the coeffi-
cient for the current increment of a Brownian motion, that is, , is set to
be 1.75% per day. Accordingly, unlike Lo and Wang (1995), the variance
of daily returns under an MA(1)-type process is different from the
geometric Brownian motion’s counterpart.

s
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TABLE II

Option Prices Under Positive Autocorrelated Stock Returns
(Daily Frequency)

Strike Black-Scholes
Option price under positive autocorrelated returns, with 

price price 0.025 0.050 0.075 0.100 0.250 0.500 0.750

Panel A. Time-to-maturity T � t0 � 7 days

30 10.014 10.014 10.014 10.014 10.014 10.014 10.014 10.014
35 5.018 5.018 5.018 5.018 5.019 5.023 5.037 5.064
40 0.748 0.764 0.780 0.796 0.812 0.909 1.072 1.238
45 0.004 0.004 0.005 0.006 0.007 0.016 0.045 0.091
50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Panel B. Time-to-maturity T � t0 � 91 days

30 10.275 10.288 10.301 10.316 10.331 10.441 10.689 11.001
35 5.915 5.959 6.003 6.048 6.093 6.378 6.885 7.419
40 2.778 2.843 2.908 2.974 3.039 3.432 4.085 4.738
45 1.062 1.117 1.174 1.231 1.288 1.642 2.257 2.893
50 0.338 0.370 0.404 0.438 0.474 0.711 1.177 1.705

Panel C. Time-to-maturity T � t0 � 182 days

30 10.760 10.796 10.834 10.873 10.914 11.180 11.698 12.280
35 6.862 6.934 7.006 7.079 7.153 7.604 8.381 9.177
40 3.986 4.078 4.171 4.263 4.355 4.908 5.828 6.743
45 2.131 2.220 2.309 2.399 2.489 3.035 3.960 4.895
50 1.063 1.133 1.205 1.277 1.351 1.814 2.645 3.524

Panel D. Time-to-maturity T � t0 � 273 days

30 11.284 11.340 11.398 11.457 11.518 11.906 12.623 13.399
35 7.667 7.759 7.852 7.945 8.039 8.609 9.579 10.563
40 4.932 5.045 5.157 5.269 5.382 6.054 7.171 8.279
45 3.031 3.144 3.257 3.370 3.484 4.168 5.317 6.467
50 1.796 1.895 1.995 2.095 2.197 2.825 3.918 5.045

Panel E. Time-to-maturity T � t0 � 364 days

30 11.797 11.870 11.944 12.020 12.098 12.584 13.461 14.389
35 8.377 8.486 8.595 8.704 8.814 9.480 10.606 11.741
40 5.741 5.870 5.999 6.127 6.256 7.027 8.304 9.568
45 3.823 3.955 4.088 4.220 4.353 5.149 6.477 7.800
50 2.492 2.613 2.736 2.860 2.984 3.743 5.044 6.367

Note. This table compares call option prices on a hypothetical $40 stock under a geometric Brownian motion versus auto-
correlated MA(1)-type stock returns. The parameter used for the coefficient of dWt, that is, s, is 1.75% for daily returns, and
the daily continuously compounded risk-free rate is ln(1.025)�364.

b�

Panel A of Tables I and II shows that even extreme autocorrelated
parameters do not affect short-maturity in-the-money call option prices
very much. To illustrate, as shown in Table I, the value of has no
impact on the $30 7-day call even when is equal to �0.75. A similar
pattern is found as equals 0.75, where the price under the MA(1)-type
process is identical to the standard Black-Scholes price of $10.014.

b

b

b
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Tables I and II also exhibit that the MA(1)-type option price converges to
the Black-Scholes price when the call closes to maturity, which is con-
sistent with the result of Proposition 1. However, the impact of autocor-
related parameter grows with the length of time to maturity. As shown
in Table I, when is equal to �0.75, the absolute difference between
the Black-Scholes price and the MA(1)-type price for the $30 364-day
call reaches $1.065 ( $10.732 � $11.797 ), whereas the Black-Scholes
price is identical to the MA(1)-type price for the $30 7-day call. A similar
property can also be found in Table II, where the Black-Scholes price
undervalues the $30 364-day call by $2.592 ($14.389 � $11.797) as

