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Abstract This article generalizes production risk
from a single output production function to a multiple
output cost frontier, which is able to examine input-
oriented technical efficiencies and production risk
simultaneously in the context of a panel data. Fur-
thermore, the joint confidence interval estimates
for technical efficiencies are constructed by means
of multiple comparisons with the best approach.
Whether taking production risk into account or not
offers quite dissimilar implications in terms of the
average technical efficiency measure and the iden-
tification of multiple efficient banks achieving the
optimal cost frontier. It is suggested that inferences
drawn on the basis of the confidence intervals of
technical efficiency provide much more fruitful and
insightful information than the point estimation
alone. Bank specific risk parameters are found to
be highly and positively correlated with fixed-effect
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estimates, implying that the more risk-averse a bank
is, the more technically efficient it will be.
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1 Introduction

Managers of firms typically make their decisions
under conditions of risk and uncertainty. There are
at least four types of risk conditions that a firm may
face, viz., output price risk, input price risk, quality
of input risk, and production function risk. Given the
fact that uncertainty is pervasive, it is necessary to
propose a theoretical model for explaining a firm’s
responses to risk in such a way that is amenable to
empirical analysis.

Among the four sources of risk, output price risk
appears to have been studied the most extensively.
Numerous works have been devoted to the theme,
such as Sandmo (1971), Batra and Ullah (1974),
Hartman (1975), Ishii (1977), Hawawini (1978),
Chambers (1983), and Wolak and Kolstad (1991), to
name a few. However, most of the related studies
theoretically formulate a versatile analytic frame-
work to shed light on possible actions to competi-
tive firms when responding to risk. Relatively few
papers are involved in empirical implementation,
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except for Appelbaum (1991), who investigated the
effects of output price uncertainty on firm behavior
in the US textile industry, and Kumbhakar (2002a),
who estimated Norwegian salmon farms’ risk pref-
erences.

Just and Pope (1978) developed a novel set of sto-
chastic production functions, characterized by
risk-reducing inputs. Using their production spec-
ifications, Wan et al. (1992), Kumbhakar (1993),
Hurd (1994), Traxler et al. (1995), Battese et al.
(1997), and Tveterås (1999) performed empirical
studies of production risk mainly involving the agri-
cultural sector. Robison and Barry (1987) pointed
out that understanding the risk-reducing character-
istics of inputs helps explain the risk responses of
various types of decision makers. Conversely, a cer-
tainty model is devoid of such explanatory capacity.

Love and Buccola (1991, 1999), Saha et al. (1994),
Chavaz and Holt (1990), and Kumbhakar (2002b)
developed a model to permit the joint estimation of
the risk preference structure, extent of risk aversion,
and production technology. Starting from a (Just-
Pope) production function with risk, they modeled
producers’ attitude toward risk in the context of a
single output profit function. Kumbhakar (2002b)
further considered the possibility of technical ineffi-
ciency. The current article examines similar issues
to these papers under the framework of a dual cost
frontier, instead of expected utility from profits. Our
approach here may prove to be more advantageous
since it allows for multiple outputs. Models based
on the maximization of expected utility from profits
typically involve single outputs. Such models are not
easily applicable to firms producing multi-outputs,
such as banks, insurance companies, and the like.
Another advantage of our model is that it permits
the all important construction of confidence inter-
vals for technical efficiency (TE) estimates from an
input-orientation.

The relationship between TE and production risk
(or risk preference), although quite important, is
generally unknown and has not been examined in
the literature. It is crucial to note that both the pri-
mal production frontier and the dual single output
cost frontier are unable to examine production risk
and TE simultaneously. This can best be seen as
an identification problem caused by the inclusion
of production risk. We shall discuss this problem in
the next section thoroughly. Alternatively, under the

framework of a multiple output cost frontier the two
topics are allowed to be analyzed together. There-
fore, our model is capable of investigating whether
a more risk-averse bank tends to be more technically
efficient.

This article offers a new approach that can be
employed to explicitly account for the unobservable
risk attitudes and TE. In addition, under the frame-
work of the so-derived cost frontier, the relative risk
attitudes for each firm and the joint confidence inter-
vals of the relative TE, as introduced by Horrace
and Schmidt (1996, 2000) and Fraser and Horrace
(2003),1 are estimable, so long as panel data are
available. As will be shown in Section 5, bank man-
agers’ risk attitudes tend to be highly correlated with
a technical efficiency measure. There is a consensus
in the literature that whenever price data exist, such
as for financial institutions, cost minimization and
profit maximization are likely to be more relevant
behavioral objectives than the one simply pursuing
a maximum attainable output from a given set of
inputs.

With regard to the construction of confidence
intervals for TE estimates, the method of multiple
comparisons with the best procedure (MCB), pro-
posed by, for example, Edwards and Hsu (1983),
Hochberg and Tamhane (1987), and Hsu (1996), is
exploited. This approach is particularly appropriate
when a fixed-effect cost frontier is formulated due
to the fact that it allows the construction of simul-
taneous confidence intervals for all differences be-
tween the unknown minimal fixed-effect and the
remaining effects. Under a specific confidence level,
MCB is able to detect possible multiple best-practice
firms from the sample and to differentiate if those
differences in fixed-effects achieve statistical signifi-
cance.

The rest of this paper is organized as follows.
Section 2 develops a theoretical model under the
condition of production function risk, which leads to
a certainty equivalent least cost frontier. An econo-
metric model for a cost frontier together with its
share equations is specified. In Section 3 the MCB
technique is briefly introduced, followed by a concise
data description. Empirical results are then presented

1 It is to be noted that the papers cited are all based on pro-
duction frontiers, instead of a cost frontiers, as we are using.



J Prod Anal (2006) 26:87–102 89

and analyzed thoroughly in the next section, while
the last section concludes the paper.

2 Theoretical model

This section, first shows how the presence of
production risk shrinks a firm’s set of production
possibilities and then results in a risk-adjusted dual
cost frontier. The so-derived cost frontier is next
associated with a flexible translog function form that
embodies both production risk as well as TE. Some
estimation difficulties are also addressed.

2.1 Production function risk

In order to describe properly the features of a joint
production process and uncertain input–output pro-
cess, a representative firm’s set of stochastic produc-
tion possibilities is formulated as:

T =
{
(Ỹ ′, X ′)|Yn ≤ f (Y ′, X ′)ε

}
, (2.1)

where Ỹ = (Y1, . . . , Yn)′ is an n-vector of outputs
and its first (n − 1) elements are redefined as vec-
tor Y = (Y1, . . . , Yn−1)

′, X = (X1, . . . , Xm)′ de-
notes an m-vector of inputs, f (·)is the deterministic
component of the joint production function, and the
random component ε signifies the existence of pro-
duction risk, which is assumed to be normally dis-
tributed with mean value unity and finite variance,
σ 2

ε . Naturally, because of the presence of ε, the con-
straint in (2.1) does not hold with certainty. This
implies that the stochastic production possibilities
set T of (2.1) may not be binding under uncertainty.

