

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3480, pp. 957 – 966, 2005.
© Springer-Verlag Berlin Heidelberg 2005

IMNET: An Experimental Testbed for Extensible
Multi-user Virtual Environment Systems

Tsai-Yen Li, Mao-Yung Liao, and Pai-Cheng Tao

Computer Science Department, National Chengchi University, Taipei, Taiwan
{li, g9105, g9310}@cs.nccu.edu.tw

Abstract. Multi-user virtual environment (MUVE) systems enable virtual par-
ticipation in many applications. A MUVE usually is a complex system requir-
ing technologies from 3D graphics and network communication. However,
most current systems are designed to realize specific application contents and
usually lack system extensibility. In this paper, we propose an extensible archi-
tecture for a client-server based MUVE system called IMNET. This XML-
based MUVE system allows function modules to be flexibly plugged into the
system such that network or user interface experiments can be easily incorpo-
rated. We will use two examples to illustrate how to flexibly change the system
configurations on the server and client sides to enhance system functions or to
perform experiments. We believe that such an experimental test-bed will enable
a wider range of researches to be carried out in a more efficient way.

1 Introduction

A multi-user virtual environment (MUVE) system is a system allowing many users to
share the same 3D virtual world through the network and participate in the activities
in the world as avatars. It allows a user to interact with other users or the environment
via textual or visual communications. A snapshot of the user interface in a virtual
environment is shown in Fig. 1. The feature of not being constrained by physical
existence allows such a system to have a great potential value in applications that
cannot be easily realized in the real world. For example, a 3D role-playing game al-
lows its users to act as a fictional characters in an ancient world. A MUVE can also be
adopted to simulate military activities. In addition, many examples have demonstrated
that it can also be used to visualize or perform scientific experiments that cannot be
easily explained by texts and figures [3].

Many MUVE systems have been proposed in the literature. In early years, most
systems were developed for research purposes. However, in recent years, one can see
more commercial systems being designed to host such a virtual environment for gen-
eral purposes or for special purposes such as on-line games. Designing a MUVE is a
complex task requiring multi-discipline trainings involving networking and 3D tech-
nologies. Most MUVE systems are packaged as a standalone application or a program
module that can be embedded in a web page. Although some of them may have exter-
nal application programming interface (API) for integration with other programs [12],
most of them cannot be extended at design time or configured at run time. In this
paper, we propose an experimental MUVE test-bed, called IMNet (Intelligent Media

958 T.-Y. Li, M.-Y. Liao, and P.-C. Tao

Network), that is designed to be extensible for incorporating other function modules
such as message filters or user interface components. IMNet adopts a client-server
architecture and uses XML as the base language for server and client configurations
as well as the message protocols for MUVE. We will demonstrate the extensibility
of our system by two examples incorporated into the server and client programs,
respectively.

The rest of the paper is organized as follows. We will review the work pertaining
to MUVE systems. In the third section, we will describe the proposed extensible sys-
tem architecture for the server and client programs. We will describe the message
protocol and its encoding in the fourth section. Two examples will then be given to
illustrate the functions of the experimental test-bed. Finally, we will conclude the
paper with some future extensions.

2 Related Work

The MUVE related research proposed in the literature has various aspects. Some of
them focus on system architecture and message protocols [1][5][6] while others focus
on applications such as in military simulation and education [3][2]. In terms of system
architecture, most systems fall into two types: client-server and peer-to-peer. The
client-server architecture is the most widely used one. For example, RING [4] by UC
Berkeley and AT&T Bell lab, Community Place [7] by the Computer Science labora-
tory and Architecture laboratory of SONY, Blaxxun Community Server [13] by
Blaxxun, and ActiveWorlds [12] system by ActiveWorlds are all examples that adopt
a client-server architecture. VNet is another MUVE system with a client-server archi-
tecture that opens its source for cooperative development [10]. In this type of systems,
since messages must be routed through the server, the server can easily become the
bottleneck. Therefore, many researches try to address the problem of reducing the
amount of data transmission by data filtering or dead reckoning techniques. In addi-
tion, some research proposes the idea of using multiple servers to distribute the load
on the server side [11]. This type of research aims to increase the scalability of a
MUVE system such that more users can be served at the same time. The experiments
in much of this research are done by modifying a specific MUVE system, and the
implementation cannot be easily ported to other systems.

