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Abstract

In this paper, we examine the information content in the trajectory-

domain model proposed by Chen and He (2003). The data to be tested

are three American stock indices, namely, the Dow Jones, Nasdaq,

and S&P 500. We adopt two event study methods, the standardized-

residual method (SRM) and the standardized cross-sectional method

(SCSM), to test the abnormality of the aftermath return series. In

addition, the GARCH-M plus MA(1) is regarded as the benchmark to

be compared with. It is found that some patterns of the models do

transmit informative signals, but the signals are not persistent. They

emerge during a period and then vanish, and vice versa.

Keywords: financial modeling; self-organizing maps; event study methods;
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1 Introduction

Financial data mining is concerned with two general questions. The first

is to define the financial patterns with appropriate data mining tools, and

the second is to show whether or not the patterns derived are profitable or

informative. In the literature, the first issue has largely been addressed in

the context of time series models, be they linear or non-linear. However,

more recently, financial data mining has started to look at the alternative

— the feature-domain approach.

In time-domain models, e.g., ARIMA models, bilinear models, (G)ARCH

models, etc., the extrapolation of past values into the immediate future

is based on correlations among lagged observations and error terms. The

feature-based models, however, select relevant prior observations based on

the symbolic or geometric characteristics of the time series in question,

rather than their location in time. Then, what will happen in the next

time period will depend on the current feature. Examples of feature-domain

models include self-organizing maps (SOMs), decision trees, k-nearest neigh-

borhoods, etc. In a nutshell, feature-based models first identify or discover

features, and then act accordingly by taking advantage of these features. In

a sense, these modeling strategies may be regarded as constituting a change

from the conventional global modeling strategies to local modeling strategies.

The effectiveness of these modeling strategies is built upon the assumption

that a global complex model can be effectively decomposed into many lo-

cal simple models. To test the plausibility of this assumption, this paper

attempts to examine whether or not the feature-domain models provide an

effective representation of the financial time series data. In particular, we

examine the feature-domain model proposed by Chen and He (2003).

Chen and He (2003) are the first to use SOMs to search for and identify

price patterns. In their model, a geometric or trajectory pattern of the

price series is considered to be a feature. Such a model is referred to as the

trajectory-domain model. The motivation of Chen and He (2003) is based

upon the observation that, in the financial market, chartists appear to have

been good at engaging in pattern recognition for many decades, yet little
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academic research has been devoted to a systematic study of these kinds of

activities.

Chen and He applied a 6 × 6 two-dimensional SOM to time series data

for the TAIEX (Taiwan Stock Index), and hence 36 charts were derived

automatically. Of the 36 charts, many were familiar, depicting uptrends,

downtrends, v-formations, rounding bottoms, rounding tops, double tops,

and island reversal. Furthermore, many of these charts were able to trans-

mit buying and selling signals. They also showed that trading strategies

developed from these charts may have superior profitability performance.

As a follow-up in this line of research, Chen and Tsao (2003) applied

the same architecture to three American stock indices, including the Dow

Jones, Nasdaq, and S&P 500. In addition, they conducted a more rigor-

ous statistical analysis of the discovered patterns. By using the one-sided

studentized range test (Hayter, 1990), it was found that, from the appear-

ance of some charts, the aftermath equity curves established were either

monotonically increasing or decreasing. This feature is hard to capture us-

ing ordinary econometric methods. However, after excluding unconditional

mean returns, such monotonicity disappears.

This paper provides a different approach to examine the SOM-discovered

patterns, namely, the event study approach. We treat each pattern as an

event. Every price trajectory classified on the basis of the same pattern

is considered to be the same event. The event study approach is then ap-

plied to estimate the impact of a pattern (event) on the aftermath return

behavior, and, based on that, to examine the information content in the

SOM-discovered patterns.

The empirical findings of econometricians suggest a general notion that

“one model cannot fit all.” Many studies on asset pricing argue over an

issue of “whether beta is dead.” Moreover, it is found that, in the option

pricing literature, the Black-Scholes formula seems to provide reasonably

accurate values during 1976 to 1978. However, since 1986 there has been

a very marked and rapid deterioration (Rubinstein, 1994). In this paper,

it is interesting to see whether the informative patterns, if there are any,

discovered by SOMs are consistently informative during the whole of the
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time horizon. We separate the data into two parts to examine this issue.

The rest of this paper is organized as follows. Section 2 will firstly

give a brief review of the Chen and He (2003) trajectory-domain model,

and then describe the data and parameters considered. Section 3 contains

a description of the event study approach and shows its relevance to our

pattern analysis. The event study results are presented in Section 4. Section

5 concludes and gives several directions for future study.