Such a problem has been widely recognized by
researchers, primarily in management science,
utilizing a linear programming procedure. Charnes
et al. (1958) proposed the concept of chance-con-
strained programming for the sake of dealing with
uncertain conditions. Charnes and Cooper (1959,
1962) and Kataota (1963) also addressed this issue.
According to the definition provided by Charnes and
Cooper (1962), chance-constrained programming
refers to the class of such cases, in which constraint
violations are admissible up to pre-assigned proba-
bility levels. Following this idea, the constraint of
(2.1) should be reformulated as:

Prob
[

f (Y ′, X ′)ε ≥ Yn
] ≥ 1 − λ, (2.2)

where “Prob” denotes probability and λ is a given
probability level, assumed to be less than or equal to
0.5. Inequality (2.2) describes the situation in which
the constraint may not always be satisfied. In fact,
it is permissible to offend the constraint within a
threshold probability λ for any feasible choice of X
and Y .

Throughstandardizationandsomemanipulations,
inequality (2.2) becomes:

�

[
Yn − f (Y ′, X ′)
σε f (Y ′, X ′)

]
≤ λ, (2.3)

where �(·) signifies the cumulative distribution
function of a standard normal random variable.
Inverting both sides of (2.3) and rearranging terms,
the conventional production possibilities set T can
be transformed into the certainty equivalent produc-
tion possibilities set (TCE):

TCE =
{
(Ỹ ′, X ′)

∣∣∣∣
Yn

1 + �−1(λ)σε

≤ f (Y ′, X ′)
}

.

(2.4)

The term �−1(λ) is confined to be non-positive
due to the assumption of λ ≤ 0.5. As a result,
the term 1 + �−1(λ)σε must be positive and less
than unity, implying that the actual production of
Yn always falls short of the maximal possible out-
put f (·), consistent with standard microeconomic
theory. By contrast, a value of λ in excess of 0.5
will lead to a contradictory constraint of (2.4), be-
cause the production of Yn is allowed to exceed the
maximal output f (·).2 This imposes a meaningful
non-positive sign constraint on the value of an un-
known risk parameter R = �−1(λ)σε, because the
estimation of R constitutes an important issue un-
der uncertainty, which assists in explaining firms’
decision behavior that is attributed to risk.

An estimation difficulty arises from the insepara-
bility of �−1(λ) from σε, where the former reveals a
manager’s risk attitudes and the latter is the magni-
tude of production risk being confronted by the same
firm. Consequently, one is forced to estimate them
together and still translate R into the representation
of the relative degree of risk aversion due to the fact
that σε is a constant accompanied with an uncertain
production process, which is assumed to be uniform

2 This can easily be seen by rewriting the constraint in equa-
tion (2.4) as: Yn ≤ [1 + �−1(λ)σε] f (Y ′, X ′).
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to the sample firms under consideration. This uncer-
tainty may arise from the weather, business cycles,
general financial crises, and so on.

The size of R is also dependent upon the threshold
level of λ, which, however, must be firm specific. A
more risk-averting producer tends to select a higher
control level of (1 − λ), resulting in larger absolute
values of �−1(λ) and R in the sequel. The higher a
firm’s absolute value of R is, the more risk-averse it
will be.

It is interesting to note that in the single output
case the certainty equivalent production function of
(2.4) reduces to:

Y

1 + R
≤ f (X ′). (2.5)

Since the value of (1 + R) lies between zero and
one, (2.5) turns out to be the model associated with
the study of production efficiency, as proposed by
Atkinson and Cornwell (1993, 1994a, 1994b). The
denominator of (2.5) is used to capture output tech-
nical efficiency. In other words, the output techni-
cal efficiency measure is indistinguishable from risk
parameter R.3 However, in the context of multiple
outputs, the current model of (2.4) deviates from
the ones related to output technical efficiency, such
as Kumbhakar (1996, 1997) and Huang and Wang
(2004). The formulation shown in (2.4) appears to
be new in the literature.

Figure 1 depicts the impact of production risk on
manufacturing output Y2; say, using a two-output
production possibilities frontier (PPF) diagram.
Starting from the certainty case, which can be viewed
as a special case of (2.4) by letting R = 0, when
λ = 0.5, the corresponding PPF is depicted by curve
AB. When production risk in Y2 alone is introduced
into the model, the firm’s certainty equivalent PPF
is denoted by the dotted curve AC. It must lie be-
low AB and keep the intercept at the horizontal axis
unchanged. The vertical distance between the two
curves, for instance, EF, measures the decrease in the
production of Y2 owing to its own production risks,
while leaving Y1 intact. More specifically, the ratio
of DE/DF is exactly equal to the proportion (1+ R).
Therefore, one can infer that a more risk-averting

3 The same is not true for the multiple output case, while there
is no natural way of selecting a dependent variable from var-
ious outputs. A cost function is preferable as it consists of
multiple outputs and input prices.

2Y

1Y
A

B 

C 

D

E 

F 

G

H

O 

Fig. 1 Certainty equivalent production possibilities Frontier

firm, corresponding to a higher absolute value of
R, will have larger responses in adjusting down its
output quantities. Putting it another way, in order to
maintain its output mix at point F, the producer is
required to hire more factors of all kinds, which in
turn leads to higher production costs.

Now suppose the actual output mix occurs at
point G. The radial measure of TE is represented
as usual by OG/OH, while DE/DF reflects the de-
gree of the negative impact of production risk on
the production of Y2. Since, such risk appears to be
a common feature of doing business, its exclusion
from analytical models may lead to biased estimates
for the production frontier and distorted statistical
inferences. The resulting production frontier is very
likely to be located between curves AB and AC, i.e.,
a mixture of the true production frontier AB with the
certainty equivalent production frontier AC. Conse-
quently, the implied radial measure of TE at G tends
to overstate the true measure of OG/OH. This argu-
ment is indeed supported by the data at hand.

2.2 Cost function

Since Yn , the product that is by assumption expe-
riencing risk, must heuristically be reformulated as
Yn/(1 + R) in the production possibilities set TCE,
the same expression will be conveyed to a dual cost
function derived from minimizing expenditures sub-
ject to the same set TCE. Following Atkinson and
Cornwell (1994a, b) and Kumbhakar (1996, 1997),
a two-output cost frontier under production risk and
with input technical inefficiency for the i th firm can
be written as:
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C∗
i

(
Wi

ai
, Y1i ,

Y2i

1 + Ri
; θ ′

)

=min
ai Xi

[
Wi

ai
(ai Xi )

∣∣∣∣F
(

Y1i ,
Y2i

1 + Ri
, ai X ′

i

)
= 0

]

= 1

ai
Ci

(
Wi , Y1i ,

Y2i

1 + Ri
; θ ′

)
, (2.6)

where Wi = (W1i , . . . , Wmi ) is a 1 × m input price
row vector, ai (0 < ai ≤ 1) denotes Farrell’s (1957)
input technical efficiency measure that scales in-
put usage and reflects the extent to which actual
and optimal input mix differ, and θ signifies all un-
known technology parameters of a cost function.
These parameters will be estimated later in this exer-
cise, in addition to ai and Ri .