In addition to the communication issues, standards for 3D animation and display
on the client side also attract many attentions. Many recent MUVE systems use open

Fig. 1. An example dialog scene in a virtual environment

 IMNET: An Experimental Testbed for Extensible Multi-user Virtual Environment 959

standards such as VRML [15] to model the geometry and animation of a virtual scene
while the other use proprietary formats. The 3D display program is usually packaged
as a 3D browser that can be embedded in a web page. The browser could be stand-
alone or integrated with other external programs such as a Java Applet to provide
application-specific functions [13]. Due to the extensibility of XML (eXensible
Markup Language), the VRML standard is migrating into the XML-based X3D lan-
guage [18]. However, most MUVE systems use a fixed proprietary format as the
application protocol for message passing [10]. [9] is an example that attempts to
change the message format of VNet to an XML-based protocol. Although the system
designer can easily design new tags to enrich the functions of a MUVE, the programs
on the client and server sides needs to be modified to accommodate the changes. The
system is not designed to incorporate plug-in modules that are specified at design time
or even at run time. In addition, although the protocol is more extensible, the size of a
same message could be larger if raw XML strings are used for transmission.

3 System Description

In this section, we will describe the system architecture of the server and client pro-
grams in the IMNet virtual environment system. IMNet is a client-server based
MUVE system adopting XAML (eXensible Animation Modeling Language)[8] as the
language for 3D display and animation. The server program is called IMServer while
the client is called IMClient. XAML is an animation scripting language that is de-
signed to specify animations in a range of abstractions. For example, it can be used to

IMNetIMNet ServerServer

ProcessPrototype

onMessage

nextProcess

UserInstance
ReadMessage

SendMessage

UserInstance
ReadMessage

SendMessage

ProcessMeaasge

ProcessPrototype

onMessage

nextProcess

ProcessPrototype
onMessage

nextProcess

ProcessPrototype
onMessage

nextProcess

Dispatcher

Client
Message

Client

ApplicationApplication
ObjectObject

TimerProcess

TimerTimerSchedule

TimerProcessTimerProcess

IMNetIMNet ServerServer

ProcessPrototype

onMessage

nextProcess

ProcessPrototype

onMessage

nextProcess

ProcessPrototype

onMessage

nextProcess

UserInstance
ReadMessage

SendMessage

UserInstance
ReadMessage

SendMessage

ProcessMeaasge

ProcessPrototype

onMessage

nextProcess

ProcessPrototype

onMessage

nextProcess

ProcessPrototype
onMessage

nextProcess

ProcessPrototype
onMessage

nextProcess

Dispatcher

Client
Message

Client

ApplicationApplication
ObjectObject

TimerProcess

TimerTimerSchedule

TimerProcessTimerProcess

Fig. 2. System architecture of IMServer with the pluggable message processing mechanism

960 T.-Y. Li, M.-Y. Liao, and P.-C. Tao

specify low-level joint values as in VRML. It can also be used to specify high-level
goal-oriented motions such as “Move to Café” as long as the animation engine knows
how to interpret the script and generate the animation.

3.1 Server System Architecture

According to [7], a MUVE system consists of four modules, Client, Server, Applica-
tion Object, and Server Client Protocol. The Application Object (AO) module is re-
sponsible for interpreting the messages and managing the application contexts (for
example, virtual shopping mall). Data filtering routines such as dead reckoning algo-
rithms can also be implemented in the AO module to improve the performance of the
server by filtering out unnecessary information for the clients.

The system architecture of IMServer including the AO module is shown in Fig. 2.
When a client logs into the system, a UserInstance is created on the server to take
care of the message input and output for the client. All messages are sent to the
ProcessMessage routine for data processing in the AO module. Each data proc-
essing unit in the AO module is called ProcessPrototype. All ProcessPro-
totype’s in the AO module are organized as a tree structure to process the message
data in parallel or in sequence. The onMessage method of the first ProcessPro-
totype in each tree branch is called to process the message data and decide if it will
pass the data to the next ProcessPrototype or simply filter them out. Each of the
leave ProcessPrototype’s in a tree may generate messages to the dispatcher for
distribution to other clients. In addition to being driven by the incoming message
events, the server can also produce messages voluntarily through the timer service.
The processing units of the service are also organized in a tree structure such that they
can work together in parallel or in sequence.