.
Given the time to maturity and the autocorrelated parameter , it is

obvious that the differences between the in-the-money Black-Scholes
prices and the MA(1)-type prices become large when the strike price
increases. However, the pattern is not monotonic. As shown in Tables I
and II, the differences eventually decline after the strike price K reaches
to $40 or $45. To illustrate, in the case of , the difference in
the Black-Scholes price and the MA(1)-type price is $0.49 (�$1.238 �

$0.748) for the 7-day at-the-money call (as shown in Panel A of
Table II), although the difference is only $0.087 (�$0.091 � $0.004)
and $0.002 (�$0.002–$0.000) when the strike prices are $45 and $50,
respectively.

Table I indicates that ignoring the impact of a negative autocorrela-
tion induced by the MA(1)-type process can lead to large overpricing of
MA(1)-type options. On the contrary, as shown in Table II, ignoring the
impact of a positive autocorrelation exhibited in stock returns can lead to
large underpricing of MA(1)-type options. Furthermore, it is also
observed that the impact of autocorrelated stock returns on option prices
is significant even when the autocorrelated parameter is small. For
example, consider the $40 91-day call option. The corresponding option
price will be overvalued by about 2.43% when and will be
undervalued by about 2.29% when . Accordingly, it is also
found that the MA(1)-type prices have some degree of asymmetry in the
influence of .

CONCLUSIONS

This article proposes a method of valuing European options on an
asset with autocorrelated returns. According to the common findings of
empirical research studies, a continuous-time MA(1)-type process is

b
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introduced to describe the autocorrelated stock returns, and the closed-
form solution for option values under the MA(1)-type process is derived
by using martingale pricing theory. The pricing formula of options on
stocks with log-price dynamics given in (1) is similar to that of Black
and Scholes except for the total volatility input. More specifically, the
total volatility input of MA(1)-type options is the conditional standard
deviation of continuously compounded -period returns, although the
total volatility input of Black and Scholes is indeed the diffusion coef-
ficient of a geometric Brownian motion times the square root of the
option’s time to maturity . Because the Black-Scholes formula is also
applicable to price options on an asset with trending O-U dynamics,
the finding in this article shows that the pricing formula for options on
an asset with autocorrelated returns depends on the source of the
autocorrelation. Furthermore, as shown in the numerical analyses, the
impact of autocorrelation on the option values is significant and asym-
metric, even when the autocorrelation of the underlying asset returns
is weak.

APPENDIX

The Proof of Lemma 1

To find the transformation from a P-Brownian motion to a Q-Brownian
motion such that the discounted stock price is a martingale under Q, it is
useful to divide the option’s time to maturity into subintervals
with the same length h and the subinterval with the length of

, where denotes the integer part of 
To prove Lemma 1, the first time interval is considered

in the beginning. Based on (1) and (3), the discounted stock price 
satisfies

(A.1)

Note that for this time interval , is known under 
It means that the nonrandom terms in the above equation are the drift
term and . By setting
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the dynamics of discounted stock prices under Q, are

implying that is a martingale under Q for this time interval. Thus, the
transformation from a P-Brownian to a Q-Brownian for this interval is
obtained as:

(A.2)

For the next time interval , note that both
and in Equation (1) are stochastic under . Therefore, the

dynamics of are represented as

(A.3)

Based on (A.2) and the fact that for is iden-
tical to for , one can set

and transform (A.3) to the process of as follows:

This implies that the discounted stock price is a martingale under Q.
Accordingly, the transformation that makes be a martingale under Q
for this time interval is then

(A.4)

The transformation from a P-Brownian to a Q-Brownian for the
other time subintervals can be similarly obtained recursively and sum-
marized as follows:
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where , and is the integer part of . The proof of
Lemma 1 is now complete.

The Dynamics of Stock Prices under Measure R

Substituting (12) into (7), one can obtain the dynamics of as follows:

where

are indicator functions.By applying Itô’s lemma, can be solved as
shown in Equation (13).
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