Setting Ri = 0, formula (2.6) simplifies to the
one proposed by Atkinson and Cornwell (1994a, b)
and Kumbhakar (1996, 1997) and is later applied
by Huang and Wang (2003, 2004) using the Fou-
rier flexible cost frontier to estimate TE of Taiwan’s
banking sector. To the best of our knowledge, (2.6)
is new in that it combines TE with production risk
in the context of a dual cost frontier. As a result, an
estimation based on (2.6) may provide more insight-
ful economic implications than other simplified
models do. The cost frontier Ci (·) can be referred
to as a risk-adjusted cost frontier, also known as a
certainty equivalent cost frontier.

Let Ei be the actual expenditure incurred by pro-
ducer i . It is readily shown that Ei = C∗

i , and hence:

ln Ei = ln Ci

(
Wi , Y1i ,

Y2i

1 + Ri
; θ ′

)
− ln ai , (2.7)

where notation ln denotes the natural logarithm.
Term − ln ai reveals that the existence of a possi-

ble technical inefficiency would raise firm is
observed cost up to 1/ai times as much as its risk-
adjusted cost function. Hence, if firm i is capable of
exploiting a minimal input mix to produce the same
rate of output, then ai = 1 and C∗

i (·) reduces to
Ci (·). From an empirical standpoint, the term − ln ai

is frequently treated as a fixed effects term and is firm
specific. Similarly, the presence of Ri in Ci (·) will
also inflate the firm’s realized production cost, but
take a more complicated form. Such an impact on the
production cost is like the effect of output technical
inefficiency on a firm’s cost. For details, please see
the references mentioned in the above paragraph.

2.3 Econometric specification

For the sake of estimation, a particular functional
form of ln Ci (·) in (2.7) must be specified. We elect
to use the flexible translog cost function. Differ-
ing from the conventional cost function, variable
Y2i must always be accompanied by (1 + Ri ), as
can be seen from (2.7). Given panel data, our tran-
slog expenditure equation for firm i at time t is
expressed as:

ln Eit = α0 + α1 ln Y1i t + α2 ln Y ∗
2i t + α3t

+ 0.5α11(ln Y1i t )
2 + 0.5α22(ln Y2i t )

2

+ 0.5α33t2 + α12 ln Y1i t ln Y ∗
2i t

+α13t ln Y1i t + α23t ln Y ∗
2i t

+
m∑

j=1

β j ln W jit

+0.5
m∑

j=1

m∑
k=1

β jk ln W jit ln Wkit

+
m∑

j=1

γ1 j ln Y1i t ln W jit

+
m∑

j=1

γ2 j ln Y ∗
2i t ln W jit

+
m∑

j=1

γ3 j t ln W jit + ui + vi t , (2.8)

i = 1, . . . , I, t = 1, . . . , T,

where Y ∗
2i t = Y2i t/(1 + Rit ), ui = − ln ai is re-

garded as a firm specific fixed effect, t and t2 de-
note linear and quadratic trends, capturing possible
technical change, αs, βs, and γ s are unknown tech-
nology parameters and constitute elements of vector
θ in (2.7), and vi t is the error term with mean zero
and constant variance across firms and over time.
It is seen that the firm specific fixed-effects term
− ln ai has been rewritten as ui , which transforms
production inefficiency into a (log) value that eval-
uates the discrepancy between actual and optimal
expenditures.

Risk parameter Rit is in particular allowed to
be both firm specific and time-variant capturing not
only a variety of managers’ risk preferences, but also
reflecting their possible trends over time. It is parsi-
moniously specified as:

Rit = Ri + K1tren + K2tren2, (2.9)
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where Ri , K1, and K2 are parameters to be esti-
mated and tren and tren2 are the same as t and t2,
respectively. Note that parameters K1 and K2 are
legitimately specified as firm specific like Ri . This
means that 2I extra parameters need to be added to
(2.9), which lowers the degrees of freedom substan-
tially. Hence, a dearth of insightful outcomes may be
achieved. To warrant non-positive estimates of the
firm specific risk parameters Ri s, as imposed by the
theoretical model, the dummy variable technique is
adopted.

We first choose R j = maxI
i=1 Ri among firms,

and then normalize it to zero. The chosen firm j
corresponds to the one being the least risk aversive
relative to the rest of the firms in the sample. The
procedure of normalization plays a pivotal role in
making the unobservable risk preferences estima-
ble and it is justifiable that the remaining firm spe-
cific risk parameters uniformly fall short of zero. By
doing so, the identification problem is concurrently
solved as a by-product.

The estimation strategy proposed herein appears
to be novel and useful due to its capability of extract-
ing information on each firm’s risk attitude as well as
potential trending from a given sample. Perhaps an-
other merit of the estimation procedure is that it does
not rely on the behavioral assumption of risk aver-
sion for each firm under examination. Therefore, this
is a slight generalization of the theorem developed
by Sandmo (1971), Hawawini (1978), and Cham-
bers (1983). Only a firm’s relative attitude toward
risk to the normalized firm matters. The availability
of a panel dataset is naturally required.

Parameter αi = α0 + ui will be treated as a
fixed effect, changing across firms, but invariant over
time, in order to exploit the MCB technique and
construct the confidence intervals of TE, as sug-
gested by Horrace and Schmidt (1996) and Fraser
and Horrace (2003).4 It should be pointed out that
microeconomic theory limits a cost function, de-
duced through the process of cost minimization, to
be linearly homogeneous in input prices and sym-
metrical both in input prices and output quantities.
It follows that these restrictions must be imposed

4 It is to be noted that in the panel data setting we are, in fact,
parsimoniously specifying TE as both firm specific and time
variant, i.e., αi t = αi + α3t + 0.5α33t2, as can been seen
from (2.8), analogous to the formulation of Rit in (2.9).

during estimation. Readers are also asked to refer
to Varian (1992) for details. Other regularity con-
ditions, e.g., monotonicity and concavity in factor
prices, will be checked once the unknown parame-
ters are estimated in order to check the congruence
of the empirical cost function with its theoretical
counterpart.

The share equations are easily obtained by taking
partial derivatives of ln Eit with respect to ln W jit

( j = 1, . . . , m). It can be proven that a simulta-
neous estimation of (2.8) and (m − 1) share equa-
tions will not only add degrees of freedom, but also
improve the precision of the parameter estimates
due to the imposition of cross-equation restrictions
introduced by economic theory and the use of more
information, particularly cross equation correlations
of random disturbances.5 (see, for example, Berger
1993; Atkinson and Cornwell 1994b; Kumbhakar
and Lovell 2000).