With best extensibility in mind, we have designed a mechanism to set up the above
processing tree at run time on the server side. This mechanism is described as an
XML configuration file, as the example shown in Fig. 3. The java class is specified in
the “class” attribute of each process. In this example, process A and B are the start of

<serverConfig>
 <processors>
 <processor class=”example.processorA”>
 <processor class=”example.processorC” />
 <processor class=”example.processorD” />
 </processor>
 <processor class=”example.processorB” />
 <timerprocessor class=”exampleTestTimer” delay=”5000”>
 <processor class=”example.processorE” />
 </timerprocessor>
 <timerprocessor class=”exampleTestTimer” delay=”2000” />
 </processors>
</serverConfig>

Fig. 3. Example of server configuration on message processing structure

 IMNET: An Experimental Testbed for Extensible Multi-user Virtual Environment 961

the two branch processes. Process A first filters the messages and pass them to proc-
ess C and D s equentially. Since both processes B and D are the last process in their
braches, they may produce messages that will be distributed to other clients. In addi-
tion, independent timer processors can be evoked periodically according to the speci-
fied delays. Since the processing routines’ classes are organized and bound at run
time, experiments can be done easily by specifying appropriate filtering or processing
routines in the configuration file without recompiling the server’s code.

Fig. 4. System architecure of IMClient

<imclient>
 <components>
 <component class="Mailman" name="mailman"/>
 <component class="SpChat" name="chat"/>
 <component class="SpActionButton" name="actionButton"/>
 <component class="SpMemoryMonitor" name="memoryMonitor"/>
 <component class="SpIMBro" name="browser"/>
 </components>
 <eventDispatcher name="mailman">
 <connect ip="127.0.0.1" port="62266"/>
 <eventlistener name="chat"/> ...
 </eventDispatcher>
 <toolbar>
 <button name="memoryMonitor"/> ...
 </toolbar>
 <toolbar>
 <buttonContainer name="actionButton">
 <xamlButton name="bow" text="Bow"

file="Behavior/Bow.xml"/>
 ...
 </buttonContainer>
 </toolbar>
 <panels>
 <panel name="browser"/>
 <panel name="chat"/>
 </panels>
</imclient>

Fig. 5. An example of configuration file for IMClient

962 T.-Y. Li, M.-Y. Liao, and P.-C. Tao

3.2 Client System Architecture

The client side program of IMNet is called IMClient. The system architecture of IM-
Client is depicted in Fig. 4. The program consists of two major components: Mailman
(communication module) and IMBrowser (3D animation engine), and other GUI
components such as textual chat and action buttons. The program is updated accord-
ing to two types of events: messages from the server and actions from the user. A
message from the server is first processed by the Mailman module and passed to all
other interested modules. Corresponding components of the screen will be updated
according to the type of the message such as a movement or a chat message. The user
can also create events, such as entering chat messages or clicking on action buttons, to
be sent to the server via the Mailman module.

A main feature of IMClient is that the components comprising the program can be
configured at run time. The program is set up by loading a configuration file at ini-
tialization such as the one shown in Fig. 5. In this file, each class module is defined as
a named component which may or may not contain a GUI widget. The relations
among these components are set up according to the event dispatcher and listener
model. The latter part of this file describes how the components are connected to the
GUI widgets. For example, both IMBrowser and Chat implement a panel widget to be
arranged in the client window as shown in Fig 6. Two types of toolbars are also used
in the client window: static toolbar and dynamic toolbar. A static toolbar contains
buttons that must be initialized at start-up time while dynamic toolbar allow buttons to
be created and inserted at a later time. For example, an action button of an avatar for a
canned motion in a MUVE can be downloaded from the server as long as the canned
motion is described by a XAML script.

Fig. 6. A snapshot of IMClient user interface for the configuration in Fig. 5

 IMNET: An Experimental Testbed for Extensible Multi-user Virtual Environment 963

4 Message Protocol

4.1 IMNet Message Protocol

The message protocol used in IMNet adopts XAML as the base animation scripting
language. The protocol needs to deliver messages containing information such as user
login events, movements, and animation. Since complex and extensible animations
can be embedded in an XAML script, the remaining message types for the virtual
environment application can be kept minimal. In the current design, the additional
tags include the following: <IMNet>, <Chat>, <Login>, <Logout>, and
<UserMove>. In Fig. 7, we show an example message about a user A whispering to
user B while performing an animation described in an XAML script, stored in a sepa-
rated file. In addition, a login message uses the format of <Login id=”userC”
url=”wrl/avatar_03.wrl”> while a user movement message uses the format
of <UserMove x=”10” y=”20”>. The latter message can also be described in an
XAML script, but we make it a standalone message to optimize this type of frequently
used actions.