2 The Trajectory-Domain Model

This section briefly reviews the Chen and He (2003) trajectory-domain

model. This model can be characterized as consisting of two parts. The first

is the sliding window device that expresses a price trajectory as a chart, and

the second comprises the SOMs that are used to cluster charts. We will first

introduce SOMs in Section 2.1, and then show the sliding window device

and the data used in this paper in Section 2.2.

2.1 Self-Organizing Maps

In contrast to the artificial neural networks (ANNs) which are used for

supervised learning, SOMs are another special class of artificial neural net-

works. The SOMs are used for unsupervised learning to achieve auto clas-

sification, data segmentation or vector quantification. Unlike the supervised

ANNs, SOMs do not require the users to know in advance the exact objects

that they are looking for. This convenience is particularly important when

one can only effectively recognize some patterns by visual inspection rather

than based on mathematical descriptions.

The SOMs adopt so-called competitive learning among all neurons. The

output neurons that win the competition are called winner-takes-all neurons.

In SOMs, the neurons are placed on the sites of an l-dimensional lattice. The

value of l is usually 1 or 2. Through competitive learning, the neurons are

tuned to represent a group of input vectors in an organized manner. The

mapping from a continuous space to a discrete one or a two-dimensional

space achieved by the SOMs reserves the spatial order.
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Among a number of training algorithms for SOMs, Kohonen’s learning

algorithm is the most popular (Kohonen, 1982; Haykin, 1994). Kohonen’s

learning algorithm adopts a heuristic approach. Each neuron on the lattice

has a weight vector of w components attached. The w represents the number

of input variables in the input data sets. The winning neuron and its close

neighbors in the lattice have their weight vectors adjusted towards the input

pattern presented on each iteration. Unlike other clustering methods such

as k-means clustering (Huang, 1997), Kohonen’s SOMs have the advantage

that the final training outcome is insensitive to the initial settings of weights.

Therefore, Kohonen’s SOMs have found a wide variety of applications in

image processing, target detection, 3D dynamic modeling, the classification

of pulse signals of the autonomic nervous system, speech processing, etc.

In the training process, for an input vector x, the weights of the winning

neuron and its close neighbors are updated according to (1),

vj(n + 1) = vj(n) + η(n)πj,i(x)(n)[x − vj(n)], (1)

where vj(n) is the weight vector of the jth neuron at the nth iteration,

πj,i(x)(n) is the neighborhood function (to be defined below) of node indices

j and i(x),

i(x) = arg min
j

|| x − vj ||, j = 1, 2, ..., d2 , (2)

and η(n) is the learning rate at iteration n.

We take for the neighborhood function the Gaussian form,

πj,i(x) = exp

(

−
d2

j,i(x)

2σ2(n)

)

, (3)

where dj,i(x) is the distance between node units j and i(x) on the map

grid, and σ(n) is some suitably chosen, monotonically decreasing function

of iteration times n. Here, the effective width σ decays with n linearly

according to (4).

σ(n) = σ0 +
(σ1 − σ0)

N − 1
(n − 1), (4)

where σ0 and σ1 are constants (σ0 > σ1) and N is the total number of

epochs. The learning rate decays in a power manner:

η(n) = η0(0.005/η0)
(n−1)/N , (5)
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where η0 is constant.

The training takes a long time with almost all neurons initially having

their weights updated. This training phase is called the ordering phase. Dur-

ing this phase, as the learning rate and effective width gradually decrease,

the topological ordering of the weight vectors takes place. During this phase,

the initial effective width assumes a large value and the weights of virtually

all of the neurons are updated. Through competitive learning, the weight

vectors gradually settle down to form a topological order. The weights then

settle down gradually during the second phase of learning named the con-

vergence phase where only the weights of the winning neuron and perhaps

its nearest neighbors are updated according to the case presented.1

2.2 Model Design

In this paper we present the results of the application of the SOM to financial

time series data. The data sets to be segmented are the three empirical stock

indices, which are the Dow Jones, Nasdaq, and S&P 500. The original data

sets cover the daily closing prices from 1/1/80 to 7/10/02 and comprise

5688, 5682, and 5687 observations, respectively.

What we intend to do is to take a sliding window (Fig. 1) with different

window width w moving from the first period to the last period of the whole

data set indexed by t (t = 1, ..., T ), so that all T observations will further

subdivide into T − w + 1 subsamples, each with w observations of a time

series. Each subsample represents a time series pattern. The SOM is then

used to automatically divide all patterns into groups or clusters in such a

way that members of the same group are similar (close) in the Euclidean

metric space. The w observations in each subsample are normalized between

0 and 1. A two-dimensional 6 × 6 SOM is used to map the T −w+1 records

into 36 clusters.2 The 6 × 6 lattice of SOMs is presented in Fig. 2. Here,

1For more descriptions of SOMs and discussions on their mathematical properties, see,

for example, Kohonen (1997). For the applications of SOMs to economics and finance, see

Deboeck and Kohonen (1998).
2Chen and He (2003) and Chen and Tsao (2003) give some intuition as to why SOM

is a suitable tool for geometric pattern recognition. In addition, the choice of a two-
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Figure 1: Sliding Window of the Trajectory-Domain Model.

we consider the hexagonal lattice.