2.4 Discussion

This subsection is devoted to summarize the fore-
going three subsections. To begin with, the model’s
simultaneous regression equations are composed of
equation 2.8 and the (m − 1) share equations ob-
tained by taking partial derivatives of (2.8) with re-
spect to any (m − 1) of the m(log) input prices.
Second, these three equations are jointly estimated
by non-linear least squares, regarding both αi and
Ri as group specific constant terms in the regression
model. These constant terms are empirically esti-
mated as the coefficients of the dummy variables
corresponding to the i th unit, i = 1, . . . , I . In this
sense, our econometric model can be referred to as
a simultaneous non-linear least squares dummy var-
iable model. In essence, it exemplifies the distribu-
tion-free approach, as proposed by Berger (1993).
Finally, except for risk parameters Ri s, all the tech-
nology parameters θ and fixed effects αi can be esti-
mated and identified directly. It is seen that some
terms of (2.8) contain both the technology param-
eter and Ri , and thus the problem of identification
is unavoidable. To our knowledge, the use of the

5 One of the m cost shares must be removed in order to avoid
the singularity problem occurring at the variance-covariance
matrix of the random disturbances.
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dummy variable technique in the above manner ap-
pears to be an innovative way of solving the identi-
fication problem.

3 Interval estimation by the MCB technique

Equation (2.8) is reformulated with a panel data
format:

ln Eit = αi + Xitβ + vi t , (3.1)

where Xit is a K -vector of all explanatory vari-
ables present in (2.8) and β is the corresponding
vector of parameters, vi t denotes a random error
with zero mean and constant variance, and αi =
α0 + ui , i = 1, . . . , I, are group specific constant
terms in the regression model known as fixed ef-
fects. It is well known that a fixed effect treatment
is free from distributional assumption on αi (ui ) and
does not rest on the mutual independence assump-
tion amongαi , Xit , andvi t . The corresponding share
equations to (3.1) can be inferred in a quite straight-
forward manner.

In order to employ the MCB technique, the fixed-
effect parameter αi must be in place of the constant
term representing differences across units and can
be estimated individually along with β. Let α[1] ≤
α[2] ≤ · · · ≤ α[I ] be the population ordering of αi .
Unit [1] denotes the most technically efficient firm,
while unit [I ] corresponds to the least technically
efficient firm. Define u∗

i = αi − α[1] = ui − u[1],
such that 0 ≤ u∗

i ≤ ui . Equation (3.1) can thus be
expressed as:

ln Eit = α[1] + Xitβ + vi t + u∗
i . (3.2)

The relative technical inefficiency measures u∗
i can

be monotonically transformed into the cost efficiency
(CE) measure by CEi = exp(−u∗

i ). Obviously, CEi

is bounded between zero and one by construction. A
value of CEi equaling unity means that the i th unit is
the best-practice firm over the sample, which attains
the minimum feasible cost frontier. By contrast, a
unit having the smallest value of CEi corresponds
to the least efficient firm, whose production cost lies
the farthest apart from the benchmark partners.

The inefficiency measure ui deviates from u∗
i

considerably in that the former is conventionally
estimated through a maximum likelihood procedure
on the basis of the stochastic frontier model dat-
ing back to Aigner et al. (1977) and Meeusen and

van den Broeck (1977), whereas the latter measure,
used in this paper as the inefficiency measure, must
be estimated by non-linear least squares and con-
forms to the distribution-free approach of Berger
(1993). Schmidt and Sickles (1984) and Park and
Simar (1994) proved that estimators û∗

i s are con-
sistent, as both I and T approach to infinity. In a
finite sample with small T , however, α̂[1] tends to
be biased downward. This gives rise to under-esti-
mations of relative efficiency. Such a bias is mainly
ascribable to the operator “min” in the calculation
of α̂[1] = minI

i=1 α̂, where α̂ = (α̂1, . . . , α̂I )
′, and it

can be removed under the conditions I → ∞, T →
∞, and T −1/2 ln N → 0. Readers are suggested to
refer to Schmidt and Sickles (1984), Horrace and
Schmidt (2000), and Fraser and Horrace (2003) for
the case of a production frontier.

When obtaining fixed-effects estimates α̂i and
û∗

i in turn, one is ready to use the MCB technique
to construct simultaneous confidence intervals for
û∗

i , i = 1, . . . , I . Fraser and Horrace (2003) stated
that fixed-effects estimation is a semi-parametric
estimation, not only having an unknown asymptotic
distribution, but also having asymptotically valid
confidence intervals that are hard to construct. They
suggest applying the MCB technique to find the joint
confidence intervals for û∗

i = α̂i − α̂[1], which are
able to, at least in part, correct the bias of û∗

i arising
from the “min” operation in addition to accounting
for simultaneous probability statements implied by
the rankings of α̂[1] ≤ α̂[2] ≤ · · · ≤ α̂[I ].

There are a few other noticeable features pertain-
ing to the MCB technique. First of all, this powerful
technique allows for the construction of joint con-
fidence intervals for the parameters of interest, u∗

i s,
irrespective of whether the best-practice units are
known, a priori, or not. This is in sharp contrast with
the point estimates of αi and û∗

i , in which the bench-
mark partner is implicitly assumed to be known, a
priori. Second, the MCB intervals do not preclude
the likelihood of multiple best practice peers, while
the point estimations for αi and û∗

i solely permit
a single firm to reach the minimum cost frontier.
Lastly, the MCB intervals are not centered on the
point estimates û∗

i , recognizing the bias responsible
for the “min” operation. Employing the midpoint
of the MCB intervals as the point estimates of û∗

i
is alternatively suggested by, for example, Edwards
and Hsu (1983), in such a way as to lower the bias.
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The complete MCB technique has been illustrated
thoroughly by Horrace and Schmidt (1996, 2000)
and Fraser and Horrace (2003) for econometric
applications up to the stochastic production fron-
tier model. The current paper goes a step further
to a fixed-effect cost frontier specification. Let 	̂

be the covariance matrix of the vector estimates
α̂ = (α̂1, . . . , α̂I )

′, where each element is denoted by
ω̂ij (i, j = 1, . . . , I ). Under a pre-specified signifi-
cance level λ, the allowance term h ji is defined as:

h ji = d∗
j (ω̂i i + ω̂ j j − 2ω̂ij)

1/2, (3.3)

where i, j = 1, . . . , I , but i �= j , and d∗
j is the

solution to:

Prob(max1≤i≤I−1 |Zi | ≤ d∗
j ) = 1 − λ, (3.4)

in which Zi signifies an I − 1 dimensional random
vector distributed as an (I −1)-variate t distribution
with degrees of freedom I (T − 1) − K and a suit-
able covariance matrix (for details, see Horrace and
Schmidt 2000).