4.2 Message Encoding

Although messages in the XML format have the advantage of being extensible, they
also have the drawback of being large in size. The problem gets worse for a MUVE
system when the animation gets more low-level and complex. Similar problems also
arise in the WAP (Wireless Application Protocol) [16] application. The WAP devel-
opment community proposed an encoding method called WBXML (WAP Binary
XML) [17] to convert XML string into a concise binary format. We have also adopted
such an encoding method to deliver IMNet messages. However, instead of converting
an XML string to WBXML, we generate WBXML directly from an internal DOM
(Document Object Model) for efficiency.

We have done experiments to compare the encoding and decoding performance of
different methods as well as with the original XML format. The experimental data, as
shown in Fig. 5, were measured on a personal computer with an AMD XP2500 proc-
essor. Note that the WBXML encoding method outperforms the Java serialization
method and the common ZIP compression method in encoding time as well as decod-
ing time. However, the string size after the WBXML encoding is 2.5 times larger than
the one with ZIP compression on average although the size has been reduced by 4.2
times on average compared to the Java serialization method.

<IMNet from=”userA” to “userB”>
 <Chat> See you later. </Chat> <!—textual>
 <AnimItem> <!- XAML script>
 <AnimImport src=”Bye”/>
 </AnimItem>
</IMNet>

Fig. 7. An example message in IMNet with textual and animation contexts

964 T.-Y. Li, M.-Y. Liao, and P.-C. Tao

5 Examples of System Extensibility

5.1 User-Centric Throughput Adjustment Experiments

For a client-server based MUVE system like IMNET, the server is commonly consid-
ered as a bottleneck for message exchanges. Therefore, much research has proposed
to use the idea of data filtering to reduce the amount of traffic that needs to be trans-
mitted across the network. The decision is usually made by some intelligent modules
such as view culling and dead reckoning on the server side to filter out unnecessary
information according to each client’s configuration. In fact, each client’s ability in
display and network I/O may vary greatly, and a uniform policy is not going to fit
every clients need and may waste the server’s resources in sending out unnecessary
messages that the clients cannot digest. Other factors such as message types and user
activities may also imply the demands for customized filtering policies according to
the user’s model. The server should also adjust its message update frequency accord-
ing to its own CPU and network I/O performance. We call a server with this type of
capability a server that can perform user-centric throughput adjustment.

Fig. 9 shows the system configuration, similar to Fig. 2, for this experiment. The
performance monitoring module subscribes the incoming messages and monitors the
CPU and I/O performance of the server. These data are maintained as the system
states for the server and clients. The other branch of the message flow starts from the
dead reckoning module, which filters out messages for the clients keeping the ex-
pected moving direction. The filtered messages will be passed to the throughput con-
trol module which determines whether the messages should be sent to each specific
client or not according to their system states and the server’s current loading. The
filtered messages are sent out to the clients via the dispatcher module. Note that set-
ting up a system experiment like this does not require the designer to recompile the
program since the message flows are set up at run time according to a system
configuration file similar to the one shown in Fig. 3. This feature allows the designer
to insert or remove different experimental modules and treat the system as a flexible

Encoding Time

0
10
20
30
40
50

0 10 20 30

File Size(KB)

m
ill

is
ec

on
d

WBXML Compress
JAVA Serialize
Zip

Decoding Time

0

200

400

600

800

1000

0 10 20 30

File Size(KB)

m
ill

is
ec

on
d

WBXML
JAVA
Unzip

 (a) (b)

Fig. 8. Comparisons of encoding and decoding performances

 IMNET: An Experimental Testbed for Extensible Multi-user Virtual Environment 965

or remove different experimental modules and treat the system as a flexible experi-
mental test-bed.

5.2 Extension to Voice-Enabled User Interface

One can also extend the functions of IMClient by specifying appropriate components
in the configuration file. We will use a voice-enabled user interface as an example to
illustrate how to add new system functions and user interface modules into the sys-
tem. The voice-enabled user interface is based on a research aiming to incorporate
voice dialogs in MUVE [8]. The system allows two avatars in the same scene to talk
to each other via voice dialogs and embedded animations while allowing a third user
to observe the dialog. The protocol that the system has used is called XAML-V since
it acts as a plug-in extending the XAML animation scripting language. Assume that
this new module is called the VUI module. It implements a text panel for displaying
voice dialogs and subscribes to the incoming messages via the Mailman component.
This new module can be hooked up to IMClient with ease by modifying the XML-
based configuration file in Fig. 5.