In this paper, we consider six different w, their values being 10, 30, 60,

90, 120, and 150. Then the results may be compared with different window

widths. The control parameters used to conduct this experiment are given

in Table 1.

3 Event Study Approach

The event study approach is widely used in finance as a quantitative tool to

examine the aftermath of an event. Early event studies are primarily con-

cerned with the impact of firm-specific events, such as the dividends payout,

on stock returns. The focus generally lies on how stock prices adjust to

the release of relevant information around certain events or announcements.

Binder (1998) and MacKinlay (1997) provide a nice survey of the literature

on the firm-specific event studies. In the following subsections, the event

study approaches are fine-tuned to match the needs of this study.

dimensional lattice model is justified in those studies.
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Figure 2: Map Structure of SOMs (Hexagonal Grid).

3.1 Event and Estimation Periods

In the design of the sliding window of the trajectory-domain model, there is

a persistence of a pattern. For example, if at period t2 pattern j is observed,

it may continue to appear for the next mf − 1 days. In this case, we count

the appearance of pattern j only once but attach to it a duration of mf

days. The index word f is the appearance index of the pattern under such

modification, f = 1, 2, . . . , Fj . By drawing this fact into the event study

approach, we regard time t2 as the event date, and the event period is

determined by the duration of the pattern in question. Since what interests

us is whether there is anything abnormal after the pattern has been observed,

we regard [t2+1, t2+mf ] as the event period. Fig. 3 depicts the time horizon

of the event study approach.

Fig. 4 introduces an example. In this case, the length of the series (T ) is

11 and the window width (w) is 3. Then there are a total of 9 (T −w+1 = 9)

charts for the trajectory-domain model. The number attached to each 3-

period segment indicates the pattern recognized. At times 5, 6, 7, 9, and 10,

the charts are recognized as Pattern 1. Then the first event period for the
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Table 1: Parameter setup for the implementation of the 2-dimensional d ×
d SOM.

Window width (w) 10, 30, 60, 90, 120, 150

Dimensionality of SOM (l) 2

Number of neurons (d × d) 6 × 6

Ordering phase initial radius (σ0) 6.00

Ordering phase final radius (σ1) 1.00

Ordering phase initial learning rate (η0) 0.90

Ordering epoch (N) 1000

Convergence phase initial radius (σ0) 1.00

Convergence phase final radius (σ1) 0.10

Convergence phase initial learning rate (η0) 0.10

Convergence epoch (N) 1000

Pattern 1 event is [6, 8] and the second is [10, 11]. If there are significant

positive (or negative) returns during these two periods, the Pattern 1 reveals

the signal of future rising (or falling) prices.

Some problems may arise under an analysis so constructed. Firstly, the

length of the event period (mf ) is, of course, not constant, which contrasts

with he general uses of the event study approach for constant event periods.

However, it is deterministic after the SOMs have been trained. Then the

test statistics of the event study approach can still be obtained using the

central limit theorem.3 Secondly, from Section 2 we know that the learning

process of the SOMs is iterative and that the whole of the sample is used to

train the map. Then one chart that is classified into some specific pattern

will depend on the charts both before and after that chart. Hence, this is an

in-sample analysis, but, there is no in-sample problem, i.e. the evidence, if

there is any, of the abnormal returns will not been overemphasized. Notice

the unsupervised learning properties of SOMs. The purpose of the learning

process is not to find the pattern that could induce any aftermath return

behavior, i.e. the determinant of the pattern is independent of the abnormal

3For details, see Section 3.3.
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Figure 3: Time Horizon of Event Study Approach.

returns. On the contrary, it just clusters the charts based on the similarities

in the Euclidean space. Therefore, although the events (patterns) considered

here are endogenous, the event studies can show us the impact of the events

with the same reliability as any other exogenous events such as the tax

policies of the markets or the macroeconomic circumstances.

Another essential element of the event study approach is to define the

so-called abnormal return, such that it can correctly measure the impact of a

specific event. To define what is abnormal, one has to define what is normal.

Alternatively speaking, under the event study framework, the criterion used

to distinguish the informative patterns from non-informative patterns is the

abnormal return, which is mainly a statistic of the first-order moment. In

the event study approach, the normal return comes from the prediction of

the benchmark model. The difference between the actual return (rt) and the

predicted return (Eb(rt)) is then called the abnormal return (ARt), i.e.,

ARt = rt − Eb(rt).