The lower and upper bounds of simultaneous
(1 − λ)100% multiple comparisons with a control
(MCC) confidence interval for the difference be-
tween the i th unit and the pre-selected unit j (usually
the best practice firm) will take the form:

L B j
i = α̂i − α̂ j − h ji , (3.5)

U B j
i = α̂i − α̂ j + h ji . (3.6)

Define the following notations:

S =
{

i
∣∣∣U Bi

j ≥ 0 ∀ j �= i
}

= {
i
∣∣α̂i ≤ α̂ j + hij ∀ j �= i

}
, (3.7)

L Bi = max

[
0, min

j∈S
L B j

i

]

= max

[
0, min

j∈S
α̂i − (α̂ j + h ji )

]
, (3.8)

U Bi = max

[
0, max

j �=i
U B j

i

]

= max

[
0, max

j �=i
α̂i − (α̂ j − h ji )

]
. (3.9)

The (1 − λ)100% MCB confidence interval on u∗
i

can then be written as:

Prob
{[1] ∈ S and L Bi ≤ u∗

i ≤ U Bi ,

i = 1, . . . , I } ≥ 1 − λ. (3.10)

Edwards and Hsu (1983) provide the proof. Equa-
tion (3.10) states that with a probability of at least
(1 − λ), the joint intervals between L Bi and U Bi

will contain the true relative cost inefficiency of firm
i(i = 1, . . . , I ), when the true identity of the best-
practice firm is unknown with certainty. There ex-
ist important dissimilarities between the production
frontiers, (e.g., Horrace and Schmidt 1996, 2000;
Fraser and Horrace 2003), and the cost frontier in
(3.7) through (3.9) deserves specific mention. When
a production frontier is adapted to obtain intervals
for u∗

i , all the terms of hij and h ji s present in these
equations need to be multiplied by −1. In addition,
the inequality signs of (3.7) have to be reversed, as
well as the arguments of the min and max operators
in the brackets on the right-hand side of the remain-
ing two equations are multiplied by −1.

Set S can never be empty, which contains the indi-
ces of all detected best-practice firms in the sample
with a probability of at least (1−λ). The MCB proce-
dure splits the whole sample into three components.
One of them includes firms having L Bi = 0 and in
the set S, which are identified to be the benchmark
partners. Firms not in S, but having 0 = LBi < UBi ,
belong to the second component, while the last com-
ponent accommodates those firms not in S and hav-
ing 0 < L Bi < U Bi . If S is a singleton, then it must
be the least cost firm with the smallest estimate of
αi . Only under this special case are the MCB inter-
vals for the remaining firms aligned with the MCC
intervals with that firm as the control. The joint con-
fidence intervals (3.10) of u∗

i s are readily translated
into those of CEi = exp(−u∗

i ). The converted prob-
ability statement takes the following form:

Prob

{
[1] ∈ S and exp(−U Bi ) ≤ exp(−u∗

i )

≤ exp(−L Bi ), i = 1, . . . , I

}
≥ 1 − λ. (3.11)

4 Data description

The source of the data used by this paper comes
mainly from publications of the Central Bank and the
Ministry of Finance, Taiwan, the Republic of China.
The sample period spans 1981–2001. This dataset
includes 22 of Taiwan’s domestic banks, of which 11
are sizable public enterprises when compared in
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terms of total assets with the other 11 private banks,
at the outset of the sample period. Starting from the
second half of the sample period, the government
took steps to liberalize the banking sector and to
encourage the privatization of public banks for the
sake of enhancing productivity and efficiency of the
industry. As a result, three public banks remain at
the end of the sample period. Since one of the now
private banks started business in 1982, the unbal-
anced panel data consist of 461 observations.

In line with the intermediation approach, we are
able to identify two outputs and three inputs from the
collected data. The output items contain investments
(Y1), which are composed of government and corpo-
rate securities, and various loans (Y2) with distinct
terms of maturity. All kinds of deposits and borrowed
money (X1), the number of full-time equivalent
employees (X2), and physical capital net of depreci-
ation (X3) are classified as inputs. In 2001 the aggre-
gated book values of total assets, investments, and
loans over the 22 sample banks constituted about
61.97, 64.55, and 65.78% of the respective industry
values. It isnoteworthythat theseratiosareevenmuch
higher for previous years. In fact, they have become
diluted over time due to more and more new entrants
into the industry prompted by the adaptation of the
deregulation policy. Viewed from this angle, the cur-
rent sample appears to be a good representative of
Taiwan’s banking industry. Sample statistics of all
variables are summarized in Table 1.

Based on Table 1, Y2 is obviously the primary out-
put produced by the sample banks, and it is nearly
five times as much as Y1. In reality, a bank’s excess
reserves are often used to make a variety of loans
to its customers prior to buying securities. This is
likely to be the case, because the former usually
earns higher marginal revenue than the latter, but

inevitably at the expense of incurring higher risks.
It is therefore assumed that a bank’s production of
Y2 is subject to the production risk caused possibly
by loan defaults and/or arrears.

Except for the variables suggested by microeco-
nomic theory, (2.8) includes several extra terms in
the cost frontier as well, for the sake of gaining fur-
ther insight on bank managers’ behavior. A linear
trend (t), a quadratic trend (t2), and all the interac-
tion terms between t and other variables are added
to the simultaneous equations model, consisting of
the translog cost frontier (2.8) and its corresponding
share equations, in order to capture potential shifts
of the cost frontier caused by a technical change over
time. Following Hughes et al. (1996), Mester (1996),
Berger and Mester (1997), and Huang (2000), the
inclusion of variables pertaining to the quality of a
bank’s assets may help shed some light on a bank’s
performance, as well as risk preferences.

The amount of non-performing loans (NPL) is
used to account for loan quality. A bank granting
more risky loans may reveal either that its manag-
ers are less risk-averse, or that it spends fewer re-
sources in the process of credit evaluation and hence
incurs fewer costs. Moreover, financial capital (FK),
also referred to as equity capital, plays a key role in
the production process of a financial institution due
to the fact that it renders a buffer against portfo-
lio losses, on the one hand, and replaces deposits
and borrowed money to finance loans, on the other.
Risk-averse managers will attempt to retain a higher
ratio of FK to deposits than risk-neutral ones. This
may adversely give rise to the realized level of FK
differing from the cost-minimizing one. Given the
foregoing, it may be appropriate to take account of
FK into the econometric model, so as to control for
differences in attitudes towards risk.

Table 1 Sample statistics

∗ millions of real New
Taiwan Dollars
Base year 1996
Number of observations
461

Variable name Mean Standard deviation

Real actual cost (E)∗ 20787.33 22072.59
Real investments (Y1)

∗ 48438.11 65694.47
Real loans (Y2)

∗ 233174.67 265123.68
Price of deposits and borrowed
Money (W1) 0.0597 0.0222
Real wage of labor (W2)

∗ 0.8033 0.3226
Price of capital (W3) 0.5333 0.5417
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5 Empirical analysis

The first subsection, presents parameter estimates
of the cost frontier, followed by the construction of
the MCB confidence intervals for cost efficiency. As
stated previously, multiple best-practice banks are
likely to be present.

5.1 Parameter estimates

To underscore the differences between models with
and without regards to production risk, we estimate
two sets of translog cost frontiers, where Model
1 considers risk, while Model 2 does not. Table 2
summarizes all the coefficient estimates for the two
models and the fixed-effects estimates are shown in
Appendix. It is seen that most of the coefficients are
statistically significant for the two models. Indeed,
all the fixed-effects and risk parameters are statis-
tically significant even at the 1% level of signifi-
cance. The proposed models fit the data quite well
due to their high coefficients of determination (not
shown) for the share and cost equations. The regu-
larity conditions imposed by microeconomic theory
on a cost function are checked for every observation
using those parameter estimates. Most of the sample
observations are found to be consistent with the the-
ory.6 One is led to conclude that these estimates may
be sufficient enough to represent an average bank’s
production technology and cost structure.