6 Conclusions

In this paper we have described an experimental testbed for MUVE. This system
adopts an XML-based protocol that allows an extensible animation scripting language
to be efficiently embedded in the messages. The extensibility of the system is also
shown in the system configurability of the server and clients by two examples. We
believe that the extensibility of this system will enable more research to be conducted
in a more efficient way.

Acknowledgement

This work was partially supported by a grant from National Science Council under a
contract NSC 93-2213-E-004-001.

Fig. 9. An example of server configuration for the adjustable throughput control experiment

ProcessMessage

Dead
Reckoning

Throughput
Control

Performance
Monitoring

System State

IMNet Server

messages

UserInstance B

UserInstance A Client

Client

Dispatcher

966 T.-Y. Li, M.-Y. Liao, and P.-C. Tao

References

1. Bouras, C., Tsiatsos, T.: pLVE: Suitable Network Protocol Supporting Multi-User Virtual
Environments in Education. In: International Conference on Information and Communica-
tion Technologies for Education, Vienna, Austria (2000) 73-81

2. Elliott, C, Lester, J. C., Rickel, J.: Integrating affective computing into animated tutoring
agents. In: Proceedings of IJCAI '97 workshop on Intelligent Interface Agents (1997)

3. Fellner, D.W., Hopp, A.: VR-LAB - A Distributed Multi-User Environment for Educa-
tional Purposes and Presentations. In: Proceedings of the Fourth Symposium on the Virtual
Reality Modeling Language, Germany (1999) 121-132

4. Funkhouser, T.: Network Topologies for Scalable Multi-User Virtual Environments. In:
Proceedings of IEEE VRAIS'96 (1996) 222-228

5. Greenhalgh, C.: Implementing Multi-user Virtual Worlds: Ideologies and Issues. In: Pro-
ceedings of the Web3D-VRML 2000 fifth Symposium on Virtual Reality Modeling Lan-
guage (2000) 149-154

6. Huang, J. Y., Fang-Tsou, C. T., and Chang, J. L: A Multi-user 3D Web Browsing System.
In IEEE Internet Computing, Vol. 2, 5, (1998) 70-79

7. Honda, Y., Matsuda,, K., Rekimoto, J., Lea, R.: Virtual Society: extending the WWW to
support a multi-user interactive shared 3D environment. In: Proceedings of the First Sym-
posium on Virtual Reality Mmodeling Language (1995) 109-166

8. Li, T.Y., Liao, M.Y., Liao, J.F.: An Extensible Scripting Language for Interactive Anima-
tion in a Speech-Enabled Virtual Environment. In: Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME2004), Taipei, Taiwan (2004)

9. Liu, Y.L., Li, T.Y.: A Multi-User Virtual Environment System with Extensible Anima-
tions. In: Proceedings of the Web3D 2003 Symposium (2003)

10. Robinson, J., Stewart, J., and Labbe, I.: MVIP-audio enabled multicast VNet. In: Proceed-
ings of the Web3D-VRML 2000 Fifth Symposium on Virtual Reality Modeling Language
(2000) 103-109

11. Smed, J, Kaukoranta, T., Hakonen, H.: A Review on Networking and Multiplayer Com-
puter Games. In :Technical Report 454, Turku Centre for Computer Science (2002)

12. ActiveWorlds, http://www.activeworlds.com
13. Blaxxun, http://www.blaxxun.com/
14. VoiceXML, http://www.w3.org/TR/voicexml20/
15. VRML, http://www.web3d.org/x3d/specifications/vrml/vrml97/
16. WAP, http://www.wapforum.org/
17. WBXML, http://www.w3c.org/TR/wbxml/
18. X3D, http:///www.web3d.org/x3d

	Introduction
	Related Work
	System Description
	Server System Architecture
	Client System Architecture

	Message Protocol
	IMNet Message Protocol
	Message Encoding

	Examples of System Extensibility
	User-Centric Throughput Adjustment Experiments
	Extension to Voice-Enabled User Interface

	Conclusions
	Acknowledgement
	References