In practice, the benchmark model is estimated from estimation period [t1, t2]

(Fig. 3). The length of the estimation period (m = t2 − t1 +1) is arbitrarily
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Figure 4: Sliding Window: An Example.

set as 300 days in all of the cases.

One of the usual benchmark models in firm-specific event studies is the

market model. However, since the data we have considered are stock indices,

the market models or other benchmark models in firm-specific event studies

are not suitable. We must then search for another model that is usually

used to capture the growth of stock indices. Conventionally, there are a

couple of econometric models that can help us predict what the normal

return for a stock index is. This paper considers GARCH-M plus MA(1) as

the benchmark. Two questions arise from this choice. Why GARCH-M plus

MA(1)? What are the consequences of misspecification? We will attempt to

justify such a choice in the next subsection. In addition, once the benchmark

model might be misspecified, the bootstrap method is regarded as a remedy

to consolidate the test results. We detail this in Section 4.2.

3.2 GARCH-M plus MA(1)

The ARCH process introduced by Engle (1982) is the one econometric tool

that can capture the volatility clustering phenomenon in financial time series
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data. The basic idea of the ARCH model is to allow the conditional variance

to change over time. Bollerslev (1986) proposes a GARCH model which on

one hand allows for a more flexible conditional variance structure and on the

other hand converts a high-order ARCH model into a more parsimonious

GARCH representation that is much easier to identify and estimate, while

in empirical applications of the ARCH model a relatively long lag in the

conditional variance equation is often required. Bollerslev et al. (1992)

found that the GARCH(1,1) is most identified in financial time series data.

The GARCH(1,1) model can be written as

rt = c + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1.

(6)

where Ωt−1 is the information set available at time t − 1.

Based on the idea that the risk-averse investors require compensation for

holding risky assets, the ARCH model is extended by Engle et al. (1987) to

allow for the variance to be a determinant of the mean and is called ARCH-

M. Thus as the risk of an asset changes over time, the risk premium changes

accordingly, and also, the expected return. It is straightforward to expand

ARCH-M into a GARCH-M model. Consider the GARCH(1,1)-M model

rt = c + δh(σt) + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1.

(7)

The choice of h(σt) = σt (h(σt) = σ2
t ) represents the assumption that the

conditional expected return is proportionate to the conditional standard

deviation (variance). In a study by French et al. (1987), it was found

that the specification of h(σt) = σt fit the data slightly better than that

of h(σt) = σ2
t , but that the evidence for this was not strong. Engle et al.

(1987) state that, empirically, h(σt) = log σt is found to be a better choice.
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In this paper, we consider both the specifications of σt and σ2
t . That is

rt = c + δσt + εt

(or rt = c + δσ2
t + εt)

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1.

(8)

The final forecasting model is chosen from between them via the Akaike

information criterion (AIC).

Spurious first-order autocorrelation can usually be found in an asset

return for two possible reasons: nonsynchronous trading and the bid-ask

spread. Most of the financial asset tradings, such as those involving individ-

ual stocks on the NYSE, do not occur in a synchronous manner. For daily

stock returns, nonsynchronous trading can induce lag-1 cross-correlation be-

tween stock returns and, thus, lag-1 serial correlation in a portfolio return.4

Another financial issue that can cause spurious lag-1 correlation is related to

the bid-ask spreads, which exist in the stock exchanges with market makers.

The market makers are individuals who stand ready to buy or sell whenever

the public wishes to sell or buy. They buy from the public at the bid price

and sell at the ask price. The difference between these two prices is called

the bid-ask spread. The realized price thus jumps between the bid and ask

price, which introduces a negative lag-1 serial correlation in the return series

(Roll, 1984). This occurs not only in relation to individual stocks, but also

the effect of the bid-ask spread continues to exist in portfolio returns.

In order to capture the first-order autocorrelation induced by the bid-ask

spread and nonsynchronous trading, an MA(1) term is included in the mean

equation of (8). We obtain

rt = c + δσt + εt − θεt−1

(or rt = c + δσ2
t + εt − θεt−1)

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1.

(9)

French et al. (1987) applied Model (9) to the Standard and Poor’s composite

portfolio to examine the relationship between stock returns and stock market

4See, for example, Campbell et al. (1997) for a more detailed discussion.
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volatility. In this paper, we apply Model (9) to the Dow Jones, Nasdaq, and

S&P 500 indices, but take it as a benchmark model in event study to examine

the information content of the SOMs-discovered patterns.

3.3 Test Statistics

For pattern j (j = 1, ..., 36), we are interested in the null hypothesis:

H0: There is no abnormal return after pattern j has been observed.

Due to the construction of the analysis in this paper described in Section

3.1, the null hypothesis was rewritten as:

H ′

0: There is no cumulative abnormal return after pattern j has been

observed.