The estimated risk parameters are distributed
roughly between −0.80 and −0.33 and are skewed
toward the left end. A vast majority of the risk param-
eters are found to be greater than one half in abso-
lute value. There are as few as five firm specific
risk parameters (including the normalized one) be-
low one half in absolute value, indicating that these
banks tend to have less risk aversion in compari-
son with the remaining banks. It is important to note
that putting the absolute discrimination on banks’

6 More specifically, all the estimated cost shares of X1 and
X3 are positive and there are only two observations having
negative labor shares. As for the conditional factor demand
functions, the demand for X1 is found to be negative with
respective to its own price for all sample points, while 122
sample points and six sample points are found to be positive
to their own prices for X2 and X3, respectively, which are
inconsistent with the theory. More than 339 out of 461 obser-
vations satisfy the negativity condition of a cost function.

risk attitudes into categories of risk aversion, risk
neutrality, and risk loving is less of an issue under
the framework of the production risk extending to
the cost frontier. However, the relative measure of
risk preferences against the normalized unit, corre-
sponding to the least risk-averse decision maker, is
consequential. More specifically, a bank with a large
value of |R̂i | indicates that its managers tend to dis-
like risk much more than a normalized bank. The
magnitude of |R̂i | can then be viewed as an indi-
cator of the relative risk aversion for bank i to the
normalized bank, very similar to the concept of the
degree of risk aversion defined in the area of uncer-
tainty. Given the available information, it is difficult
and moreover unnecessary to tell which category the
i th bank belongs to.

Parameters K1 and K2 are significantly estimated
to be −0.0149 and 0.00041, respectively, at the 1%
level. Based on those estimates, it can be seen that
the linear and quadratic trends cause Rit to initially
go down at a decreasing rate, until a turning point
at about tren = 18, after, which Rit begins to rise
at an increasing rate. This indicates that the sample
banks’ managers first tend to be more risk-averse and
conservative over time, whereas later in the sample
period their preferences on risk change and become
less risk-averse, due possibly to the major financial
deregulation and liberalization that occurred in 1989
with the enactment of the New Banking Law. The
Law, perhaps the most important financial one en-
acted in Taiwan, removed barriers to entry and lib-
eralized the establishment of new privately-owned
commercial banks in the spirit of intensifying the de-
gree of competition in the banking sector. To survive
in a more market-oriented atmosphere, individual
banks (new and old) have to be more responsive and
willing to take more aggressive strategies, prompting
the overall risk attitudes to deviate from risk aversion
and toward risk neutrality or even risk preferring.

An interesting question can be immediately raised.
Is efficiency correlated with risk attitudes? A sim-
ple correlation coefficient between bank specific risk
parameters and fixed-effects estimates is calculated
to be as high as around 0.85, indicating that they
are closely related to each other. A bank with a
higher estimated fixed effect, which means that the
bank deviates farther from the best-practice partners,
tends to be willing to take more risks in pursuit of
greater production of output Y2. The potential risks
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Table 2 Parameter estimates

Model 1 Model 2 Model 1

Variable Estimate Standard Estimate Standard Variable Estimate Standard
name error error name error

ln Y1 0.4910*** 0.0877 0.2843*** 0.0811 risk 1 −0.7698*** 0.0284
ln Y2 −0.0264 0.1804 0.5395*** 0.1463 risk 2 −0.7385*** 0.0309
ln W1 0.3404*** 0.0336 0.5023*** 0.0269 risk 3 −0.6015*** 0.0465
ln W2 0.5332*** 0.0210 0.3764*** 0.0167 risk 4 −0.6607*** 0.0379
ln N P L 0.1891*** 0.0545 0.0678 0.0488 risk 5 −0.5713*** 0.0497
ln F K −0.1626 0.1327 −0.2032* 0.1228 risk 6 −0.5192*** 0.0571
t 0.0355 0.0225 0.0952*** 0.0210 risk 7 −0.3859*** 0.0681
t2 0.0016*** 0.0006 0.0008* 0.0005 risk 8 −0.4664*** 0.0591
ln Y1 × ln Y1 0.0808*** 0.0117 0.0760*** 0.0152 risk 9 −0.4108*** 0.0650
ln Y2 × ln Y2 0.1269*** 0.0274 0.1008** 0.0394 risk 10 −0.3320*** 0.0825
ln N P L × ln N P L 0.0133*** 0.0047 0.0138** 0.0056 risk 11 −0.8022*** 0.0252
ln F K × ln F K 0.0782*** 0.0268 0.0781** 0.0355 risk 12 −0.6889*** 0.0364
ln Y1 × ln Y2 −0.0609*** 0.0134 −0.0638*** 0.0190 risk 13 −0.7882*** 0.0264
ln Y1 × ln W1 0.0176*** 0.0037 0.0165*** 0.0045 risk 14 0 0
ln Y1 × ln W2 0.0048** 0.0021 0.0011 0.0029 risk 15 −0.6490*** 0.0397
ln Y1 × ln N P L 0.0004 0.0063 0.0094 0.0087 risk 16 −0.6919*** 0.0370
ln Y1 × ln F K −0.0553*** 0.0132 −0.0361** 0.0169 risk 17 −0.6323*** 0.0443
ln Y2 × ln W1 0.0619*** 0.0047 0.0548*** 0.0059 risk 18 −0.6780*** 0.0395
ln Y2 × ln W2 −0.0506*** 0.0030 −0.0358*** 0.0038 risk 19 −0.6826*** 0.0398
ln Y2 × ln N P L −0.0239*** 0.0084 −0.0245** 0.0108 risk 20 −0.7719*** 0.0303
ln Y2 × ln F K 0.0060 0.0210 −0.0065 0.0292 risk 21 −0.7435*** 0.0341
ln W1 × ln W2 −0.0810*** 0.0031 −0.0784*** 0.0039 risk 22 −0.7425*** 0.0312
ln W1 × ln W3 −0.0423*** 0.0034 −0.0403*** 0.0037
ln W1 × ln N P L −0.0044** 0.0021 −0.0120*** 0.0024
ln W1 × ln F K −0.0273*** 0.0056 −0.0247*** 0.0056
ln W2 × ln W3 −0.0233*** 0.0018 −0.0291*** 0.0022
ln W2 × ln N P L 0.0006 0.0012 0.0062*** 0.0015
ln W2 × ln F K 0.0013 0.0033 −0.0044 0.0036
t × ln Y1 0.0094*** 0.0020 0.0060*** 0.0021
t × ln Y2 −0.0048 0.0030 −0.0066* 0.0035
t × ln W1 −0.0028*** 0.0008 0.0011 0.0007
t × ln W2 −0.0024*** 0.0005 −0.0059*** 0.0005
t ln N P L 0.0016 0.0011 −0.0017 0.0012
t × ln F K −0.0109*** 0.0022 −0.0051* 0.0028
tren −0.0149*** 0.0025
tren2 0.0004*** 0.0001
Log likelihood 2501.23 2229.01

* significant at the 10% level
** significant at the 5% level
*** significant at the 1% level

come naturally from loan defaults/arrears, as stated
previously. This finding has important policy impli-
cations on improving cost efficiency in the banking
industry. It suggests that a stable economic envi-
ronment is likely to foster highly efficient financial
institutions.