Two statistical tests have been frequently used to test for the significance

of events in the event study approach. One is the standardized-residual

method (SRM) proposed by Pattel (1976), and the other is the standardized

cross-sectional method (SCSM). The former assumes that there is no event-

induced variance, whereas the latter assumes that there is.

The standardized-residual method assumes that the variance structure

of the return is the same in both the estimation and the event period. The

test statistic is as follows:5

tSRM ≡
∑Fj

f=1

∑mf

i=1 SARf,t2+i/
√

mf
√

Fj(m − 5)/(m − 7)

d→ N(0, 1). (10)

where {SARf,t2+i}mf

i=1 is the set of standardized abnormal returns during

the event period. 6

If during the event period the variance increases or decreases, the tSRM

term dose not seem to be a good test statistic. It may reject the null too

often or only seldom. Cowan and Sergeant (1996) point out that three

5This test statistic is a little different from Pattel (1976) due to the fact that the event

length here is not constant over each occurrence of an event. Appendix 1 details the

derivation of the statistic.
6For a rigid definition of SARf,t2+i, see Appendix 1.
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commonly used tests are potential solutions to the problem of event-induced

variance: the generalized sign test proposed by Cowan (1992), Corrado’s

rank test, and a standardized cross-sectional test proposed by Boehmer et

al. (1991). The second test statistic used in this paper is the modified

version of the standardized cross-sectional test in Boehmer et al. (1991) to

allow for nonconstant event length. The test statistic is as follows:7

tSCSM ≡
√

FjSCAR

SFj

d→ N(0, 1). (11)

where SCAR and SFj
are respectively the sample mean and sample standard

deviation of the standardized cumulative abnormal return.8

Before examining the magnitudes of tSRM,j and tSCSM,j, j = 1, 2, . . . , 36,

to judge which pattern is informative, we first emphasize that it would be

desirable to conduct a joint test of the 36 patterns together rather than 36

tests for each individual pattern. It is clear that a joint test can give us

a better control than the individual tests regarding the general conclusion:

the SOM can discover informative patterns. Then the null hypothesis we

are interested in is:

H ′′

0 : The SOM cannot discover informative patterns.

On the other hand, from the statistical point of view, the result from the

joint test is robust because it avoids the problem of the test size diminishing

which happened when many tests were conducted together. So the two

chi-square tests are considered before going through each pattern:9

q2
K ≡

36
∑

j=1

t2K,j
d→ χ2

36, K = SRM,SCSM (12)

To sum up, the experiment design and analysis are depicted in the flowchart

displayed in Fig. 5.

7Here, we make two regular assumptions about the return series in order to apply the

central limit theorem and the Slutsky theorem. Appendix 2 details the assumptions and

the derivation of the statistic.
8For rigid definitions of SCAR and SFj

, see Appendix 2.
9If the intertemporal dependency of the return series is perfectly captured by the

benchmark model, the {t2K,j}
36
j=1, K = SRM, SCSM , is independent identical distributed

(iid). Then the asymptotic distribution of the following statistics can be obtained.
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Figure 5: Flowchart of the Analysis.

4 Results

4.1 General Description

Before making a formal presentation of our test results, it would be useful

to have a general picture of the patterns we discovered via the SOM. They

are depicted in Figs. 6-8. Each figure stands for a different stock index,

and each map in the figures stands for different window width. There are 36

patterns in the map, in which the relative position of the patterns match the

hexagonal lattice. From these figures, it is worth noting that some patterns

are very similar due to the exogenous setting of the size of the SOM.10 From

these diagrams, it is also clear that the patterns that are neighbors to each

other behave similarly. This is also what one can expect from a full-spanned

SOM.11

The frequencies of each pattern are not uniformly distributed. Some

10There must be 36 clusters to form, no more and no less, regardless of how similar or

dissimilar they are.
11The SOM algorithm does not guarantee the full-span of the web.
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Table 2: Event Study: Joint Tests for the Patterns Discovered by SOMs.
Dow Jones Nasdaq S&P 500

w SRM SCSM SRM SCSM SRM SCSM

10 ***(0.05) **(0.10) ***(0.07) ***(0.00) ***(0.04) *(0.12)

30 **(0.35) (0.40) ***(0.36) **(0.26) *(0.33) (0.46)

60 **(0.22) *(0.24) ***(0.15) ***(0.11) ***(0.05) *(0.16)

90 ***(0.06) (0.73) ***(0.07) ***(0.08) *(0.37) (0.84)

120 ***(0.04) (0.76) ***(0.25) (0.76) **(0.10) ***(0.01)

150 **(0.07) (0.90) ***(0.30) **(0.31) *(0.34) (0.79)

*, **, and *** denote 10%, 5%, and 1% significance levels, respectively, based on regular

χ2 tests. The numbers in the parentheses indicate the p-values obtained via the bootstrap

method.

patterns were found to be more prevalent than others. This can be seen

from the displays of Figs. 9-11. In these figures, the size of the black

hexagons indicate the extent to which the charts were clustered. The larger

the size is, the more widespread the pattern is throughout the whole time

series. There is a general finding in terms of window width (w) that a larger

window width has a less uniformly distributed frequency for the patterns.