While a lack of technical efficiency is important
information for bank managers, its impact on costs is
perhaps of greater concern. The individual estimates
of the û∗

i s and cost efficiency measures of

CEi = exp(−û∗
i ) are shown in Tables 3 and 4 for

Models 1 and 2, respectively. Both models’ average
cost efficiencies are computed as 0.48 and 0.60, res-
pectively. This implies that potential respective cost
savingsareroughly52and40%whenachievingtech-
nical efficiency, and that on average a fully techni-
cally efficient bank requires nearly 48% (60%) of re-
sources currently used to produce an equal amount of
outputs.Differencesbetweenthe twomodelsaresub-
stantial in terms of possible cost reductions,
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illustrating the importance of incorporating produc-
tion risk explicitly into the analytical model. As ad-
dressed at the end of Subsection 2.1, failure to con-
sider production risk confounds the true production
frontierwiththecertaintyequivalentproductionfron-
tier and consequently leads to higher estimates of TE.
The empirical results confirm this argument.

5.2 The MCB confidence intervals

The relative technical inefficiencies, û∗
i s, are trans-

formed into the cost efficiency measures using the
estimates of the αi s. Although all the fixed-effect
parameters display statistical significance, as shown
in Table 2, they nevertheless are incapable of pro-
viding useful information on the precision of u∗

i .
This weakness can be readily rectified by the MCB
technique. To show how different confidence lev-
els exert an influence on the widths of confidence
intervals, the authors choose to construct two sets
of confidence intervals on the basis of 95 and 75%
confidence levels. The 95% (75%) simulated criti-
cal values of d∗

j in (3.4) range from 2.799 (2.074) to
2.969 (2.318) for Model 1 and from 2.631 (1.884)
to 2.920 (2.262) for Model 2. The relative tech-
nical inefficiency measures and the corresponding

joint confidence intervals, translate into the cost effi-
ciency measures at the 95 and 75% confidence lev-
els, are summarized in Tables 3 and 4, respectively.

The distribution of the point estimates û∗
i s is well

dispersed, with values falling largely within the inter-
val zero to 1.76 for Model 1, while falling within zero
to 0.96 for the other model. This appears to indicate
that the variability of these relative efficiency lev-
els is substantial. With respect to these estimates,
one may unduly infer that the specific sample banks
exhibit considerable technical inefficiency and that
the efficiency measures are inaccurately estimated.
However, the picture that is depicted from investi-
gating the MCB confidence intervals is entirely in
contrast to the one from point estimates with regard
to a deficiency of TE (see below).

Model 1 shows that four banks lie on the efficient
cost frontier with a probability of at least 95 (and
75%), i.e., S1 = {1, 13, 20, 21}, while Model 2 iden-
tifies merely two such banks under the same proba-
bility level, i.e., S2 = {1, 21}, even though the latter
model comes up with a higher average CE measure,
0.60, as opposed to the former, 0.48. This means that,
forModel1, thedifferencesamong the fourmost effi-
cient banks’ estimated fixed effects are statistically
insignificant, while for Model 2 a pair of such banks

Table 3 The MCB confidence intervals of Model 1 with production risk

Bank û∗
i CEi = exp(−û∗

i ) Rank of cost 75% Lower 75% Upper 95% Lower 95% Upper
number efficiency bound bound bound bound
1 0 1 1 0.8946 1 0.8229 1
2 0.4938 0.6103 7 0.5257 0.8810 0.5024 0.9481
3 1.3541 0.2582 16 0.2113 0.4067 0.1965 0.4508
4 0.9392 0.3909 13 0.3311 0.5732 0.3147 0.6201
5 1.2629 0.2828 15 0.2356 0.4247 0.2229 0.4632
6 1.5302 0.2165 18 0.1801 0.3213 0.1703 0.3490
7 1.7380 0.1759 21 0.1454 0.2624 0.1372 0.2855
8 1.6189 0.1981 19 0.1649 0.2948 0.1559 0.3206
9 1.6957 0.1835 20 0.1522 0.2726 0.1438 0.2962
10 1.4338 0.2384 17 0.1894 0.3587 0.1766 0.3915
11 0.2461 0.7818 5 0.6717 1 0.6413 1
12 0.7309 0.4815 8 0.3971 0.6673 0.3745 0.7119
13 0.1695 0.8441 4 0.7060 1 0.6687 1
14 1.7568 0.1726 22 0.1417 0.2503 0.1335 0.2698
15 0.9083 0.4032 12 0.3325 0.5668 0.3136 0.6045
16 0.8141 0.4430 11 0.3614 0.6113 0.3397 0.6479
17 0.9455 0.3885 14 0.3160 0.5431 0.2967 0.5782
18 0.7435 0.4754 10 0.3833 0.6582 0.3590 0.6876
19 0.7399 0.4772 9 0.3830 0.6629 0.3582 0.6932
20 0.1495 0.8611 3 0.6732 1 0.6246 1
21 0.1281 0.8798 2 0.6822 1 0.6314 1
22 0.2912 0.7474 6 0.6154 1 0.5800 1

S1 = {1, 13, 20, 21}
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Table 4 The MCB confidence intervals of Model 2 without production risk

Bank û∗
i CEi = exp(−û∗

i ) Rank of cost 75% Lower 75% Upper 95% Lower 95% Upper
number efficiency bound bound bound bound

1 0.0708 0.9316 2 0.8196 1 0.7790 1
2 0.4195 0.6574 6 0.5787 0.7525 0.5501 0.7855
3 0.8341 0.4343 18 0.3662 0.5154 0.3423 0.5509
4 0.5919 0.5533 14 0.4873 0.6313 0.4634 0.6606
5 0.7193 0.4871 17 0.4170 0.5690 0.3920 0.6052
6 0.9592 0.3832 22 0.3241 0.4539 0.3032 0.4843
7 0.9477 0.3876 21 0.3338 0.4502 0.3145 0.4778
8 0.9294 0.3948 19 0.3403 0.4580 0.3208 0.4858
9 0.9438 0.3891 20 0.3353 0.4516 0.3161 0.4791
10 0.6126 0.5419 15 0.4817 0.6203 0.4596 0.6390
11 0.4378 0.6455 7 0.5746 0.7396 0.5487 0.7593
12 0.4689 0.6257 9 0.5632 0.7303 0.5402 0.7488
13 0.2781 0.7527 5 0.6904 0.8862 0.6655 0.9093
14 0.7064 0.4934 16 0.4276 0.5711 0.4039 0.6028
15 0.5263 0.5908 12 0.5314 0.6835 0.5095 0.6990
16 0.5613 0.5705 13 0.5141 0.6649 0.4933 0.6814
17 0.5238 0.5923 11 0.5338 0.6900 0.5123 0.7071
18 0.4426 0.6424 8 0.5895 0.7594 0.5697 0.7815
19 0.4709 0.6244 10 0.5729 0.7428 0.5537 0.7659
20 0.2066 0.8133 3 0.7603 1 0.7297 1
21 0 1 1 0.9220 1 0.8812 1
22 0.2319 0.7930 4 0.7220 0.9335 0.6956 0.9595

S2 = {1, 21}

maybedetected.Theaboveresultsare robust tochan-
ges in the confidence levels, namely the 75 and the
95% levels. Clearly, S2 is a subset of S1, indicating
that a failure tobeconcernedwithproduction risk im-
plies an identification of fewer benchmark partners
andanoverstatementofTE,according to this sample.