However, as we shall see in the next subsection, most of these patterns are

not informative from the perspective of the event study approach.

4.2 Event Studies

From Table 2, we first notice that the test results are sensitive to the test

methods and the window widths. The null hypothesis is rejected more fre-

quently in the SRM method. Moreover, the results among different indices

are also different. Among all possible combinations, the one that looks par-

ticularly impressive is the Nasdaq, whose SOM-discovered patterns are sig-

nificant in almost all window widths by using either the SRM or the SCSM.

Why is the SOM so powerful for the Nasdaq index? Is that powerfulness

real or spurious?

To answer this question, we have to first notice that the credibility of our

tests may crucially depend upon the benchmark from which the abnormal
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return is derived. One way to gauge the effect of the misspecification of the

benchmark upon our test results was to use the bootstrap approach. By

means of that approach, we shuffled the sequence of the patterns discovered

by the SOM. Ideally, in so doing, the information revealed by the original

patterns will all have gone. In other words, the “patterns” following the

shuffling will no longer guide us to see the abnormal return.

The shuffling procedure was repeated 100 times. For the shuffled se-

quence b, the event study was applied and then
{

(t
(b)
SRM,j , t

(b)
SCSM,j)

}36

j=1
was

obtained and, also,
(

q
2(b)
SRM , q

2(b)
SCSM

)

, b = 1, 2, . . . , 100. The p-value was

calculated via:

p-value =
]
(

q
2(b)
K > q2

K

)

100
, K = SRM,SCSM. (13)

The numbers in the parentheses in Table 2 indicate the p-value obtained

via the bootstrap approach. It is obvious that the bootstrap methods give

more conservative results. If we take Nasdaq as an example, there are only

two window widths (w = 10, 90) indicating that the patterns discovered by

the SOMs are informative under the 10% significance level, in terms of both

event study methods.

Based on our results, there is some evidence that supports the relevance

of the SOM to pattern discovery. Following the event-study tests, we found

that some charts discovered by the SOM could in effect transmit signals of

abnormal returns. For example, in terms of the bootstrap p-values of both

test statistics, there were four maps disclosing informative signals under

the 10% significance level. They were the maps with window width w =

10 for the Dow Jones and the Nasdaq, with w = 90 for the Nasdaq, and

with w = 120 for the S&P 500. There are, however, two remarks to be

made in relation to this finding. First, the evidence is not consistent for

different window widths. Second, the evidence is also not consistent among

different markets. The first remark is not entirely surprising considering that

the real charts used by chartists also do not have a fixed window width.12

12An interesting issue left for the future is to extend the SOM to deal with window-size-

free patterns.
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The second remark indicates that charts may be more informative in some

markets. This is also familiar because many chartists believe that technical

analysis may receive more support from certain specific markets. The next

objective would then be to understand what factors may cause the emergence

of informative charts.

To show how the informative patterns in the four informative maps would

appear, Figs. 12-15 depict the charts which have aftermath abnormal re-

turns. The thick lines in the figures demonstrate that the aftermath return

of the pattern has positive abnormal behavior. The patterns with dotted

lines indicate that there are negative abnormal returns. It is interesting to

notice that most of the informative patters reveal the signal of future falling

prices. The portions of the periods which were found to have significant

patterns are 14.44%, 25.37%, 16.18%, and 4.35% for the cases depicted in

Fig. 12-15, respectively.

Although we do not presume that the patterns beforehand are some

specific types of chart, on the contrary, the patterns themselves emerge

from the data. Some of the informative patterns discovered by SOMs may

roughly be given a name in the chartist’s eyes, such as uptrends (Patterns

(5,2) in Fig. 13 and (2,4) in Fig. 14), a downtrend (Pattern (4,6) in Fig. 13),

V-formations (Patterns (4,2) in Fig. 12 and (5,4) in Fig. 14), a rounding

bottom (Pattern (1,5) in Fig. 13), a flat (Pattern (3,4) in Fig. 12), a wedge

(Pattern (5,2) in Fig. 14), and single zigzags (Patterns (4,5) in Fig. 12 and

(3,3) and (6,6) in Fig. 13).

4.3 Life of Informative Patterns

There is tremendous evidence indicating that the pattern has a life. It

can emerge, and will die as well. With this background, it is questionable

whether there are indeed any patterns which can signal abnormal returns

and which are not found for 20 years. The second emphasis of this paper is

to examine the life of patterns. A simple device for doing so is to divide the

whole of the data set into two parts, and then check whether the patterns

found to be significant in the previous section survived both sub-periods or

just one of them. Table 3 shows the joint test results for the pattern’s life.
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Table 3: Event Study: Joint Tests for the Patterns’ Life.
Dow Jones Nasdaq S&P 500

w SRM SCSM SRM SCSM SRM SCSM

10 ***(0.05) **(0.10) ***(0.07) ***(0.00) ***(0.04) *(0.12)

**(0.20) (0.38) ***(0.09) ***(0.00) (0.47) (0.42)

(0.58) (0.74) ***(0.09) ***(0.08) **(0.06) (0.22)

30 **(0.35) (0.40) ***(0.39) **(0.29) *(0.33) (0.46)

**(0.37) (0.56) ***(0.42) (0.39) (0.54) (0.81)

(0.65) (0.76) ***(0.54) **(0.38) (0.38) *(0.17)

60 **(0.22) *(0.24) ***(0.16) ***(0.13) ***(0.05) *(0.16)

*(0.40) ***(0.00) ***(0.47) **(0.13) ***(0.03) ***(0.02)

(0.33) (0.83) ***(0.02) ***(0.10) (0.73) (0.83)

90 ***(0.06) (0.73) ***(0.08) ***(0.08) *(0.37) (0.84)

***(0.05) (0.50) ***(0.10) **(0.33) ***(0.19) *(0.39)

**(0.10) *(0.50) ***(0.05) ***(0.18) ***(0.01) **(0.29)

120 ***(0.04) (0.76) ***(0.25) (0.81) **(0.10) ***(0.01)

***(0.03) (0.47) ***(0.36) (0.73) (0.78) (0.44)

(0.53) (0.72) ***(0.06) ***(0.12) **(0.04) **(0.45)

150 **(0.07) (0.90) ***(0.33) **(0.38) *(0.34) (0.79)

***(0.03) (0.38) ***(0.14) (0.54) ***(0.00) (0.58)

(0.12) (0.76) ***(0.03) ***(0.16) (0.72) (0.99)

*, **, and *** denote 10%, 5%, and 1% significance levels, respectively, based on regular

χ2 tests. The numbers in the parentheses indicate the p-values obtained via the bootstrap

method.

There are six panels in Table 3, each of which stands for a different window

width. In each panel, the first row represents the test results using all of the

data, which is the same as in Table 2. The second and the third rows are

the results using the first and the second halves of the data, respectively.

In terms of the bootstrap p-values of both test statistics under the 10%

significance level, there is one case (the Nasdaq with w = 10) in which the

patterns are informative in both subsamples and, of course, in the whole

sample, there are three cases (the Dow Jones with w = 10, the Nasdaq with

w = 90, and the S&P 500 with w = 120) in which the informative signals
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are not significant in both periods but are in the sample as the whole, and

there are two cases (the Nasdaq with w = 60 and the S&P 500 with w = 60)

in which the informative signals only appear in one of the two periods.

Furthermore, to examine individual patterns, there is evidence that most

patterns that are found to be significant could in effect have only successfully

transmitted profitable signals in one of the two periods. For example, in the

case of the Nasdaq with w = 10, there are only 3 among 13 informative

patterns where the informative signal is significant in both periods. This

is a highly interesting result, that shows that most of the charts which

were informative in the first period died in the second period. However,

the chartists did not die, because in the next period there were new charts

appearing and waiting to be found. This finding lends support to the recent

simulation study of agent-based artificial financial markets. The finding is

further strengthened by the evidence that some non-informative patterns

were actually found to be significant in one of the sub-periods. Taking the

Nasdaq with w = 10 as an example again, there are 7 patterns that were

judged to be informative in one of the periods but not in the whole sample.

This implies that a number of patterns which were not found significant was

because they could no longer transmit the profitable signal in the second

period. In other words, they died in the second period.

5 Conclusions

According to the chartists’ view, a chart is an event. On what scenario

the market in the future will depend on has already been recognized to-

day. Thus, it is straightforward to apply the event study approach to the

analysis of the information content of the trajectory-domain model, which

is proposed by Chen and He (2003) based on the motivation of chart anal-

ysis. In this paper there is some evidence to support the relevance of the

trajectory-domain model to informative pattern discovery. Some patterns

discovered by the SOM can in effect transmit signals of abnormal returns.

However, the signals are not persistent. They tend to emerge during a period

and then vanish, and vice versa.
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There are several directions in which this study could be extended, in-

cluding:

• Multivariate model.

Constructing multivariate models might be a direct extension of the

study. The variables with the same attributes might be adopted, e.g.,

two markets’ prices, or with different attributes, e.g., price and volume.