It is quite interesting to note that, even being one
of the most efficient banks in Model 1, bank 13 has
cost efficiency equal to 84.4% of the maximal effi-
ciency in the sample. Its cost efficiency may be as
low as 66.9% relative to the most efficient bank,
based on the MCB confidence intervals. Point esti-
mates are apparently unable to detect this type of
statistical detail, but instead they suggest a priori
that an exact single best practice bank exists in the
sample. No ties are allowed in the sample for the
best. Moreover, the widest confidence intervals are
about 0.44 and 0.33 for both models at the 95%
level, implying that to some extent the relative cost
efficiency CEi s are precisely estimated.

Banks with binding MCB upper bounds, but not
in S, are classified in the second best group.7 Model

7 Readers are advised to refer to Horrace and Schmidt (2000)
and Fraser and Horrace (2003) for details in this regard.

1 identifies two such banks, i.e., banks 11 and 22,
while Model 2 finds one, i.e., bank 20. Those banks
are likely efficient at the 95% level. It is impor-
tant to note that all banks belonging to the first two
best groups reach an MCB upper bound of unity, in
which the point estimates CEi s are less than about
0.75 in Model 1. However, the largest value of CEi in
the remaining group is equal to around 0.61. Given
that CEi s are precisely estimated, the gap of 0.14 is
large enough to distinguish the first two groups from
the least efficient group. The remaining banks be-
long to the class deficient of TE. The upper bounds
of the 95% confidence intervals for these are uni-
formly lower than unity. There are, respectively, 16
and 19 technically inefficient banks found for the
two models at the 95% (75%) level.

6 Concluding remarks

In this paper, we have first proposed a theoretical
model involving production risk and then a tractable
dual cost frontier, which is fairly suitable for deal-
ing with situations whereby firms produce multiple
outputs and employ knowledge that concerns quasi-
fixity of some inputs. This model has been derived
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in a straightforward fashion under the framework
of a certainty-equivalent production frontier. The
primary concern of this paper is to see that the uncer-
tainty of the input-output process is explicitly mod-
eled and imbedded in a cost frontier—one that itself
accounts for production efficiency. The cost frontier
deduced in this manner is appealing since it has been
modified in response to production risk and the deci-
sion maker’s attitude toward risk. This is perhaps a
fills an important gap in the literature to date. Only
relative attitudes toward risk among firms make eco-
nomic sense in the context of the certainty-equiva-
lent cost frontier, in lieu of absolute risk attitudes,
not only for the purpose of facilitating estimation,
but also for helping to shed light on the distribution
of risk preferences over the sample. It is from this
that essential policy implications may be drawn.

Another potential contribution of this work is the
construction and interpretation of MCB confidence
intervals for the (likely biased) point estimates of
TE for the sample of banks. The results on multiple
best practice banks indicate that inferences based on
the point estimates of TE tend to be misleading. The
specific data uncovered at the 95 (75%) level that
six (three) out of the 22 banks analyzed may be
efficient as far as Model 1 (2) is concerned.

By comparing the empirical results of Models 1
and 2, we naturally conclude that the model, taking
production risk into account, appears to preferable
so long as the risk parameters are significantly esti-
mated, as exemplified by this exercise. Therefore,

Appendix

Model 1 is a valid structure to be adopted to analyze
a firm’s behavior of cost-minimization particularly
in a world of uncertainty. Evidence is found that
Taiwan’s banking industry can be characterized as
highly risk-averse, which causes the output level of
Y2 to go down substantially, by reference to (2.4).
However, the sample banks take up more risk after
the banking reform, giving rise to instructive impli-
cations, i.e., the salutary effects of a more orderly
and responsive financial system, more transparent
banking practices, and a more market-oriented and
competitive environment. All may assist in reduc-
ing production risk confronted by banks, nurture a
more efficient and reliable financial system, and ulti-
mately benefit the whole economy. The major finan-
cial deregulation and liberalization that occurred in
1989 appears to have prompted Taiwan’s financial
development and advancement. Finally, Model 1s
average cost efficiency measure is computed to be
0.48, well within the interval of 0.31–0.97, as found
by Berger and Humphrey (1997) after reviewing
the results of 130 financial institution efficiency
studies.
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Table A.1 The fixed-effect estimates and standard errors

Bank number Model 1 Model 2

Estimate Standard error Estimate Standard error

1 2.6887∗∗∗ 0.7163 1.9327∗∗∗ 0.4903
2 3.1826∗∗∗ 0.7213 2.2814∗∗∗ 0.4968
3 4.0428∗∗∗ 0.7337 2.6960∗∗∗ 0.4745
4 3.6279∗∗∗ 0.7276 2.4538∗∗∗ 0.4948
5 3.9516∗∗∗ 0.7286 2.5812∗∗∗ 0.4812
6 4.2190∗∗∗ 0.7265 2.8211∗∗∗ 0.4867
7 4.4268∗∗∗ 0.7303 2.8096∗∗∗ 0.4853
8 4.3077∗∗∗ 0.7305 2.7913∗∗∗ 0.4862
9 4.3844∗∗∗ 0.7304 2.8057∗∗∗ 0.4862
10 4.1225∗∗∗ 0.7283 2.4745∗∗∗ 0.4951
11 2.9348∗∗∗ 0.7270 2.2997∗∗∗ 0.4971
12 3.4197∗∗∗ 0.7238 2.3308∗∗∗ 0.5017
13 2.8582∗∗∗ 0.7230 2.1400∗∗∗ 0.4970
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Table A.1 continued

Bank number Model 1 Model 2

Estimate Standard error Estimate Standard error

14 4.4455∗∗∗ 0.7241 2.5683∗∗∗ 0.4919
15 3.5970∗∗∗ 0.7234 2.3882∗∗∗ 0.4991
16 3.5029∗∗∗ 0.7181 2.4232∗∗∗ 0.4993
17 3.6342∗∗∗ 0.7190 2.3857∗∗∗ 0.4984
18 3.4322∗∗∗ 0.7102 2.3045∗∗∗ 0.4964
19 3.4286∗∗∗ 0.7071 2.3328∗∗∗ 0.4975
20 2.8382∗∗∗ 0.6853 2.0685∗∗∗ 0.4815
21 2.8169∗∗∗ 0.6825 1.8619∗∗∗ 0.4761
22 2.9800∗∗∗ 0.7110 2.0938∗∗∗ 0.4950

∗∗∗ significant at the 1% level
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