• Profitability.

The purpose of this paper is not to test whether the trajectory-domain

models can help us to make money. However, profitability might be

an interesting alternative issue to examine. Then the results of the

empirical analysis could be compared with theoretical financial issues,

such as the efficient markets hypothesis.

• The effect of model parameters.

For example, what is the effect of the size of the SOM? Should the

multi-dimensional SOM make it easier to find patterns, if there are

any?

• The effect of the event study setting.

For example, how is the event period discerned? Would the length of

the event play a role in its significance?

21



Appendix 1

Consider the f -th appearance of pattern j,

ARf,t2+i = rt2+i − r̂t2+i, i = 1, 2, ...,mf ,

where r̂t2+i is the estimated predicted return from the benchmark model.

Supposing there is no event-induced variance and H0 is true, then

SARf,t2+i ≡
ARf,t2+i

SEf,t2+i

iid∼ t(m − 5),

where SEf,t2+i is the estimated predicted error. The average standardized

cumulative abnormal return can be obtained as

SCARf ≡
∑mf

i=1 SARf,t2+i

mf
∼ D

(

0,
m − 5

(m − 7)mf

)

,

where D(a, b) denotes some distribution with mean a and variance b. Nor-

malizing SCARf we have

Kf ≡ SCARf
√

m−5
(m−7)mf

iid∼ D′(0, 1), f = 1, 2, ..., Fj .

Applying the central limit theorem we obtain
√

FjK̄
d→ N(0, 1).

i.e.
∑Fj

f=1

∑mf

i=1 SARf,t2+i/
√

mf
√

Fj(m − 5)/(m − 7)

d→ N(0, 1).

Appendix 2

We now consider the case in which there is an event-induced variance, then

SARf,t2+i ≡
ARf,t2+i

SEf,t2+i

iid∼ D′′(0, σ2
t2+i), i = 1, 2, ...,mf ,

Thus the standardized cumulative abnormal return will be

SCARf ≡
mf
∑

i=1

SARf,t2+i ∼ D′′′(0, σ2
f ),
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where

σ2
f =

mf
∑

i=1

σ2
t2+i.

Let

σ̄2
Fj

=

Fj
∑

f=1

σ2
f/Fj ,

and

S2
Fj

=

∑Fj

f=1(SCARf − SCAR)2

Fj − 1
.

We make the first assumption here: suppose limFj→∞ max(σf )/(Fj σ̄Fj
) =

0 and σ̄2 = limFj→∞ σ̄2
Fj

exists. Then by applying the central limit theorem

(Lindgerg-Feller) we get

√

FjSCAR

σ̄
d→ N(0, 1). (14)

What is left is to show S2
Fj

p→ σ̄2, then by using Slutsky theorem

√

FjSCAR

SFj

d→ N(0, 1). (15)

Two things need to be verified: S2
Fj

is asymptotically unbiased and the

variance of S2
Fj

converges to zero.

1.

E(S2
Fj

) = E





∑Fj

f=1(SCARf − SCAR)2

Fj − 1





=
1

Fj − 1





Fj
∑

f=1

E(SCAR2
f ) − FjE(SCAR

2
)





=
1

Fj − 1





Fj
∑

f=1

σ2
f −

∑Fj

f=1 σ2
f

Fj





=

∑Fj

f=1 σ2
f

Fj
→ σ̄2
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2.

var(S2
Fj

) = var





∑Fj

f=1(SCARf − SCAR)2

Fj − 1





Then

lim
Fj→∞

∑Fj

f=1 E(SCAR4
f )

Fj
< ∞ (16)

is a sufficient condition for var(S2
Fj

) → 0 as Fj → ∞. Here, we make

the second assumption that Eq. (16) holds.
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Figure 6: 6 × 6 Patterns Discovered by SOMs (Dow Jones).
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Figure 7: 6 × 6 Patterns Discovered by SOMs (Nasdaq).
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Figure 8: 6 × 6 Patterns Discovered by SOMs (S&P 500).
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Figure 9: 6 × 6 Pattern Hits Clustered by SOMs (Dow Jones).
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Figure 10: 6 × 6 Pattern Hits Clustered by SOMs (Nasdaq).
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Figure 11: 6 × 6 Pattern Hits Clustered by SOMs (S&P 500).
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Dow Jones (w = 10) 

Figure 12: The Informative Patterns for Dow Jones (w = 10).

 

Nasdaq (w = 10) 

Figure 13: The Informative Patterns for Nasdaq (w = 10).
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Nasdaq (w = 90) 

Figure 14: The Informative Patterns for Nasdaq (w = 90).

 

S&P 500 (w = 120) 

Figure 15: The Informative Patterns for S&P 500 (w = 120).
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